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Theorem 4 gives that among the Liiroth type expansions the Liiroth
expansion is the slowest in convergenee. Also, among the well known
expansions, for almost all #, the Liroth expansion requires the largest
number of terms to provide the same accuracy.

The case A = 1 was recently investigated in detail in [2].
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of values of certain algebraic functions*
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CuArrEs F. Oseoon (Urbana, I1.)

INTRODUCTION

In a recent paper [3] the present author obtained a vesult, which
i3 sketched - immediately below, abouf fhe simultaneous diophantine
approximation of the values of (N4-8)% ", ..., (N+4s.)% ", where
0 =35 <8 <...< 5, were n > 2 integers, k 3> 2 was an integer, 1 < E<k
was an integer satisfying (%,, k) = 1, ¥ was a sufficiently large positive
integer, and the kth roots above were the positive real kth roots.

Let & denote a positive real number, (p,, ..., p,) denote any nonzero
vector of nonnegative integers, ¢ denote a real number, and ¢ denote
a positive integer. Then three functions w = {8, ..., 8,, %, by, &, N),
=081,y 8, by b, 6, N) and A = A(s,, ..., 8,, %, b, N) were given
explicitly (*). It was shown that if e< (2n—4)" , N2y, ¢=¢ and
0 01, then '

: 142
(1) max (O +5) 7~ g0y = (2) ),
=<isn : B

Further, as N — +co {and all of the other parameters were held congtant)
A increased to m-—1. .

~ In this paper we shall prove vesults allowing us to make statements
analogous to (1) about & larger class of algebraic functions. In these state-
ments the auxiliary funections corresponding to ¢ and y above are not
given explicitly; however, it is shown that they are effectively computable.

Let  denote the rational field, ¢' the complex field, ¢ (1) the Gaussian
field, Z the integers, and Z[i] the Ganssian integers. Tn what follows ¥
will always. denote a Gaussian integer.

* This paper was written in part while the author was on a Postdoctoral Research
Associateship at the National Burean of Standards (W’ashington, D.C), in part
while at the University of Tlinots, and in part while at—or consulting for—the Naval
Research Laboratory {Washington, D. L)

{*) The present notation differs alightly from that used in [3].
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DeriNmrioN. For each NeZ[i] a set of &= 2 functions w, (), ...

ey g8, ..., wyle) Will be called N admissible if the w;(2) are the distinet
branches of the algebraic function defined by p(w) = # for some

%
p{w) =2@zwl
i=0

with esach aeZ[il, a, =1, @ =0, and every lay < (§5 1) N0,

Let 0 = oy .00y Gpy o0ey 0y denote n =2 distinet Gaussian integers.
By ¢ we denote a nonzero Gaussian integer and by {p,,| 1<r< n,
1<1<k—1} o collection of Gavssian integers confaining at least one
nonzerc number. Let the €, 1 <j <k, denote any & complex numbers
satisfying for some real ¢ independent of N,

k .
0< |G <[NP, and DG =0.
i=1

Liet ¢ denote a positive real number.

TurorEM 1. There emist effect@vely computable functions wl.m

ey, sy, o,k 8) and gy = g (n, o, &, ) suoch that if N is any Gaussian
integer with |N| 2 and w,(2), ..., w.(2) are any set of N admissible funo-
tions then ‘

. I 1+8
—{14
@) - max ([ V0V +a)—p0 ) = b
1.21';3521 i=1

for oll g with |¢| = | N7

One may apply a transference theorem to Theorem I, after choosing

the constants (; appropriately, to obtain the result given next concerning
linear forms in the wi(¥ +a,). o :

Let the B,;, 1<r<n and 1 <1< k—1, and 4 denote n{k—1)+1

Gaussian infegers, Let ¢ denote a positive real nuimber. .
TuworEM II. There ewisi offoctively computable functions v, =
= @y, .oy 0y, by &) and @y = @,(n, k, &) such that if N is any Gaussion
indeger with [Nz, and w,(2),...,w,(2) ere any set of N admissible
functions then ‘
o ke

' o 1 .
(3) -~ max {12 B, k(N 4 a)+ AH = (max {]B,.}ﬂ})“m"””),
1 LY ) :

llijg,k r=1 1=1 . -

-if max{|B, )|} = |N|™.
7L

Theorems I and IT are “best possible” in the sense that if we choose

any I}Ggative £ above then the respective statermnents are false for any,
effectively computable or not effectively computable, functions vy, 4, @,
and g,. We shall see shortly a Proof that Theorem II is best “possible”.
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Tt follows from the proof which we shall later give for Theorem YT that
if Theorem I holds for some negative e then Theorem IT holds for some
{possibly different) negative &, so0 Theorem I is best possible also,

We shall see later that each w,(2) above may be obtained by analytie
eontinuation of any branch about 2 = co an appropriate mumber of times.
This leads us to:

COROLLARY 1. Let wy(z) be any funetion salisfying p(wj(z)) =z for
some pliw)eQ i, w] of degres k= 2 and let §;, ..., §, ba any » = 2 distine
eloments of Q(i). Given ¢ > ¢ and h > g (k, n, g) it is impossible to find
a collsction of B, ;(2}eC{e], 1<r<<n and L <1 < b—1, with max {deg B, ;{z}}

i ’

= b and any A(R)eC(2) such that

o
i

1

(£) B,q{2)wk(z+ 8,)+ A (2)

Nl
b

~
i
L
T

i

vanishes al z = oo fo an. order lurger thew
(5) (n—1+8) '(m&;x {deg B, (2)}).
¥,

Prooi. If p(w) belonged to Z[i, w]; p(w) were monic; the 4§, ..., d,
were Ganssian integers; the B,,(2) and A(z) each belonged to Z[i, z1;
and Corollary I were falve; we would have by Theorem IT a contradiction
for @ equal to a snfficiently large positive infeger, since each amalytic
continuation of {4) about z = co would vapigh at # == oo to the sams
order as (4).

Suppese in the paragraph above we now allow the B, ;(z) and A (2}
to be in (![z] and obtain a counterexample to Corollary 1. We shall next
show that then we may obtain a counterexample with the B, ;(2) and A (z)
in §[i, 2]; hence, one may obtain a counterexample with these poly-
nomialg in Z[4,2]. . .

Suppose that p{w) = w* e, w4, .4-a,w. We shall ses later
in this paper that the expansions of the w,(2) about 2 = oo are each in
descending powers of 2 and begin with the power #™'. Thus one solution
is given Dy w(2) = & —k~ta,_ 2" ...t b~ 1 . Substituting this
series in p(w) = z we see that for each 121, b; eqguals a linear combina-
tion over @{7) of b_,, ..., b_, and 1. Thus each b, ) {z). Note that in our

supposed. connterexampls deg 4 (2) << max{deg B, ;(z})} = d. We see that
i : 7, 4

because of the existence of the counterexample a certain system of hemo-
geneous linear equabions in (n(k— 1)+ 1}(d-+ 1) variables with coefficients
in @{i) has vank Iess than (»(%— 1)+ 1)(d--1). Then there exist ¢, ..., 8,
(for d, 2= 1), a maximal linearly independent set (over @{1)) of solution
vectors of the system of homogeneous equations, with each ¢;, 1 < j < dy,
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having entries in ¢ (7). Each solution vector with complex entries iz 2 com-
plex linear combination of ¢, ..., ¢4, Therefore, corresponding to one of
the vectors 6; we have an expression of type (4) in w,(2) with B, ;(#) and
Al2) belongmg to @1, 2] and with meX {degB,;} =d > h, Whmh V&mshes

to an order larger than or equal to ('3) This is & contradiction.

Now suppose that we are in the general cage. There exist positive
integers d, and d; such that for a monic p,(w) (of degree ) belonging
to Z[i,w] eaeh p,(dyw;(2)) = dyz (L << k) and each 4,6, (L<r < n)
belongs to Z[3]. The cases proven apply to show that

Com k-l

X' 3B, (4 (4, wl(z+§ W 4 (dy2)

r=1 I=1
can not vanish at dyz = oo to an order greater than (3) in dyz 1f
ma,x{degB,, W(#)} = k. Corollary I follows.

COROLLARY IL. (1) Inequality (3) will hold for all sufficiently lmgg
INT and mafx{logm(fBT,l]} if end only if > 0.

(11 Lme (4) will always vanish to an order less than or equal fo
(n—1+ s)nl&X {deg B, ;(2)} at & = oo for all sufficiently large ma.x {deg B, ;(2)}

“if and only ef &> 0.

Proof. In each case the “if” part has been shown Also, it will suffice
to show the “only if” case for statement (if). Consider for any positive
integer h, the problem of construeting a collection of B, 1(#), each belonging
to Q[%, 2] and having degree less than or equal to hl, such that

Z’ D B () [ark (2t 8,)

ey Zwt(z+6 ]

vanishes at z = oc to at least the order (=1 +1)—E > (n—1)k,.
We see that this leads to 7 (k—1)(h 1) —1 simulteneous linear equations

in n(k—1)(h,+1) unknowns with coeftficients in Q(i). Thus we may
construct owr B, ;(2). Set '

n k-1l

w k-1

ZZNM@Z%WH

Now we would be throngh if we knew that going through this procedure
for By =1,2,... the sequence of va;lnes nmx{dewBr ({2)} obtained is

unbounded On the other hand if the sequence iz bounded then for each
posmve integer ¢

((ﬂ—l)(hl—}*l)—k"-l—t)(t—i—max{deg‘B,.J(z)})‘l—>oo with h1
. ri
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Hence for each ¢ if &, is sm“:fieieﬁtiy large the

E—1

D Y EB )+ 0,)+ £ A(R)

r=I I=1

—

each vanish at 2 = oo to an order larger than (w.—l)ma;x{z‘_B,.,z(z)}.
i

This proves Corollary IT.

In the conrse of proving Theorem I we shall construct forms of the
type appearing on the left hand side of (3), which come very near to
violating (3}. Tt follows from the proof of Theorem I that we in fact have:

COROLLARY OF PROOF OF THEOREM I. For egch & > 0 there ewists
an effectively compulable constant B,(e,) such that, for every N <Z[i] with
|| > fy(e;), inequolity (3) i3 violated infinitely often if & is less than —eg,.

Now to consider a slightly different sort of problem. Let
aet k—1
&
p(w,2) S 't ) afz)u’
=0

where each a(2)eZ[i,#2], k=2, and degg,(z) = d > 0. Supposs, also,
that the % roots wy(), ..., w,(2) of p_(w(z), z) = { have expansions about
z = oo in series involving decreaging fractional powers of z where 2o
two w;(z) have identical initial (i.e. dominant) terms. Next consider the
equation p(w,2) = u. For each ue( the set of dominant terms of the
expansions about 2 = oo of the roots of p(w, 2) = u iz the saine, as will
be shown in Lemma XV. Let us ennmerate these dominant terms, For
each ueC leb wy(u,2), 1 < j<k denote that root of p(w,2) = % which
has the jth dominant term. {In fact each w;(w%, #) I3 an analytic function
of both » and = on appropriate subregions of ¢ x C.) Set

e<i<Th—1

y = max {(degay(z)){dega, (=) k(E—1)"1} = 1.

Let «,...,q, denote %2 distinet elements of Z[¢]. Let the
Pir E<i<E L<r<n) and ¢ denote elements of Z[7] with ¢ %0
Lek B,,J' (T<i<h 1<y <n) and By, denote elements of Z[i]. Let «
denote a real number and. e a positive real number. Let J;, ..., O, denote

% complex numbers satisfying

x
2-0, =0 and max{0}]}<|¥

= _ 1<i<h

where o is independent of N.
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TerorEM III. {a) Theve ewist two effectively computable functions

Yy = "Pa(ﬁ(w: B)s Uyyeeny Upy 12, 5) and “Pa = @y, d, foy n, ay &) such fhat |

if N is any Goussian integer with |N| = v, then

Py —(1+1(ii5)-}
(6) {3 Gywlley, M- 0> 10T,
7, Fel .
if lg] > |V |%.
, (b) Zf v =1 there emist effectively computable fumctions Py =
Pa(B(w;2), @, oony o, &) and gy = gi(d, &, 0, &) such that Sfor all Gaussion
integers N with |[N| = v, '

n ok : .
(M - max {|3 3B, wia, N} Byof} = (max{[B, f))=t-2+9,
-

sfsk ey 121

if max{B,,)} > !leé-
7L

Inequality (7) is obtained from inequality, {6) by the same proceedure |

as gives Theorem IT from Theorem I. Xf y % 1 is sufficiently close to 1
a statement of type (7) may be obtained but with a power of max{|B,,}
. ,

less than —'(w~1+s) appearing on the right hand side. We gil&]l now
shox.v.that it the az), for 11 k3— 1, belong to Z[4, 2] and, for all
sufficiently large |2, |oy(e)] < (827" - lay ()%™ then the k different

solutions w;(z) of w’i’ﬁ—l};‘ #(z)w* =0 each have different dominant terms
=1 l

in their expansions about # = oo, This will show that Theorem III (b)
is at least as strong as any statement of its type which might he proven
directly from Theorem II. (To sée that Theorem TIT {(b) is gtronger consider
the example p(w) = (w--2) (w-}-22) ... (w+ (E-—1)2).) ' :
.First we show that if y = 1 the expansion of each root about & = oo
beging with the same power .of 2 Let d = dega,(2) > 1. One sees that
’Fhe dominant terms of the expansion of each w;{z) about # = oo must
involve 2 to a power less than or equal to dk™, by examination of the
_. equation p{w, ) = 0. Since deg(ﬁ [1w;(2)) =d it follows that each
- =]
domma.]:;t_ lterm must be of the form yy-z‘"“—l for some »; =% 0. Let p,(w)
=w"~i-12 baw' where b, is the coefficient of Z0-%"D jp a,(#). Note

={ _
by 0. Then for emch 1<I<E—1, b < (35)%. Also 2i(y) =0
for each 1 <j <% Tn LTemina XTI we show that under these conditions

each pi(y) # 0; thevefore, the dominant terms of the expangions of the

w;(2) about z = co are distinet.
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Ity = (&, &egau.(z)) =1 the analogue of Corollary I of Theorem II
follows easily with the w}(&,.,z) replacing the «w]Z- (¢} &,) except that we
must require that the B,.;(2) and A(z) belong to @(i,z). We need this
latter condition since the exact form of the coefficients of the expansions
of the w;(4,, 2) about z = co is not too clear in general and we might not
be able to pair the vanishing of

. n k-1
D' Y B, (2 w8, 2+ A=)
r=1 =1
to a given order at infinity with a system of homogeneous linear eguations

" with coefficients in () having a nontrivial solntion. Also, this difficulty

makes a result analogous to Corollary IT of Theorem II appear to be

doubtfnl. However one may prove the following result.
E—1

Suppose that p(w, 2)<Z[w, é],p(w, z) = w4 > wl(z)w

. =0
prime integer & > 2, d = degay(=) =1, (k, d) = 1, and

max {dega(s)(degay (2)) ' k(k— )"} =1.

e=CI<k—1
Let &, ..y 6,y ..., 6, denote n = 1 distinet elements of ¢. Let the B, (2
(L e, 1<l k—1) and 4(z) denote elements of G{e]. Let {j(r)}
denote the collection of all funetions from {1, ..., n} to {1, ..., E}. Let the
wy (e, 2) (1<f< k), denote the k distinct solutions of plw, &) = u. Let ¢
denote & positive real number.

TwreoreM 1V. There ewists an  effectively computable fumclion o,

= gp,(d, k&, 1, &) such that

! for some

. k—1

() deg( TS S Bteyudy (5, 2)+4 (z)))

G0y =1 =1

n—1

> (kn__ Enl 5‘ B — s) (m@x{degBr,z(z)}]
= 1

if max{degB, (2), 1 <r<n,1<I<k—1;degd ()} > ¢
‘We note that the produet in (3) must belong to €[¢, 2, By, ...
evey By, Al An application of the above theorem is to equabions o
the form
n k=1

@ T3 3 Xealedhy (3, X () = T(2)

)} r=1 =1
where the X, () and X (¢) are unknown elements of @[2] and ¥(z) is
a polynomial in the X, ,(z), X(2), and = In many cases there will exist
an effectively computable bound on max{deg X,,(z), 1<r<n,1 <1
=< k—1, deg X (=)}, because of Theorem IV. -
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One corld also prove a result analogous to Theorem. IV for the case
where » > 1 but p is “sufficiently close” to 1.

In a future paper the present author will extend the methods of this
paper to treat other funetions including hypergeomstric and generalized
hypergeometric functions. Further, for any non-polynomial function which
is algebralc over Q(4,2), we shall obtain lower bounds upon the simul-
taneous diophantine approximation of a set of numbers consisting not
‘only of values at 2 = N--a,, ..., N+ a, of powers of the algebraic function
but alse (regretably) values at & = N+ ay, ..., N+, of certain generally
nonolgebraic repeated integrals of the algebraic fumction. (Note that if w,(z)

is a solution of p(w) =z then = p'(w;(2)), so each repeated

de
dw,; (2)
integral of w;({z) with respect to #z is an algebraic function over 9,2
if the congtants of integration are chosen appropriately.) In Sections I
and JII of this paper the approach is more general tham is needed for the
prooefs of Theorems I-IV. In particular Theorem V in Section I, below,
will be helpful in this future paper. :

Section I

Suppose that, where ¢, .. Gt are t 2= 1 indeterminants and v, (2), ...

..,yt(z) are { functions, ¥ = ; e;9;(2) satisfies a linear homogeneous
j=
differential equation with eoeﬂlclents in @ (7, 2). One may put this equation

in the form .
(1) 0Dy () = Y D'glaD)y
: izl '
where g,(2D) # 0, and each g(2D) (0 <) belongs to Q[4,2D]. (If neces:
sary multiply tluough by a power of z and or by a power of D and then
use 2D = Dz—1 repeatedly.) The equation g,(#) = 0 we c&]l the indicial
equation of (10) corresponding to an expansion about # = co. The roots
of 4,{t) are the roois of the indicial equation about z = oo of the orlglnal
equation for y(z) plus —1, —2, ..., — u where pu i3 the number of times
we ditferentiated the original equation. (To see fhis substitute 2™ for y
in the undifferentiated equation and then differentiate u times.) Since
- D(aD} = (zD+-1)D we may easily write down the differential equation
of type (10) which is satistied by D*y(s) for 4 = 0, 1, ... By substituting,
for some 2 = 0,1, ..., D*y(2) for y(2) we may obta.m an equation of type
(10} with the property that g,(t) % 0iftis a nonnegative integer. In what
follows we shall assume that in (10} g,(¢) == 0 if t is a nonwnegative integer.
Ghoose K to be a pogitive integer larger than ma.x{l—[— deg g, (D)}

= the order of (10). Given ay, ..., a,, n > 2, distinet Ga;usman integers,
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set g(z) = H {#+a,). Where here only [] denotes the greatest integer

functicn, set for each positive integer M, m = [ Y{H 4n—1)] and
b =mn—M, so M =mn—h with 0 <h<n—1. Let B'y(z) denote any
-fold primitive of y(z) if ¢ is a positive integer and denote D'y {z) if ¢ is
# nonpositive integer.

For each positive integer M and each —K <4<
form the funetion

RfM (%)

min (K, ¥ —m)

= [{ote— )™ (a— 1) (B~ 0y (1)) a2

&
where ¢ is a closed path in the ¢ plane which winds once about {z-}-a,]
r=1,...,n} in the positive direction and [+} is sufficiently large that ¥ (2)
is analytie in a simply connected region containing the path ¢, We shall
also write

By = ((p(2) ™) * (B y (2).
It follows that R3,(y) is well defined regardless of the choice of
Br1*0y(1), since (p(z—1))"™(z—1t)* vanishes to the order M = m- 4.
One may verify that if fand g are each analytic on ¢ then

(i) f*(Dg) = (Df)*g

and

(i1) Fx(29) = z(f*g)— () *g.
From this it follows that

(iii) [*{(2Dg) = 2(Df*g)— (Daf*g).

Also if @(2}, &, m, and § are as abuve then,
(i) ({p() ™) (B (=D)g)
= (.(qn(z))‘mz}‘) =B g — (m— 14 §) B™' T oy).
Using (1)-—(1V) we verify that ‘
(11)  ((p(z)) ™" (Em—“'w )y ()]
(=) ™"} 5 (D) Bm 140y (2)) —
~(le(2)) ) ((m—1+ ) By (2))
_ M(D((p(z))—mzk%-l)*(En1~1+dy(z))+
+2|(D (g(@) ) e By ()] -
—(m—1+8)|(le ()™} « By (a)]
= (U —(m+ 8) (o (2) "‘z”) (B 0y ()
+{lp (1) kg (5) — s ()] By ()
+ [l ()70 (R 1¢(Z — mdg’ () BTy (2)]

Acia Arithmetica XIX. 4, , . 3
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2
fu §
| %43

Now

deg [ g (2)—m2ty (2)]

deg [me" ' {2)— mnp{z)]  and

are each at most 5 h— 1. Therefore we may rewrite the final expression
in (11), if = 0, as a linear combination ovel 17, 2] of terms of the form

((rr‘(z))—m' 3h’) },,-(E-mfflf d’,y {z))

where 0 << <n—1, ' +§ =m+d and m' equals m or m-4-1. The
coefficient of th(, 161111 \‘.11010 B = h, m' = m, and (necessarily) ¢ = &
is M—{m-+ 58). If we now write for each 2= 0

(12) ((qy(e)]—;‘nzh) (Fm 1M5£q aD)— Z"DIQE 2Dy (e ))

11

we see that this leads to @ linear relation among the different R, (y)
wherea M < MW’ << nim-A-RK)< M+ a{K+1) and & 2 d—K. Also the
cosfficient of the term where M’ — M and & — 8 i o[ — (m—8)).
Since M—{m-+ 8) =0, ¢, (M— (m+48}) = 0.

Lzwas T. Each of the Ry (w), ..., Rir, (K1)
a linear combination over Qi,z] of the Ry 1 (y), -
gach M= 1.

Proof. We mnst show how to write each R, (y) as o linear combina-
tion over Q[#, ] of the stated objects. If 6 = 0 iz as large as iz allowed
we apply the relation obtained from {12) and obtain terms of the stated
gort plug termg where M’ = M and —K << 8’ << 6. Thus we need only
consider the case when 4 is not the largest value allowable. We note
that then

. ((gﬁ(ﬁ))ﬁmzh) " (’E'rn—l-{—ﬂy(z)) — (D(W(S))_m zh) * (Em-l{(§+1)y (;’J))

which leads to an expression of R, () as a linear combination over Q{i)
“of terms of the form R, where M 41 < M’ < M+2n and & equals 6
or §--1, Since K +1 = 2 we are through.
LEvwa 11 For each M 2 1 the module Py; over Q[1, 2] spanned by the
(278) T Ry (), - vy (208 Ry pqzany 1 () containg the_ elements DFy (),
for 0<ig< K and L r<n, and the elements

(e/) may be writtern os
-R’M-}-ﬂ K1) (y) for

@ri) [ (B (0)) (et ay— 1) . (2o oy — 7l

wheve 7y, ..., 1y are any 1<\ 1< n distinet elements of {1,2, ..., n}.

Proof. By Lemma I we need only show this for M = 1. Bach

@)™ [ DIy () (et a—)7'a@t, 0<j< K,
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may be written as a linear combination over Q[4,z] of the

(2mi) ™ [(lp(2)) 2 )= (B 7y )

where 0 < h < %—1, so this gives the resuit for the D¥y(¢+ o). Bach

(2mi)” J(EI et a,— 07 L (p et

may be written as a linear combination over @[i, 2] of the

@i (g (=) ) (B 1y (2))]

We see that then 0 I3 M —1 = M —m, so we are through.

{(Obviously one may write down other elements which are in each
P4, but we shall need to know that the Diy(z 1 g,) are included for the
proof of the next lemma; also, the fact that certain simple linear combi-
nations of integrals of the y(e+c,) are included indicates that in general
each (2wi) ' R); may not be expressed in terms of the derivatives of the
y{2+ u,) alone.)

In equation {10) let us use 2D = Dz—1 repeatedly to obtain an
equation of the form

where O<<h<<n—1.

D s, Diy(z) = 0

K=iz0 ] .
where each §;(z)<Z[i, z]. Let 5; (2) be the coefficient of the highest deri-
n
vative of y(2) actnally appearing above. Set s{z) = [] 8, (2-+a,). Note
=1
that if 8 > K 11 then each Dy{z-\- «,) belongs to (s WEP, o {s(z)) " F Py
for M =1,2,...

Leawia ITT. Let K be chosen sufficiently large that —K is less than the
smallast integral zero of g, (t). Then for each M = 1 there erists a nonnegative
integer J (M) such that (s(z)}"*0Py = Py,

" Proof. All that we need to do is to show that every (2=i) R, (¥)
may be written as a linear combination of ¢[i, =1 of elements belonging
to P, and different D'y(z--a,), for 6 = 0.

From (10) we see that for each nonnegative integer 2

QD= Dy () = 2 g (zD—

sy 'y
=1

I DE Ty (2) 4 1 (2)

where 7;(z) is 2 polynomial of degree at most A—1. If A > K then, under
the hypotheses of the lemima, we are able to write an equation of the form

(13) By(z) = Z 30 By (2) - 7.(2)

24
Ezlzi=o

where the y,; = y;; (%) are elements of (i}
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Now we suppose that we are given

(2mi) " [{(p() ")+ By (2)]

where 1> K, ma—h >4 and 0 h < +oo, We may use line (13) to
write

(@) [l ()} ™) =By (2]
== E ya(2mi) ™! [((Q“(Z))—qnzh) (& By (z)]]‘

I=1
K2i=jr
Using property (ii) which was established f01 # 1)10(111(3{3% we see that
for a collection of #;,(z) in @[4, z] we have

(@il (20) ) ¢ (7 (21
= @) {lpe) ) B Yy (2)).

131

| Kl

We note that mn— (h+7) > 2—1, s0 one may apply the same procedure,
repeatedly, to all terms where the power of B iy larger than or equal
to H. One finally arrives at a linear combination over ¢[4,2] of terms
of the form

(o)) ) » (2]
where 0 <{ 8 < K. '

We next use property {i) of * products K—1~§ times to obtain
in each case terms of the form

] 7(2“_:?:)»1[(1)1'(—1—3(&0(2)) m hJ-l)) (EIL -1 )]’

and may write the collected terms in the form

(14) @R [ele— ) r (2, 0 H{EEy (1) At
4]
for some positive integer v and some 7(X,, X,)eQ[¢, X,, X,]. The order
of vanishing of {¢{X,)|""#(X,, X,) at X, == co (where X, remaing in-
determinant) we denote by @. Without loss of generality we may assume
that @ =1, i.e. subtmct W‘W terms which give rise to 111tegmls which
are zero,

‘Now restricting our choice of b to 0 <h<<n—1 we see that the
-quantity in (14) is (2=i)"'R3(y). Notice that (2mi)™' Rl (y) iz defined
independently of the definition of ¥ g(t). Tt 1 < & < K— 1, however,
then replacing EFX'y(1) by BX 'y(t)+ 1! would change (151) by the

addition of a nonzero polynomial in 2z, Thus & > K. We may write the
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partial fraction decomposition of (p(X.))~"r(X;, X,) considered as
a function of X, and recombine certain of the terms to - obtain
the idenfity

(¢ (X)) 777 (X y; Xg) = (0T F (X, X)) s (X fX»Jra )~
3>K b
for some pu(X,, X,) in @[, X,, X,] and collection of g, ;(X)) in
Qri, X,], where [p(X,) 5 Yp(X,, X,) vanishes at X,~ oo to an order
larger than or equal to H.

From the above it follows that (27i)~ 11?,‘511(1,') equals a linear combina-

tion over @[i, 2] of derivatives of the y (24 «,) plus
@ri)y [ (p(—0"F N ulz, 2= ) (BX gy (1) dt.
[
We may write this last term as a linear combination over Q [, 2] of terms
of the form
@mi) 7 [ (g le—0)) ™ (e— HBEE 2y (1)) dt

C
where 1< m<t A—1,0<h<<n—1, and M = mn—h> ¢ = K. Setting
K—~1=m—-14+06 we see =1, d=F—m< H—m, and &§ =K--m
< K1 < K. Since the number of derivatives of the y(z+ «,) which can
appear is finite we see that there exists J (M) such that (s(z)}”* Py, = Py.
This proves Lemma IIT.

Lmarvia TV. There erists a positive infeger p, depending on y(2) and K
and independent of M sueh that each module P+, has 4 module basis consisting
of exaetly p Unearly independent clements.

Proof. By Lemmas I and ITT the different modules P, generate the
same vector space V over Q{i, 2). Since y{2) = 0, [V: Q(i,2)] =p > 0.
If K is a field then any finitely generated module over K [«] has a linearly
independent module basis, Since here any modale basis for Py; is & vector
space basis for V = Q(¢, 2) Py we see that this basis must haNe exactly

» elements. This proves Lemma IV.

Suppose mext that v, ...,v, are p linearly independent elements
of P, and that for a sequence of nonzero T'y,{2)eQ[7, 2] each ~ '

Ty(5)Py = QUi 2]+ QL1 2]+ -G 1, 2],

Lesya V. For each M = 1 the snalriz of coefficients of the T,,(2) X
X (270 TRy (), 0 < < (B +1)n—1, when written in ferms of the
Uiy -ve, Uy Ras rank exactly p for all compler numbers z other than the zeros
of Ty(2).

Proof. We note that the rank is at most p becanse of the dimensiong
of the matrix. Let h,(3), ..., k() be a linearly independent module
basis for Py, Let Ay(2) be the matrix of coefficients when the T (2) X
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X g (M), oy Tar{#) Ry (M) are written in terms of »,,...,v,. Since each
v;eP; € Py we see that there exists A5,(2), a p by p matrix of elements
in Q[f,2], such that Adu{()d (% gives the coefficients when the
Tar(2Yhy (B}, ..., Ty (2)h, (M) are written in terms of the basis A, (M), .

, T (1), Thus det(4 M(z)-A;u(z)) = (T (2))", 50 dp(z) has rank p
if # is not a zero of Ty {2).

Since each Th () he( M), 1 < k< p, may be written as a linear com-
bination of the T.(2)(2wi) 'Rl (), 0 <j< (K+1L)n—1, over Q[i,z]
we see that Ay (z) = Ay (s) A% (2) where Ay (z) and A3 (2) are each
matrices with entries in @ [¢, 2] and A’ (2) is the matrix of coefficients
of the Tp(2)(2mi) T Ry (9), 0 < J < (K—!—l)'n. 1, when written in terms
of the basis »,, ..., 2,. Thus the rank of Ay is at least p if 2 is not a zero
of Ty (z). This pmves Lemma V.

Below for each K, (y) we denote by B’y (z), 0 < 9 < m-+6, the func-
tion DMH-OEMtEy (), Note that the definition of B° depends upon
M and 8 and that B E% £ B1+% in general. In this paper § with a sub-
script will always denote an effectively computable constant.

Lmva VI. The funetions

(2n8) " m -+ 2K)! ([] (ap— a)?™ P55 Ry ()

k>l
Jor 0O H, 0 i< (K41 n—1 arve each equal to o linear combination
over Z[i] of the fumctions (0—1)!E'y(zta,), 1< b mE2K+1, and
the functions D%y (z-a}, 0 < p < K, with coefficients which are less in

absolute value than ST for an effectively computable B, independent of m.
Proof. 1t will suffice to show that each

(@)™ ([ ] (e

)" (m+ K —1) | Rig(y)
k=1

can be expressed as a linear combination over Z[i] of the (6—1)!x

X B’y (2-+ a,) and the Dy (24 a,), but for 1< o< m+ K, with coefticients

which are less in absolufe value than A7 Then the result stated in the

lemma. will hold for a possibly larger effectively computable constant 8.
Writing each (24 o,— )™ ag

((3+az—t)(ak“ﬂz)ml+ 1)
it} & and Em‘1+5y(t) as

(o~ o) ™™;

Z(Emm-l-)-a- .y(:y_i_a )(t—Z‘—-(Il)p( ') 1

n=0

we pmceed to eva,hmte the residne of the integrand of R} (y) at? =stq.
After multiplication thy ough by the quantity ([] (a,— )%™ (m+K—1)!
k=l .
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we obtain a sum of terms of the form a Gaussian integer times

(m+K—1):pY) E Ty o )

If m—1-+td—pel het f =m—1--3-p>=1 and note that we have
a (Gaussian integer times s

where 0<{p=<{m—1.

(4K —1) ... (m+o—1){(m+ o= {(0—-1) 1 p!) T {O— 1) BP9 (3 +a))

withl< d<mtd<m+H. Em—1+0—p < Osetg = —(m—1+d—p)
Note here 1 <C m—p < K. Then our term is of the form a Gaussian integer
times (m—+—H—1)... (p+1) times D7y(z+a,) where 1 < o< B

The Ganssian integers mentioned above are in each case { H {1 — o) 2™

times the rexidue of (g (z— )} " (e— D {f— 21— )7 ab § = -f—'—al 'I‘his equals

] e iy [l

k=l e

— Y (- di

where ¢ is any closed path whieh winds once about t = ¢ in the positive
direetion and not at all ahout the other poles of the integrand. The absolute
value of the above expression may be hounded from above hy g7 for an
ctfectively computable f. independent of m. This ﬁuffi_{:es to prove the
Lemma since (m+KE—1) ... (- 0) < (m-—FKPE, (m—j—é 26— 1)1p!?
£ IHESand (B —1) . (p- L S R ) B O 1 m—p < K. This
proves Lemma VI

We next state the first of two conditiong which will be formulated
in this section. They rapeatf, somewhat, the assumptions which we have
already made on each y(z) mt demand, additionally, unifornity with
respect to all y (2) in a given class of functions, along with other assurnptions.

Coxprriox A. Suppose that we are given » class = of “funetions”

t

(=) = Y’ ¢;y;(z} where the ¢; are indeterminants. the y;(z) are functions,

and ¥ is effectn elv bounded from above (1). Suppose that each y{(2) =yem
satisfies a linear homogeneous differential equation of the form

= Y DDy (7)

I=1

(15) 2o (zD)y

where q.(2D} = ¢ and each g{zD) (0 <1) belong to Qfi, 2)]. Suppose
that the orders of the differential equations of type (13) are uniformly
bounnded from ahove by some effectively computable K = 1 for all yem,
and that in each eguation g,(s} 5 0 if ¢ is a nonnegative integer or if s
is a negative integer less than or equal to —H. Let «, ..., ¢, denote
# 22 1 distinet Gaussian integers. Suppose that where 0 <0y << 1 is effecti-

(3} Except in the expression 2ri, the &meol 7 will never refer- in this paper
to the real numbet.
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vely computable and depends only on there exist three effectively

computable functions K, = K {y, a5, --., ), Ka(y), and A,(y), with

Ky, as, .-, a,) = 1+2(max{{a,l}) being veal valued, I;(y) being complex
*

valued, and K,(y) taking valnes on {0, 4-oo], such that, for all 2 and ¢

satisfying |2l = Ky(¥, 0y, -y @), e—Ea () < Ko (y), and |o—1] < gyl

y (1) is analytic and satisfies |y{f)| < By 1"+ for effectively computable
1

. det
congtants B, and f, depending only on », where Ile‘ 6;fi(2)} = max {If; (=)} -
= ¥

LemMma VII. Under Condition A there ewist effectively computable
numbers B, and B dependent only on n and n such that for all yen and 2
satisfying |2 = K, and [2—1,| < Iy, :

(2miy™ (4 2200 ([ (o™ Bl () < B o102,

k>l
foral 0K i< n(E-+1)—1 and 0§ K.

Proof. We sghall obtain, for each M =1 and —K <34
< min{¥—m, K}, the upper bound ((m-2K)!)7* g7z~ Dm+b for
(2=i} ' By, (y)|, where 8, and B, are effectively computable constants
depending only on z and n. Then slightly larger values of g, and 8, will
suffice to bound each |(Zni)™* Ry, (y)} for 0<j<<n(K+1)—1. This
will prove Lemma VII.

Buppose that |2/ =K, >2 and ¢ =¢(t) is a path going around
{t| lz—1 = 5(l2|-~1)} once in the positive direction. Then if t lies on ¢,
(I+n)ef > il = (L—n)z| and each le—i+a|> g(e!—1)—fn(H,—1)
= $y(iz[—-1) = Iniel.

If m—1+8=1 set

i
By ) = [{m—24 )17 5~ 2™y (s)ds

where the path of integration is the line segment between z and ¢ Then
for each 4,

| By ()]
< ((m+2E) )7 [((m4- 2K) ) (m— 2+ 6) ! (2E — 24+ 6)!)7Y] 87t o™ 0

for 4ll teo, where f, and f, are eifectively computable and independent
of m, §, and z (Recall K is a constant.)

In the finite number of cases in. which m—1-4- 8 < 0 we may estimate
| B4+ (1)] for all te¢ by an integral with respect to-s about a path which
goes around {sl |s—1f = $#} once in the positive direction and obtain
again the above bound, for possibly a larger set of constants g, and f,.

icm

On the simulianeous déophantine approzimaetion 359

Hence

|(278) ™ Rl ()]
< {(mH2EK) T2 E (2K — 24 8) 1 B 2 10 (4 2]y 2
< ((m+ 2R B o] ==t

This proves Lemma VII.
Derrxrrrons. By the height of 4 polynomial in a finite number of
variables we mean the maximwmn of the absolute values of its cosfficients.
If () and r,(2) belong to Q[i,2] by r{z) < ry(2) we mean that

the absolute value of the coefficient of each power of # in #(2) is less

than or equal to the coefficient of the corresponding power of z in 7,(2).
(Hence r,(2) has real, nonnegative coefficients.)

Suppose that Condition A holds. Let ay, ..., a, denote # distines
Gaussian integers. For each positive integer 1< M < #(K+1)—1 write
A = mn—h where s and A are integers with 1< m < K41 and 0k
< n—1. For each integer & with —K < d < min{A,1—m) form the
funetions

(16)  (25)7 [ (b pm @)™ .. (Em 2 ) e — (B 0y (1)

[

where |2| > H,, #—K,| < K,;, and ¢ winds once ahout {z[ |z— 3}
=n{j2l--1)} once in the positive direction. Let P,(y) denote the module
over Z[t,z] generated by the functions in (16). Denote by p = p(y)
the dimension of Q (4, ) Py (y) over Q (¢, 2). Let 8,, ..., 15 denote effecti-
vely computable constants depending on « and n. :
CowpITroN B. Suppose that for each ye<x there exists a collection
of py = p.(¥) > p(y) linearly independent functions over § (¢, z), U, ,(2), ...
oy Upo(?); which is such that each U, ,{),1<j<p,, belongs to
@i, 2)P,(y). Suppose that for each gen there exists T,,(@)eZi, z] such
that (a) T, (2} has no zeros # satisfying both iz| = K, and |z—F,| < K,
and (b) each of the functions T, ,(2) U, ,(2), ..., T1,(2) U, ,(2) belongs
to Pi{y). Suppose also, that for every ye«x there exist (i) some sequence
of repeated integrals of y,BE'y,..., B’y,...; (ii} some T,(z)cZ[Z, 2]
with degree less than f,;, height less than K%, and no zeros 2 satisfying
both |z| = K, and |z—K,| < K,; (iii) some positive integral valued func-
tion §,{m) << ff3; and (iv) some y > 1; such that for each I<r<n,
O0<t<mt-H+], and 0o K, every S,(m)T,(){0—1)! Bly(2+ a,)
and every S,(m)T,(2)Dy(2-+ e} equals a linear combination over Z[4, 2]
of Uy,(%),..., Up.y(2) with coefficients

€ LGS (s — B (— B
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Tenmia VIIL Under Conditions A and B, for each y(2)em if |2| = K,

and |g—,| < Ky every

L 218, 0n -1 2K+ 1) T, () @2md) ([ | (o

k=l

)Z)mHH1 (m 4K 1)1 Rir(n)

whore 0 S K and 0L j<n(H41)—1, may be written as a lingar
combination over Z[i,2] of U, (&), ..., Up,(2) with cogfficients

& pE s (T e — TR (- K,

where by, 18 effeoﬁwl y computable and depondont only on = and w. Further
each L ()] < R Klu o[-t for effectively compulable constanis
Big and By, dependont only on m and n.

Prootf. The U, ,{7),..., U,,(=) are a basis for the vector spacc
over @ (i, 2) generated by P, (y). %in(e cach L% (y) belongs to @i, 2) P (:;)
the coefficients of U, ,(2), ..., Uy ,{=) obmmed when one Wll‘res L&
in terms of U,,(2), ..., U, ,(2) must be zero. The various e‘stlmatcs
follow almost immediately trom Lemma VI and Condition B, and from
Lemma VII and Condition B, respectively. Thiy proves Lemma VIII,

DErINTrTon. Let the s;, 1<« ply), denote a collection of Gaussian
integers which are not all zero.

TEEoREM V. Suppose that Conditions A and B sach hold. Then for
every r,e >0 there exvists oan  effectively computable number p, =
W (70y Gyy oovy gy 1y £) Suh that if N is o Gaussian inleger and y(2) is any
element of w with | N}z max{y,, K ¥, ty, ooy 0,)} and [ N—Fa ()] < Kqlp)
we have, for oll Huplea of complex mwmbms satisfying m&x{[o I} <IN,

7t—1

) m(l ?(H-s))
(17) max {[U;(N)~ 8,071} = g
L<i<p(y)
for all nonzero Gaussian integers g with g = |N\P, for an effectively com-
putable f,, dependent only on =, n, ¥, and &.

Proof. First we present with only minor changes in notation the
Lemma from [1]. Below [matrix|| denotes the maximum of the absolute
values of its entries.

Suppose that for some positive integer ¢ we have a sequence 4,
of ¢ by ¢ nonsingular matrices over the integers and a ¢ by 1 matrix ¥V 0
with real entiies. Tet f(m) be a monotone increasing function from the
nonnegative reals onto the interval [1, 4oo). Let 0 < &< +oo,

z 2 -1 . .
0 < ry<< oo, and (1+ T) (1—~ ,i) < 14+ Suppore that for all
1 1 . )

nonnegative infegers m = m, > 1
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z

Ml (fon) T,
(i) L 7l < (Fmy)

(iit) flm) < {f(m—1 ] HE

for some .1 > 0; and

Let g denole 2 nonnegative integer, S denote a general £ by 1 matrix
of integers with not all entries zero.
—71)

Tmna. If ¢ 3 f(-ml)]‘i[l then

gt
, 1+&

17— Sg =t (%)

FExamination of the proof of the Lemma enables us to see that if the
4., have Gaussian integral entries, ¥ 3 ¢ has complex entries, 8 is & ge-
neral ¢t by 1 matrix of Gaussian integers, and ¢ = 0 is a Gaunssian integer

=

then if [g] = %(f(ml))d(h "' we have

S
Cig 1EE
N P TCT E )
We now apply this slight extension of the Lemma of [3] to the pr oof
of Theorem V. Notice that if & < %, as we shall assume below, without
loss of generslity, then r, =4 ratisfies

(e b=
i4+-—j | 1——] < 1l+4e.
Fy ¥y

For each m > 1 let A, be any nonsingular z(y) by p(y) submatrix
of the matrix of coefficients of the T, (NI (y (X)), for 0<j
< n(K+1)—1 and 0 < §< K, when writben in terms of the elements
T, (MY U, (NY, oy Ty (N) U, (). Such a submatrix exists by Lemma V
since T, ,(N)T,(N) # 0. Then from Lemma VILL if m 21

”Ami; {m Beg) BRIN| y(mq-ﬁm“l) < P NV p(metfrg—1 j

where f#,, is effectively computable.
Set f(m) = 8 N'|™ Reeall |N|> K, >2. For some effectively
computable m, depending only on 3, (which depends only on = and =),
< }, and y {which depends only on a}, partis {i) and (iii} of the hypotheses
of the Lemma from [3] hold with r, = 4. Set 7 equal to the column
matrix with entries Ty, (N)... U,,(¥) which corresponds to each
matrix 4, i
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Then, also from Lemma VIII,
I [ e R (O A

if ¥ is larger than some effectively computable number which is dependent
ouly on m, », », and e, This establishes part (i) of the hypotheses of the
Lemma of [3]. _
We mnotice that p(y) < (K4 1)n(2H-+1) by consideration of the
 generators of P,(y). Then applying the extension of the Lemma of [3]
%—1

with 4 = and [N| and m = m, as large as required above, we have

that the left hand side of (17) is larger than
A - ?_Qts)_)
(w(H+1)4 (2 ]gl) v
for all s with

7—1 ( E

l¢] > %(f(??ll))T 1—4) _ lﬁzgﬁf‘(nwl)m.l(tnlﬂ .

Since |N| > 2 we see that the lower bound on lg) may be replaced

by |Nifza whgre Bao is effectively computable and depends only on =, 1, 7,
and e Substituting ¢/2 for ¢ above and requiring that

74

mlgt"‘_l] - 21+ (7']" g) (ﬂa‘l)“l

n(2H 41)?

(which does not affect the form of our lower hound on |¢|) we have proven
Theorsm V.

Section II

Suppose that w,(2), ..., w,(2), are the k (not necessarily distines) .

algebraic’ funections defined Dby ¢(w,2) =0 where g(w,2)eZ[i,w, 2],
g(w, 2) he:s degree exactly % > 1 in w, and the coefficient of w* in q (10, 2)
15 one. We recall (see [2], p. 118) that each m;(2), 1 < j < k,, is analytic
except (po-smblly) at a finite number of points in the extended plane.
Remu:nbermg .1f necessary suppose thab w, (2), ..., 1w,(2) (d < &) is a maxi-
mal linearly mc‘lel?endent subset of w,(2), ..., wy{2). For any functions
flf ,J;. o fz a;nallj__rf‘me n & domain D let W(f,, ..., f,) denote the Wrouskian
s} vy Ja- re li rly i i b .

a,nd“ y Juy «o, fq are linearly independent then W (fis ooey fa) 220

I’V(fh =-'7.fals' 'w)(W(fh "'de))—_l =0

18 a linear homogeneous differential equation of order d satisfied by
)1‘1_1, o fa (see [4], Gha..pter -:L).; further, the above equation is the 01113'
near .hqmogeneous differential equation of order 4 in plar) with. the
coefficient of w@ equal to oné which is satistied by fiy -y fq, since it wo
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had two such equations we could subtract them and obtain a linear
homogeneous differential equation of order less than d satistied by f1, ..., fa.
The equation

(18) W (101, «any gy W) {W (W, cevy wg))™ =0

has coefficients in @ (i, 2, @y, ..., Wy). Suppose that ¢ is any automorphism
of the Galois Group of the least normal extension of §(,#, wy, ..., ws}.
Then W{gwy, ..., g, w) (W {owy, ..., owy)) ™" = 0 is satisfied by ow;,
1<j<k and so by the w;, 1< j<d. From our uniqueness resnlt for
(18) each ¢ must leave every coefficient of (18) unchanged. Thus the
coetficients of (18) are In @ (%, #).

Note that if ¢ is as above,

W Wy, enns Wa) = W{owWy,y . .v, 0Wy) = W (2, -0, 04)

for some complex o since o(wy),..., o{w,) are d linearly independent
solutions of (18) (see [4]). The order of ¢ divides &!; hence,

Wiy, .ony wg) = 0" W (a0qy «.ny wy) = @5 Wlwy, ..o, wy).

* Thus for each o,

a( Wiy, ooy wg)] = (Wi, ..., w)l®
and it follows that (¥ (w0y, ..., w,)/" belongs to @ (i, 2).

Let a(z) be any element of Z[i,z,w;] such that each a(z)w;- (2)
Lelongs to Z[4, 2, w;], for eaeh 1 < j < k. Then each (a(2) D]'w;{z) belongs
to Z[i, z,w;] for every integer Iz 0. It follows by induction on ! that
each (a(2)]' D'w,(2) belongs to Z[i, z, w;]. We shall show that the coeffi-
cients of
(19) '(a(z)}(k‘l)k(I‘!)(W’{wl, s WA TIW (a4 ey Wy w) =0
are in Z[{, #3. The coefficients of (19) are in

] Z['i':wl{z):-":'wk(z)an(ia-z)'
The desived result will follow from:

Leara IX. Tf @ {2), ..., w;(2), ..o, we(2) are The roots of a monic
polynomial over Z[i, =] then where I is Z[i, 2, wy(2), .o; Wy (£ 0@z, 2)
we have [ = Z[i,z]. ‘

If we know that Lemma YX is frue, then one can easily conclude
from what was shown above that:

Leyes X. Suppose that ¢(w, z) belongs to Z[i,w, 2], has degres k= 1
in 1w, and as a polynomial in w is monic. Suppose that w,{2), ..., wy(2)
are the & {not necessarily distinet) solutions of g{w,2) = 0. Let r{X) be
some element of Z[i, X1 and 0 be a nonnegative integer. Suppose that for
some 1 <A<k the functions D°r(w,(2)), ..., D’r(wy(2)) are a mawimal
linearly independent subset over C from among the collection of analytic
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continuations of Dr (wl(z } Lat a(z), @ nonzero element of Z[i, 2], be chosen
sueh thot each a(3)w;(2), 1 <j< %, belongs to Z[i,z,w]. Then

(20) (a( )i J)A(r'ﬂ'(l)ﬂ} wl(z ,ﬂa9.(wd(z)))k!—1x
x W (DG*'(’WI(S Iy vees Dr{wg(2)), 2 ) =0

is & linear homogengous differeniiel equation of order emaci'ly d with coeffi-
cients in Z 11, &] which is satisfied by each D'y (w;(2)), 1 < j < R

Proof of Lemma IX. Because the e, (2) are roots of & monie poly-
nomial over Z[¢, 2] it follows that each w, (2) iy bounded in every honnded
region, Thus we see

I =20 2w (8), ..., w,(2)] 0 Q[2, 2].
Since each w;(z) is integral over Z[4, 2] (i.e. Iy the root of a monic poly-
nomial with coefficients in Z[{, 2]} we lave that each element of
Zliy 2,10, .00, Wy ] I8 integral over Z[1, &]. We shall next show that Z[4, 2]
is integrally closed in @[7, ], from which the desired result follows.

Suppose that ¥ 'e(z) iz integral over Z[¢, 2] where b 0, +1, or
4 and e(2) belongs to Z[4, 2] and is primitive (i.e. the only eommon
divisors of its coefficients are 4-1 and -44). Then for some positive integer
4, b ‘ ( (# )) belongs o Z[%, £], which iy impogsible since by Gauss’s Lemma
{¢(2)]" must be a primitive polynomial. This contradiction proves Lemma IX.

Section @I

Congider the funetion of two variables p(w)—z where, for some
k22 plw) = w4 a_ w4+ ew! and each @, 1<I< k-1 is
a Gaussian integer. By the local mapping theorem each root wy (&) of
plwy—a = 0. is analytic everywhere except at 2 = oo and poiht—s 2 such
tl}}ﬂat P {w;(2)} vanishes. Finally we may take a(z), see Lemma X, to be

' 711119{(“’;‘(3))»

Tmvas XTI, Lot p(w) be as above, let N be a Gaussiun integer, and
suppose that each |u) < (311 e WH —1=1 . Then if || = 3 |N|:

() Jooy (=) < (L4 357V (1 <G < B); and

(i) each |p'(w;(2)) i< k).
Proof. Set U = (1-+3&71). Tt [t| > U* o) then
) -1 :
OIS L C e L Y I
. i=1

= (0¥ — (U1 (T¥ — 0¥ |4

> (1 (U= 0% e > (3) T e > (3
This proves part (i).

2) Iz > |21
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Now set. ¥V = "‘“'_1(1—'—%1:”1)}“3 — ¥ %, Note that if J2] = 413 each
10;(2)] = ](I*’] [y g kTl (1 gy NPT = T
EARTIDS V"”V‘" then
(k—1) k-1
> BN T (1= N (01T
=1
and
k-1 .
1— S (U—17 7 = 12k (T -1 5
Le=l
Since (U—1)U <if) =) and 2k <! if k>2 we have

Ip’(#){ > 0. This proves Lemma XI.

Above there must exist 2 positive integer a with 1< a
that w,(z%) is single valued in every sufficiently small neighborhood of
2 = co. Now lim e, (%) = oo but for large 2! we see that [w ()] is

< k such

less than 2 ok -»I“" T tta < kwe do have a pole at 2 = oo but it has order
less than one, which is impossible. Thus & = Eoand w, (3) = } by (2% 1)’“
?il=41

for a sequence of complet numbers b,, where the above series converges
for at least all j2| = 3| ¥ |. We see that each w;(z), L < j <k, i3 an analytic
continuation of #,(2) about ¢ = oo a certain number of times. This implies

&
that p(w)—z is irreducible over Q(i, 2) as is k¥ J] (k™ —w;(2)— a1 B,

_ o fe
This latter polynomnial has eoefficients in Z[7, 2] by Lemma IX.

LEya XT1. Let the w;(2) be as in this section. For some choice of +
signs the analytic continuations y;{z} of

3 .
1) = (70— k) =

k
;‘ wh (@) o (R () — 2 w, (2))
obtained by substituting w;(z), 1 < § <k, for wy(=) in y,(2) are all distinet;
the ¥,(2), ..., ¥ (2) span a veclor space over C of dimension eractly k—1
and, for @ach 1<j<k, 1 and the yP(2), for 0 <I<E—2 are Ziﬂzeaﬂy
indopendent over Qi, ). :
Proof. Notice that w (z) for 7 =1,2,... hay an expansion aboub

# = oo which begins with 27! times a nonzero coefficient. Thus one of
w]‘ Hz) w2 (2) ha.s an expansion about # = oo beginning with a nonzero
coefficient times #° ¢—D and then a nonzero coefficient times 2 =3
Continuing we see that one can construet, in the above manner,

A .2 —1
wf T @) L e ) & () = o) = By T
' I SN N e (tenm of lower degree in 2},

(el ()~
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where each b; above is nonzero. It is clear that », (2} has at most & distinet
analytic continuations sinee it is a polynomial in w,(2); also »;(s) has
at least % distinet analytic continnations since (%, k— 1) = 1. Relabeling
the ;{2) if necessary we have that where p = exp(2nik™")

93(z) = Ba (T TED L (VT
o b g F T L = T (e k) £ by ().

By the nonvanishing of the Vandermonde deterninant ey {2)+ ..
46,1 P.1(2) = 0 for a collection of complex numbers ¢, ..., ¢._; implies
that ¢ = ¢; = ... = g, = 0. Thua the dimension of the vector space
over ( spanned by the »,(z), ..., v(2) Is at least k—1. Setting

1

k—1

2(z) = kos(e)— ) (i_Zw;(z)

=1

for any choice of 4 signs gives us a funetion with exnctly k distinet anéulytic -

continuations y,(2), ..., ¥;(2), ..., ¥x(#) of which at least k—1 are linearly
independent over ¢. If we choose the + signs to agree with the signs in
the definition of »,(z) then

Yule) R o) = 0,
so the vector space spanned by the y,(2)’s has dimension exactly k—1,

Given any linear differential equation with coefficients and non-
homogeneouns term in §{i, 2) which is satistied by any y;(z) we see that
k

L, and by k™' } #,(z) = 0. Thus
=]

the equation is homogeneons and has order at least ?ci—l. It follows that
for each 1 < § < % the 4{9(2), 0 <1< k—2, and 1 are lineaxly independent
over @(i,.2). This proves Lemma XIT.

Lewnta XTI, Let w,(2), ..., w,(2) be as in this section cmd 2}, ...
v Y {2) be ag in Lemma XII Then there erists b(z}eZ[i, 2] such that

it is satisfied by every #(2), 1<I<

(i} b(2) does mot vanish at any = where every wi{z) s analytic and .

(ii) each b(e)[kuwj(z)— Zk‘ wh(z)], with 1<1<

k—1, may be wrilten

a3 a linear combination over Z[4, 2] of the y¥ (z) for 0 <1< (k) 5.
Proof. We notice from equation (20) in Lemuma X that, after setting

k .
a(z) = [ [p (w),
i=1

the coefficient of fw(‘i) is the nonzero quantity

@ ([

§==10, and r{w(2) = y;(2)

)(k')fc(k W (ya (2, -0 Ve () |
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in Z[i, #]. The degies of this polynomial is at most
sk
k! (k(k—1)2+ 5 < kRS,

Some derivafive of (21) less than or equal to %!%® will be a constant.
Using the formula for differentiation of a determinant we see that
for any #,¢0 such that each w;(¢) is analytic at 2 =z, there exist
0 b< O <. .. B, < (KD)E* such that, where 1<7,I<k—1,
det (3™ (2,)) # 0

&
We may write for each 8 ( IT »'{w, (z)))ﬁiy“’l) (z) as a linear combina-
f=1

tion over Z[i, 2] of 1, kuw;(2), ..., kwf ' (z). Sinee &7 5’ ¥;(z) = 0 we may
k §= 1
write, for each 1< ( H (w (z)))”z 7% (z) as a linear eom-

bination over Z[i,z] of the kel (,,) 2 wi(z). Notiee that thé matrix
;

of coefficients generated above is square. Denote the determinant of this
matrix by 4 (z). We notice that A, (#)eZ]t, 2] and 4, (2) = 0, since
4, (%) = 0 would imply that det( 51)(21)) =0 eontmry to the choice
of 0y,..., 0. Now set b(z) equal to the greatest common divisor of the
polmomlalb 4, () for all z;¢C such that each wy(2) is analytic at 2 = 2.
This proves Lamma XIIT.

DeFiNtrioN. For each nonnegative integer 6 and pelynomial
g{X)eZ i, X} we define

k

B (kg [20; (2))— 2 q(w, (z)))

i=1

to be

wy{z)

k{{(e—1)Y)" U (2—p(u))?

0

q(uyp’ (u) dus) —

wy(e)

k
— (=D X[ fe—p@) g’ (v) ).

=1 ¢

Obviously d—Eﬁ = E°"!. Each function f(z) for which B°is defined

may be written as a series of the form

— k1
g b2

Mi=—0
ms&0 (mod k)

for sufficiently large jz|.
Sinee Ef(z) is a #-fold integral it equals

2 Bl—E~tm)™ ... (B— k™ lm)tg0Fm
M=—C .
mz0 (mod &)

Acta Arithmetica XIX. 4. - A
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plug a polynomial of degres at most §—1. By construction the sum of the
first & analytie continuations of E®f(z) about oo iy zero. Tgmq the a.bove-
mentioned polynomial is zero. This uniquely describes E.

DEFINITIONS. Where p(w)—# is the irreducible polynomial satisfied
].

) gt set
o

by the w;(2) and p(w) =

17y —1
o= max {|gtD7Y,
Isl=shk—1

Let ay, ..., a, denote any = distinet Gaussian integers. Set
g = max{u; o for 1<r<n}.

Let K denote a posibive integer
' Levma XIV. For each O <

([T ]t

r=1 j=1

<m-+E4L ond 0 o< K, each

x (Lean. {1, ..o, R(m+E 4+ ((6—1)) By, {2+ a,)

and each

n ok |
(] []7' e+ wlF fem. 1,2,

may be writien as a linear combination over Z[i, 2] of the

y k(m+ K +1)} D%y, (2 + a,)

M~

Tk (24 a,) — fu,t(z—l- a), 1<I<E-1,

..g
[
NS

with eoefficient polynomials
& Pa (@ P T8 (2 )
for effectively computable positive integers ey wnd fy, depending on K, k,
and n but independent of 0, p, the a;’s, and the «,’s.
Proof. A result due to Rosser [5] says that

Ek(?n"l'K‘i'l)

Lem. {1,2, ..., k(m+EK+1)} < 2*

Let a(z) = [ ] p'(w,(2)) and note that it is effectively computable as
2 polynomlal m. the elementary symmetnc functions in w 2(2)y ooy ()
Thus a{z) Is effectively computable as an element of Z[%, 2, a4y, ..., @-1].

Since each «(z) (J_Jw?.(z)) may be effectively computed ag a polynomial
in the elementary symmetric functions in w,(2), ..., w;_,(2), w1 (2), .-
«++3 W(2) (hence in the coefficients of (p(w)--z) (w—w,(2))™") we see that
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each a(z) (D, (2)) may be effectively computed as an element of the module
over Z{i, &, &y, ..., @ ] spanned by 1 and the w!(z) for 1<V < k—1. -
Analogously, we can effectively compute each a(z) Dw}(z) for 1 <1< k—1
as an element of the module over Z4, 2z, 4y, ..., a,_;] spanned by 1 and
the wf (2); by induction, we may do the same for each (a(2))” D7wl(z),
for 1< I k—1. We note that each !} < 4*~%. Then one may effectively
chooge positive integers B,; and f,, so that when each

=.

Lem. {1,2,3, ..., k(m+E+ 1} a(2+ )| D%y, (x+ o),

T

]
—

for 0K and 1<Kk iz written as a linear combination over
Zl{i 2z, @, ..., a, ;1 of the N

&
ol (st a)— Yul(zta), for 1<I<E—1and 1<7<a,

=1

the coefficients are

& P (& M — ) (g —p)

and fs, and 3,, are independent of 2 and the as, 1 <1< k—1.

For possibly larger values of fae and f,, the statement about the
different

[+

will now be shown to hold also. First we notice that in each case all
denominators introdueed by integration have been eancelled so that we
are dealing with an element of Z[i,z,w;(2+ ), a;,..., a;_,]. Then
using 24-a, = p('wj(z—{— a,)) repeatedly we may write by this “reduction
scheme” our polynomial in z, w;{z+ a,), @4, ..., (4;_, 83 alinear combination
over Zfi,z, a;, ..., 41, a1, ..., o] of the

a,-))K(l.c.m. {1,2,..., k(m‘f‘K—:'l}}}((3—1)-!)E;j(z+ o)

&
k-w}(z-i— a,)— 2w§(z+ o), for 1<<Iigk-—1,
=1

and %o as a linear combination over Z{%, 2, ay, ..., a5, 6y, -c., ;] Of 1
and the u} (4 a,). It would suffice to prove the desired inequalities for
this latter set of coefficients. We introduce a weighted degree, d,, on
polynomisls in 2, w;(e4a), @,y ooy @y, @y ...y a,. Set d, of a poly-
nomial equal to the maximum over all monomials of the expression
k™! (degree in w;(z-+a,)-+ degree in a,_,) -+ 2k (degree in a,_,)+...4
+{k—-1)k ' (degree in a,) -I- (degree in z) 4 (degree in a,) +...+ (degree
in a,). Nofice that in the “reduction scheme” above d,, does not increage.
Therefore one may effectively compute from the original polynomial
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times the integral a positive integer p,, independent of m swch that
w4 f—1 is larger than the weighted degree d,, of the coefficients of 1
and the wj-(z-i— ) obtained at the end of the “paduction scheme”. We
note that if & is a power product of ay, ..., 4, @1, ..., @, With weighted
degree at most s then [p] < pf. Thus;, not taking into account in the
coefficients of 1 and «w}(z+ @)y 1 <1< k—1, their own coefficients in
Z %] we would have that the coefficients of 1 and wi(zh ), 1 <1< k—1,
are

€ (2 Pt ) (5 )

where f,, is independent of m, the a’s, and the a's. For an effectively

computable fi,; independent of m, the g’s and the o/’s, the factor g

bounds the absolute values of the coefficients in Z[¢] This proves
Lemma XIV.

Section IV

We shall prove below Theorem I, using the results in Sections I, 11,
k

PIRTACES %),

and III, and assuming that the wl(z+a, )—
8=1

K k—1 and 1 < » < a, are linearly independent. (The reader should have
no difficnlty in %howmg that this is the case when no «, equals a difference
of two distinet singular points of any w,(2).) If the k(s + a,)— ZJ‘ wh{z-ta,)
are noL mdependent wemaynoneonstructively extend the ?’;o; Hadag)—
— Z‘ Lzt ay),l <I<k—1, to a maximal linearly independent proper
subset of the kw}(z-+a,)— ZI"I wh(z4aj, say &Jl’i(z),

fram

method of proof below will be to apply Theorem V to y(z) = 3 9;(2)

=1

for 11

) Ops(2). Our
k

where each y,(z) is obtained as in Lemma XTI and the U, ,(2),
are the ‘
k

2 (kwfz—i—ar Zw z+a) for 1Kig
=

E—1 and 1<<r < n.

If the ?cw (e o) — 2 wh(z4-a ») are dependent we may use the 2 ey 4(2},

,Z ¢, (%) for e Uiy(e), ..., Upylz), and obtain noneffectiv ely
the same lower bound on qlmul‘razneouq chophanbme approximation —

but this time for the 2 ey ;{2), ,2 60,4 (2).

bhound on |1A V1] from the proof of Theorem V, we see that for each pair

Also, from the upper

oy Upule)
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*y &> 0, if [N is sufficiently large (the bound is not comrputable) and N
is fixed, then there exist an infinite number of nonzero p-tuples of Gaussian
integers 4, such that

P E
IEJ (vcv (X )<(max{A Y (n—z)vﬂg
e=1 Fe=1

for all' ¢y, ..., ¢ with each e}l < | ¥
Somewhat Iater in this paper, after using a fransference theorem
argument to show that Theorem IT follows from Theorem I, we shall be
able to observe by a closely related argument that the two ineffective
inequalities just deseribed above are inconsistant. Thus, the ij (z+ 4,)—
P

¥ wi(z+ ) will be shown to always be linearly independent.
8= I

We shall fnx’r verify that Conditions A and B liold for the class z

of all functions F‘ 6y (.,) (L j< k), shown to exizt in Lemma XTI,

corresponding to aH algebraic equations of the form p(w)—z = 0 where
p(w)eZ[i, w] has degree I, for some fixed %= 2.

Tsing Lemma X one can see that there exists a differential equation
of type {20} of order k—1 with coefficients bounded from above effectively
in degree whieh. is satisfied by ¥, (2), . . .o ¥z (2). Thus there exists an equation
of type (15) with effectively bounded order which is satisfied by y.(2), ...

-y ¥2(2). In our equation of type (13), ¢, (¢) will only vanish at nonnegative -
mtegem and roots of the indicial pelynomial, corresponding to 2 = oo,
of our differential equation of type (20). By the nonvanishing of the Van-
dermonde determinant and the fact that each ¥;(2), 1 <j < k, has powers
of z congruent fo (k—1)%', ..., 257 &7 (module one) in its expansion
about oo (and no other powers of in this expansion} we see that the
roots of the above mentioned indieial polynomial must be exactly
(k—1)k~", ..., 2k, k™% Therefore we have that any K > 1 will satisfy
the condition here. We set y =13, K,(¥,a,...,q,) =max{{1-+

r

+2max +{la}), N}, E,(y) =0, and K,(y) = +oo, where ¥, is the
sma]lext positive integer such that each w;(z) is N; admissible. From

Lemma XTI and the deﬁmtmn of the y,{#) we see that we have satisfied
k

Condition A, for Z &Yy (z)..

For Canchtmn B take

{Fly(z),---,

k

_ ={2 (hv (24 a)— vw eSS

f=el t 1

' py- y(z)}

)),1@1@7;—1 and lév~<-n}.
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These latter functions are all linearly independent over § (i, 2) by assump-

tion. Set p(y) = puly)s Tiale) = [] Dot a)

nomial mentioned in Lemma XIII and require now that K == (h])E3
(Then by Lemmas 1T and XIII each of the T ,(2)U,,(3), ..., T;,(2) %

where b(z) iz the poly-

XUy (7 belongs to P,(y), since by Lemma IT every Dz'y (z+a) for -

0 <1< K, belongs to P,(y) and by Lemma XIIT each

bzt o) (o (24 @) — Z w s+ )
i=1

is a linear combination over Z[i, 2] of the D'y(z+ o) for 0 < 1< (B1)E2)

If, where ¥, is as above, |2 = 1 ¥, then b (2) daes not vanish, by Lemma XT.

Rince by assumption we have each |o,| << $H, (y, 2y, -+ @) snd K (7, oy, ...
.., a,) = N, it follows that T, ,(2) does not vanish if |2| = K, (y).

Set i
A =[] []{ ot o

8y(m) = lem. {1, 2,..., k(m+t K;I— 1)},

and let B’y be as in the definition appearing before Lemma XTV. Observe
that u, < | V| << E¢(¥, asy -+, @), Then the requisite estimates on §,(m),
degT,(z), and the absolute values of the coefficients of T, (2) follow from
Lemma XIV with ¥ = 1. This establishes Condition B with » = 1.

We then obtain a statement of approximation about the

oy e+ 2 2 wi(e+ ),

i=1

Where we set 2 ¢; = 0; therefore, about the & Z ;0% Hz-a,), or the
=

:;2 w,(z—{—ar) 1f one substitutes %~'e¢; for each c? above. Setling v,

=1 .

= max {y;, 1-+2max{|a,|}} we have established Theorem I.
T

LeMma XV. Suppose that w,(2), ..., w,(2) arve the k> 2 different
roots of q(w, #)4-r(e) =0 where ¢g(w, 2) belongs fo Z[i,w, 2], 45 monic
in w, and hos degres k=2 in w; r(z)eZ [, 2] has degree ot least one; and
g(0, 2) == 0. Suppose, further, that in the expansion of the w;(z) about z = oo
in terms of descending fractional powers of z the initial terms (i.6. dominant
terms as |2| — oo) in any two distinct expansions do nol agree in both power
of 2 and coefficient. Consider mow the eguation g(w,2)--r(z) = u. Make
any cut in the z plane between z = 0 and 2z = co; then there exist & distinet
roots w;(u, 2}, 1< i<k, of glw,2)+7(2) = u and they are each analylic
in both w and 2, and take on distinet values, of oll points (u, 2) such that #
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does not belong to the cut, |2} > By, and 'u| < 1 ir(2);, for effectively compui-
able .5 and 3 independent of both 2z and w. If 2] = fi; and |u<<nlr(z)]
then each
oy (2, 2)1 << o [u— ()2

for effectively computable constants fa, and fa. independent of both z and u.
Pinally, for cvery weC and 1<j <k the functions w;(n, 2) exch have in
their expansions about z = oo the same deminand term. .

Prooi. Using the assumption that no twe of the w;{z) have the same
dominant ter in their expansions about z = oo and that r{2) = 0 we
see that there exist three not necessarily effectively computable positive
constants 8, 6, and #, such that if iz > # and we set, for each 1 <j <k,
¢ = {-'w‘[ ac—as(2)! = 6, wy(z)}, then (i) the ¢; are disjoint (hence each
¢; encloses one and only one root of ¢(w, )+ r(2) = 0) and (i) ou each
set ¢; the inequality

k
H w—wi{zy) = (g e, &)+ () > 0,z

-1

holds. By Rouchés Theorem it follows then that, for each u with
6.
<< B 3(~1)l = 63“ (2}

every ¢; encloses one and only one root of g(w, ,)4r{z;) = . This says
that g(w, 2}+7(2)—u =0 has no multiple rcots if j2/ >0 and |u
< B (2):. | -
We shall show later that one may effectively calculate values of 0
and f, such that this last statement holds. (It is necessary to use the exis-
tence of such § and f, to prove the effective computability.) Assuming
that # and 8, above have heen effectively computed we shall show how
the Lemma Tfollows. First we verify that g(w,z)--r(z)—u =0 has &k
distinet solutions, each analytic in u and 2, abont every point

(g, 2) R = {(u,2)] 20 > 0 and fu| < 6,[r(2)}- .
We know that the algebraic equation glw,z)-++(z;)—u, =0 has 'k

distinct roots; which we denote by #y, ..., 7. Consider the integrals

(2mi)? f‘

i

ag (w0, 2)
dJw

{glw, 2)+r(2)—u) " dw

where each d; is @ circudar path about »; which does not encirele or pass
through any r; for j +j;. For all points (i, 2) in the closure of some
simply connected region N(u,,2) < R which contains (u, z) every
{ \ .
I(Q(’w: 21y 7 (2)— '”1}'— )41 (e)— Uy

{a(w, 2)-+r(2)— )| < |,
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for every w on every d;, 1 < j <k, by the continuity of g(w, 2)+r(2)—u
and the compactness of tile d;. Thus by Rouché’s Theorem and the residue
theorem each function

w,(u, 2) = (2nd) " fw ?-g%;’—‘ﬂ

dy

(_q(w, z)-l-r(z)—u)‘ldw

l<j<k),

is defined for all (u,2) <N {u4, 2,), i8 a solution of g(w, 2)++ (z)-u ={,
and each is amnalytic on N (uy,2;) by uniform convergence. Note that
the w;(u, 2) bave different functional values at (uy, 2;); hence, they are
d_lstl:uct functions. Sinee the meromoerphic functions on N (uy, 2;) form
a field these are the only analytic roots of our equation on N (u,, z).
Further, on any subregion of N(u,#;) the restrictions of the Wy (1, 7)
are % different solutions of g(w, 2}4-7(2)—» = 0; hence, the only analytic
solutions of the equation on the subregion.

We wish to see that given any path »{(1),0<{<1 in R one may
analyticly continue fhe % distinet solutions of g(w,z)4++()—w =0
which exist about the point #(0) to the point »(1). Suppose that for some
path (i) we are unable to construct an analytic continuation to y(1).
Then there will exist & real number 0 < § < 1 such that we may construct
an analytic continuation of these roots to any point y () with 0 <t << d << 1
but we can not construet an analytic continuation to ¢ (3). Setting »(d)
= (1, 2;) we recall that we may define % different solutions w,(u, 2), ...

oy wp{u, 2) of our equation on a simply connected region N (uy, 2
which containg (u,,#). For some i;< 5 each point y(f) with Ze(#;, §]
belongs to N (uy,2). Choose te(ty, 8) and set v(v) = (u,, 2,); then,
choose N (u,, 25), a polydisk containing (u,, 25} with N (u,, 2,) = N (%, 2.},
where k distinet analytic roots of g(w,2)+r(z)—u = 0 are defined.
As we have seen the different rcots of our eguation on N (u,, #,) must
be the restrictions of our functions w.(u, 2), ..., w,{%, 2). Thus we have
analyticly extended our reots from y(t) to 9(d) and beyond. This con-
tradietion proves that we may continue the roots analyticly along any
path y(t) in B. Making a cut in the # plane from 0 to co and throwing out
all elements of B which project onto this cut, we are left with a siinply
conneeted region on which, by the two variable version of the monodromy
theorem, we may define & analytic roots. For each root there must exist
1<Kk <k such that if one continues the root %' times around z = oo
{i.e. the projection of the path winds %' times about 2 = o) we return
to the original branch of the root.

Now to see that 8 and 6, can be effectiv ely computed. Set

. S - A 2
Dz, u) =H(Mg;—z)’—zl) = H(wh(“:z)__wjz{u; z))2

=t : i1<fp
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One may effectively compute D{w, ) as an element of Z[i,wu,z] by
writing it effectively in terms of the elementary symmetric funetions
in oy (%, 2), ...y w2, ). Now substitute tr(2) for w. We define F(¢, z)
and E, (¢, z), respectively, by

def det
Eit, z) = D{tr(2), 2) = tH, (1, 2)+ E(0, 2).

Note that F(i, 2) and B,(t, #) each belong to Z[i,1, z]. We wish to see
that
deg, B(t, 2) = deg. E(0,2).

Suppose that this is not the case; one possibility, them, is that F{0, 2) = 0.
Then, however, for each 2 some w;{u, 2) is not analytic at u = 0, contrary
to the existence of § and 8,. If deg . E(t, ) > deg_ F{0, ) but F(0,2) =0
then choose ¢,, a sequence of circles about z = 0 on which £(0, 2) does
not vanish, with radii , - oo, and a sequence of real numbers 1 — 0
such that, for each =, deg, B (1", 2} = deg, E(t,2) and |[E(™, 2)—E(0, 2)|
< [B{0, 2)} on ¢,. An application of Rouché’s Theorem shows that there
exists, in each case, a root & of E(E™, 2) with 1™ >r,.

Thus we would have E (2™, 20y — 0 for each » and (i, ™) - (0, oo).
Again this would violate the existence of 8 and 8;. Thus deg, E(0, 2)
= deg, E(t, 2).

Given for n 3 1, 2%+ a,_ ()" ...+ as(t) 2+ a,(t) where the a,(t)
are complex valued functions of ¢, it is clear that there are no zeros (I, 2)
of the above function satisfying

2l = 2max{1; [g;(D), for 0 <<J << n—1}.

Thus if
B{t,2) = b, ()& b, _ ()" .+ by(t) 2+ bo(T)

where each b;({)eZ[Z,1] we see that there are no zeros (i, z) of E(f, )
with 7
|2} 22 2 [by,(t 8" By (2},

)7 {max {15 [B,( for 0 <j< n).

Since b, (0) #* 0, above, |b,(0)] = 1. One may bound max{L, |b, ()i}
from above effectively on [i] <{ 1. Set 9, equal to one over twice this bound.
Then if | << 0, and }z.| is larger than or equal to an effectively eomputable
number 8, we have that F(t, #} # 0. This is equivalent to D{u, 2) does
not vanish if |2] = § and ju| < B;]r(2)]. Set 5 = 8;. This shows part of
the lemma.

For some effectively
[#] 2= f.5 . Suppose that

qlz, wy = w'ta_, (&)

computable f, = 6, 7(2) does not vanish if

-+ ay {2)w?



376 Charles F. Osgood

2 = fus and ! << glr(z)| we mnst have

Then if |2!
u—r (&) = (L—n)r ()

Rl

a0y (16, 2)]
< 2max{l; g ()], 1< < =15 (L0 {2)[} < fog [—17(2))'0

for effectively computable g, and f,, independent of u and =

From all that has been shown so far it is clear that about the point
(1, 2) = (0, oo) each function w,(w, ) possesses an expans:ion in terms
of ascendmg powers of 4 and descendmg powers of %7, for some L <%
< k, with the property that given any ¢ > ¢ there existy a ¢ > 0 such that
the double series converges absolutely for all |u| < ¢ and "I #| = d. Thus
we may write each double series as an expansion in terms of descending
powers of 207" with coefficients which are functions of u defined for all
w with |u| < e Leb w;(u%,s) denote the algebraic function such that
w; (0, 2) = w;{2). Let v, ..., 7, ..., 7, denote the degrees of the dominant
terms in the expansions of the % different w;(u, 2) about 2z = oco. Let
Piy e iy very 7, denote the degrees of the dominant termy in the expan.
sions of the 2(z) about & = oo, Clearly each r; = r;. However,

I P2
?27.7. = deg,(u—r(2)) = d = deg,(—7(2)) = E v,
oy ) =

s0 each r; = r;. We shall now show that the coefficient vi(u) of 27 In the
expansion of w; (%, #) is a constant, for each 1< j < %, and this will com-
plete the proof of Lemma XV. Substitute y;(u)#"7 | ... Into the polynomial
glw, z)+7(@)—uv = 0. We see that then y,(w) satisfies a polynomial
equation with constant coefficients; hence, y;(#) is a constant. This
proves Lemma XV.

Now we wish to prove Theorem III part. (i). Let Uyy voey e[, 2]
be gn enn. Let »(w, 2) in Theerem IIL be given and consider p(w 2) = .
Let @' = {w;(u, N) sa,u,sf)mg plw, N) = for each 1 << j<< % and each

NeZ[1]} and let o = Z &Y (u, N) derived from the w;(u, N) 1n by

the construction of Lemma XII}. We shall show that Conditions A and B
hold for evely Yeu. We assume that for each w the kwl(u, 2+ a)—
- 2 wl (u, z+ @) are linearly mclependent over §i,#), for 1<<ig k-1

|
and 1 <7< m, as will be shown after the proof of Theorem IL.
Usmg (90) we obtain for every N a differenfial equation with coeffi-
clents in Z[4, 4] of order k—1 which ig satisfied by each of ¥, (1, ¥),.
vy Y1, N). Since each [yy(u. Ml J < k,is less a8 2| — co than some
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constant times |u|*~Y* we may obtain a uniform upper hound on the
degrees of the coefficient polynomials (in u) of our differential equation
of type {20). Thus we have a uniform upper hound on the orders of the
equations of type (15) satisfied by our functions yem.

Ag in the proof of Theorem I the roots of g,(¢) inelude no negative

integers. Set 5 equal to the value of 5 obtained from Lemma XV with
k=1

glw,z)+r(2) equal to w4 E a(2)wt, set & = u—g{X), and set
K (y(N), ayyeeny ay) = max{] ag(N I, M} where M > 14+ {2+n"ymax{|a,l}

and I is such that if la,(¥) = M then !N fo;. Set K,(y) = —a({N)
and set K,(y) = 0. The remaining parts of Condition A follow by

Lemma XYV.
Next consider Condition B. In analogy with the proof of Theorem I
set K = (F1)E® and

{Ul’y(ﬂ‘)’ e UIJLL'(H‘)} = {klt';'(u’-—;— Tpy Ny—

k
— Mub(ut g, M 1<I<k—1 and 1<7< n.
i=1
Alzo set
T, = H bl a,)
. r=1

where b{u) is as in Lemma XIIL. Note that by Lemumas XIII and b:aY
if N> B, and [u] < 7lay(¥) we have that b(u) # 0. Since each
e < M it [H,(y)| = M, then I',(0) == 0. Let E'y be defined as
before Lemma XIV. Let T,(u) be '

f] ﬁ(ag(wj(unm,,z\-‘),z\f))rc
dw; (u-a., N)

r=1 g§=1

which can be effectively computed as an element of Z[1, N, 4, a;, .., a,].
Thus we may effectively bound T,(u) in degree and bound the height
of T, {u) by

E (4, ay; -y @) 2 max{je, (N}, o]
to an effectively computable power. Let

A(m+K—rl)

8,(m) = Lemu{L,2, ..., k(m+ K +1)} < 27
Applying Lemma XIV we see that Condition B holds with
y (M) = sup {L; F(k— 0" In o, (N)]) (I |2, (3)]) 7, |
1<l k-1 and N<Z[i] with [N|= M}.
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Ag M —» oo,

9 (M) - max {1; k(k—1) 7" [dega,(2)) (deg @, (2)) " L < I < k—1} = ».

Thus given & > 0 we may choose M effectively and apply Theorem V
(with an effectively computable value substituted for ¢ in Theorem V)
to obtain, when |a,(N}| = p, and |N| = m&x{l + (2497 (max {|«]}), JII}

2 statement of approximation about the numbers

i’ [k (e, ) — ﬁwi(ar,z\w'l}
j=1 i=1 :

for 1< r<<n and 1l k—1, with exponent y(14 &)(n—

kI
Z ¢; =0, if we substitute k~'¢; for ¢; above we obtain the numbers

1) Since

., ). Theorem IIT part (i) follows immedia-tely.

||M

Section V

In this section we shall see that Theorems 1T and IIT (ii) follow from
Theorems I and IIT (i), respectively, and that Theorem IV follows from
Theorem III (i), We begin by proving Theoren IT and, by essentially the
same proof, one may also obtain Theorem I1IL (ii). [We shall place com-
ments in square brackets which will aid in carrying through the proof
of Theorem ITT (ii).]

Let p, and ¢; be as in Theorem I. Let |¥| > »,. Given any matrix
(¢;,n) of complex numbers with each |g; ,| < (2857 N|, for each 1<j
< k—1 and & < k—1, and any nonzero (k—1)-tuple of Gaussian integers
(Ays ooy dyy sy Apy) with max {J4,)) = [N|™ we hame using Theorem I,

Ihalk-1
that
k*_]l k=1 k .
2 r Loar
(22) e lﬂffi [ adn) [N )= Yl 0] — i}

1+5
= ma;L{JAh]} el

1< i< k—1, are a nonzero n(k—1)-tuple of Gaussian integers. We shall
see that we may choose the g, such that

k
(3 (R ()= 3 aol(7)
t=]

. equals the identity, where the column parameters are J and [ respec-
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tively, and
ma {Je; ) < (269X [
N
for some effectively computable number f,; independent of N,
Notiee that det{w}(¥)), where 1<j<k and 0 <I<<k—1, equals

(—1)Fdet(wh(N)—w,(N)) where 1<j,I<k~1.
Also
h—1 —1 5
Pt (el (3) — k()] = {kw} () 3 el(),
—1 F—1 i=1

where the row parameters are §, the column parameters are I, and in the.
first matrix each diagonal entry iz k—1 while every othe_r @ntry is —1.
Writing each row in the first matrix as (¢, ..., 0, &, 0, —(1,1 , 1)
and then writing the deferminant of this fmt matmx &s a s of ‘?L !
determinants, we see it equals % Tt |¥| iy (effectively computably)
large enough then the w;(N) [or w; (0, N)] are distinet by Lemma XI
[or Lemma XV]. Using the product formula for the Vandermonde deter-
minant we see that

]
ld&t fw V H

Using the upper bound on le(l\f )| [or on |w;{0, N){] from Condition A
for from Condition A and an upper bound on |g,(2)| which involves z
and d] we may effectively compute constants £, and g, independent
of XN so that :

max {|e; 51} < (287}
T ) _
Without loss of generality we take «; == §. Let jla complex number||

denote the distance from the number to the nearest Ganssian -in-
teger. Set each p,; = A;, 1<I<k—1, in inequality (22). I |¥N=

(D)2 = 1.

HXfe 0N = B

max {fag, w1ty -y Uy Baey K 5)} and 1211351{51111} = |¥i", where ¢,
= g1 (%, By, ¥, &) then
k-1 k-1 & .
(23)  max | | 2 (2 o [ (¥ + ) — D (N ) AhH}
1212%“1 A=l =1 =1 14z
> (max{|4,}) ===,

Ihsk—1

Theorem IT on page 77 of [1] states: “Let
L@y = > Oy, M@ = 2 B
7 7

where 1<<i<m,1<j<n'. Suppose that there are infegers % #0
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< X for some constants ¢ and, X where 0<
D, |u}l < T,

such that |L;(Z)] < €, |&] <
« 1< X. Then there are integers & s 0 such that [| M (%)]
where

D= (=
— (l Y’m Z—l)_lo(l wm =1y —1 and

Our M;(m), L £ 9n—1)(k—1), are the 2(m—1)(k—1) linear
forms obtained fmm bleaklng the

)X(l—va’)(l’~1)_‘1On'(l’—l)“l

' =m'+n"

k-1 k-1

(D) e+ )

=1 j=1 i

M»

W+ a,)|) 4,

i
-

into real and imaginary parts with the u;, 1 < j< 2(k—1), being the real
and imaginary parts of the 4,. The I;(i¥) are the real and imaginary
parts of the

a k=1 k-1

13
(24) > S [ a)— DVt a)]) By

=2 =1 f=1 ¢

s

1< h< k—1 for Gaugsian integer B,; where the #;,1<¢<2(n—1)x
¥ (k-—1).are the veal and hmaginary parts of the different B,;. Set X
= max{[B,,[} and ¢ = X077 where & > 0. Then
7l
Ul = (1= 1) Pexp {(In X) {2 (n— 1)
+2m-—-1)(k—1

Y(E—1)+
J— 1] (0 — 1)+ £, [2 (w— 1) {k— 1) — 1]}

and
DFt o= (i'— l)r'Iexp {(].HX) (_1—9(k——l)+2 (k—1Y{1—n— 81))}
148
- (Zl““‘l)rvl((l’_l).’(l/_j) Ul'—~1}_ ('n._w-f)
where

0 =&, (— 1+ (n+e)[2(n— 1)(k—1)— 1] (e —1)

it g < 1. Note U > X. One sees from the above with & <1 and.
(23) with & = & (2(n*—1)(k—1};"" that for some effectively computable
Az independent of &, but dependen‘t on n, &, &, and g

> e (2(n?—

n kel
(25) 1.21125 1“2.;:1_2; Br, ( GJ h [ij (N a)—
k
Zw (¥-+a, ])"I“Bm} (max {|B,,[})~ "8
=1 12<rsin

it 1;1;&3 {iBl} > | |Pan, whe_re the B,, are any k—1 Gaussian integers,
> TR

and if |¥{is larger than an effectively computable lower bound depending

icm
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on , k, &, and %;. (The alternative is that (23) is violated for some N
by a collection of forms M, (¢) where the M; and % are as above and I
is the least positive integer such that max{ ftu;l} > 1N %)

“ e note from the fact that (¢,) 1s & two sided inverse of (?uw (N)y—

— 2 wi(N)) that each
t=1

k-1 k
N (rh(ny— Nk () ¢ = 8
Pyt =

where 8} is the Eronecker delta. Thus, if one makes the forms on the left
hand side of (23) entries 111 a column vector v with row parameter 1< h

< k—1, then (Aw, (N)— _}_: wi(¥))e equals a column vector w with
i=1
entries
n k-l k
% - o
N N B [rel (5 a)— Yol + ),
r=1 l=1 1]
1€ §< k—1. The maximum of the abzolute values of the entries of w is

larger than or equal to one over the maximum of the absolnte values of the

F’ wi{¥))~" times (k—1)"" times (nmz.{{B”}) {n-t)—e
f:
Given a new ¢ > 0, if mat{ B, i} is larger than |V a1, “hele Bar is effec-

entries in (Rwh{N)--

tively computable and mrlependent of ¥

max{,\“j A e — A*Y‘wi(w w)}
1 i=1

1gigk—1 e

> max ({1B,,[}) "I
r,I

To conclude the proot notice that if By 4 is a Gaussian integer and

b k—1
i 1
(26) max {] E 2 B,.,l’w; (N4 a,)+ By ]'< -
1k Ll oo Uk
then
n k-1 x
o= 3 B~ Y wj(F+a)
r=1 J=1 i=1

so the Ieft hand side of (26) is larger than 111*11{ {}B 1}y~inh=e Thig

proves Theorem IT.

k

N ak{zt ey, for 1<l
g==1

< », are uot lineamly independent over Q(i,2). Recall the

Suppose now that the kw}(e+ a,)— E—1

and 1<
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v, L <1< p, from before the proof of Theorem 1. Let ¢, ,(2), ..., ¢, ;(2),
where 6 < (n—1){k—1}, denote those ¢, ,(2) which are not of the form
&

2wy
a=1
then we have, by the comments before the proof of Theorem I and the

proof of Theorem II, that for each & > 0 and each N ¢Z[i] with sufficiently
large absolnte value (depending on &)

Max 13‘2 A; (2 €51 %2,7 (

Isch<k~1

kw}(g.j'_ ) — z4 ). If the ¢, , are ag in the proof of Theorem II

))H} = (nl;&XﬂAl'})‘(n—lJi-s

holds for infinitely many distinet ehoices in Z[¢] of the 4,.

Applying the transference theorem used in the proof of Theorem IT
to the above statement we see that, since & < (n—1}{k—1), for each
2> 0 and every XN <Z[i] with a sufficiently large absolute value (depend-
ing on &),

max
lsthethe~1

k1 k-1 . ]
3805 cams v} < sy

holds for infinitely many distinet choices of the B, in Z[4], where
Dividing through above by max{|B,|} we have contradicted the
i :

noneffective reswlt on the simultaneous diophantine approximation
of the v,;(¥) obtained along with the proof of Theorem I. This shows
k

that the kw)(2+a,)— Y w!(2+a,) are linearly independent over @{i,z).

8=
Proof of Theorem IV, It will suffice to prove this resuli if
max {deg B, ;(2)} = ¢, since if degA(z) > max{degB,;(2)} then the ex-
rl
pression in (8) has degree equal to k"deg 4 (2). Note also that

n k—1

deg [T(D 3 Buale)

Gy =181

Wy (8,, 2)+ A (2)]

= deg
Uil r=1 i=1 . tm=1
80 it suffices to prove that the degree of this latter expression iz at least

n—1

R s) (max {deg B,,, (2} -
=1 i '

In analogy with the proof of Corollary I of Theorem I we may reducé
to the case where each 4, is a rational integer. We observe that since
y = 1 each |w;(5,, 2}| is less as |2 goes to +-oo than some congtant times

icm
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(2%, Since deg(nw (8,,2) = d, the expansmn of each w;(6,,2) about

2 = oo must begm Wlbh a term involving % . Since (k, d) = 1 it follows
that each w;(d,., 2} is the analytic continuation of auy w; (8, #) about
g = 00 & flmte number of times. :

Reindexing the w;(d,, #) if necessary, set

fe—1

= 37 (g, (o)

i=1

k
(27 kwi(j}(ar! 2)— Z wz(‘sw )
. 1=l

where ¢ = exp(2nik™") and where every ¢, ,(2) is meromorphic at z = oo.
Suppose that we know that for some j(r}

n k-1 F

2 Z Br’z(z)(kwg{r)(ér} z)_t

r=1 l=1

(28) w}(8y, 2))

-~

s

vanishes at 2 = oo to at leagt the order —oco << B < 400, and not every

B, ,(2) is zero. Using (27) in (28) and writing the final result a8 & SN
of k—1 linear forms, one for each 1<{t<{hk— l, in the 2% g,.l (2)
(1<r<n,1<l<k—1) with coefficients in Q[¢’, #], we see that each
linear form vanishes to at least the order R at z = oo, From this we see,
since % is a prime, that we may pick n{k—1) integers i, ; such that each

szr,z 1(3

r=1 I=l

lgr,l,t(z)

vanishes at z = oo to at least the order B and not every m, ; B, ;(2) is zero.

Thug, for each 1< j<Fk,
T k-1 I
D myy Byole) [lnel (3, 7)— Zwi(a,,z)]
r=1 i=1 =1 .

vanishes fo at least the order B at # = oo and some m, B, (2} does not
equal zeTo.

Analogously if (28) vanishes o at le&st the order B at & = oo for
both j(r) = j;(r) and j(r) = jy{r), if #' = 1 Is the cardinality of the seb
of » belonging to {1, ..., n} such that j () # j,(r), if jL () # Ja(ry) for
some 1<Cr < w, and if B, ; (2) is nonzero for some 1< 1, < k—1, then
there exist #'(k—1) mtegers m,; such that for each 1 <Cj << k—1

T k-1 %
D) i B, () (Jawh(8,, )~ > w4, 2))
Tl.’f1("')¢fz(ﬂ i=1 t=1

vanishes to at least the order R at # = co and m, ; B, ; (2) is nonzero.

A ntn A withes nbktan WY A4 =
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In what follows it will be usefnl to be able to know that none of the
vectors (B, (%), oy B, 1(2)} Is ever zero. To see that one may assume

this without loss of gemerality note that if exacily 1< m < %—1 such

veetors are zero, then applying the present Theorem for the cage of n—m
distinet 4, gives the desired inequality.

Now to prove the Theorem by induction on #. If # = 1 We must
show that

k-1

deg (ﬁ (2 Bylz [}m (8,, 2)

F=1 1=1

Z wi(d,, 4]

> (k—1—¢) (111:Lx {deg B, ;(2)})

2

if max{deg B, ,(2)} is larger than some effectively computable constant.
B :

By the nonvanishing of det{w}(s,,2)), L<j, 1< k—1, we see that each
By {2) equals a linear combination of the

k—1
D) Buyle)[fk(s,, 2
=1

with coefficients independent of the B, ;(2). Since the absolute values
of these coefficients grow more slowly, as |z| goes to oo, than some
constant times [2|* to an effectively computable power depending on %
we see that each

[

= DWld, ] (<i<

E=1-

k-—1)

E—1 b
12 By 1(2) [Tcw (8¢, 2)— Z’wt(al:z]
2] =1

grows faster in absolute value, ag |2| goes to oo than |#| to the power
max {deg B, (=)} minug an effectively comiputable constant. This proves
L : .
the Theorem if » = 1. :
We suppose next that = > 1 gnd - that no (B,,,l(z), ...,Bf,z_z(z))

i zevo, Using Theorem ITT (ii) we see that there exists an effectively com-
putable constant k such that it max{degB,;(2)} = & then

T I

k=1

i‘ Br,l(é}[ (8, 2)— Zwt(aﬂz]

t=1 =1 ) S =1

does not vanish to an order 1&1ger tha.n (n—1+e) (ma,x{degB”(z 1) at

¢ = oo for any 1'<j < k. (Look. at the proofs of G‘oro]larles I and IT of

Theorem TI. ) We next choose & to be su:Efmlently large that for any set -

8 {J. 2,...,m} of cardinality at most 2 < 4%’ < n the expression
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g

h—1
2 D Bal [k'wﬁ(ér, ) —

768 I=1

(8, 2]

o
[

} .
does not- vanish to an order larger than (ﬂ/—l—i—a)(ma.s;{degB,.!l(z)}}
7,1 '

at 2 = oo, for any 1=<{j<k and assume in what follows that
max {deg B, ;(2)} > k.
7l

By what we have already seen it follows that each expression of type
(28) can not vanish at 2 = oo to an order larger than

(n—1+-eymax{deg B.,(2}}.
1

Alzo no two distinet expressions of type (28) whieh corres-
pond to funetions j{r) that disagree on at most %' > 1 points can both
vanish to an order larger than (n'—14- a)(max{degB,l(z)}) at z = oc.

Thug, for each L < < »—2, at most K7 dl\tlnct expressions of type
(28) can vanish to an order larger than (n—m—1-+4g) (max{degB,;(z)})

at 2 = oo, Given any %""'1 disbinct expressions of tl\',pe (28} we can
find two such that the corresponding funetions §{r) agree except at r = r,,
where r, an arbitrary element of {1,..., n}. Further, for any I, such that
B, (2) is nonzero we may pick integers My, 7 Such that

B

r—1 &k
(29) My Byal#) [Brek (8, 29— D w6, 2)]

=1

o
Il
Y

vanishes to an order larger than or equal to the minimal order of vanishing
of the ¥"~*+1 forms, and such that m, B, (%) is nonzero. Pick B, ; (2)
such that degB, ; (2} = max{degB,z( 1. Then in analogy With our

argumeént when n = 1, we see that {29) vanishes to an order less than
or equal to —1nax{degB, ;(#)} plus an effectively comp-utable constant

depending only on d and k, at # = oo. Therefore the degree of the product
mentioned in the statement of the Theorem is, for gufficiently large
max {deg B, ;(2)} at least

750 .

(B — " gf2) (max {deg B, (=)})—

T B 2 (B (1 2) (B T+ (1 1) B 2],
-1

(ma,lx {degB,,(z)}) = (]’e”— k1 2 k— a) (magx {deg B,y (2)}).
¥ =1 7

This proves Theorem IV.
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ACTA ARITHMETICA
XIX (1071)

O DNpeICTABIEHNN HHCET NOJI0MTTE/EHELIMIE
TCPEAPHLIME JIHArOHAABHRIME KBAQPATHIEGIME dopvamm, I1*

L AL Jlowamse (T6moueu)

§4. B orom uw cuenyomux naparpafax a, §, ¥ BCOXY 0003HAYAIT
HeOTPHIATETbHbe Helhie THCAA ; # — QHRCHPOBAHHOE HATYPAIBHOE THCIO;
M, W, ¥ — HEYETHEIE HATYPaNbHEE YHCTA; @ — OECKBAIDATHLIE YHCTa.

Hycrs #(n; @y, ., 6;) 0G03HAUACT TACIO TpeNCTABICHUI dHema »
dopmolt F = @]+ a,x5+ a0, T.e. 4HCIO PelieHHit VpaBHCHHS

(4.1) = ¥ Ay agas.

Bes orpammeenma obmmoctn OYREM OPENIIONAraTh, UTO (4, @y, ;) = 1
n 2{a;. Harx m BHe, 4 = a,a,0; U @ 0603HaUaeT 06iee HANMEHLIIEE
KparHoe BeexX ¢p. [Mlamee, ecnn momosknTs M = dan, To ypasuenume (4.1)
IPEMET BHE:

o

a . O
(4.2) M:?y;jua iH—ul g =0(mod2a)  (k =1,2,3).

t:]

Ofosuauny 4epes R(l{ Gy, Gs, () HUCIG PR ypaBHeHHH (£.2).
O‘{BBHHHO, gTo

{4.3) 7R} 0y, Gay @) = B{M; ay, @, a).
Ha {2.3), (+.2) m (4.3) caemyer:

A
(4.4) H iy (T3 0, Ba) = 1+ yR(JI al. &3, as)e(4;) —

{£.5) . =1+ 21‘(%; @y, Gy, dg) 8(HT).

n=1

Hazee, us (3.92) cumegyer:

Mz
(4.6)  B(r; ay,an, ag) = B(r) = 1} yP(M ay, g, G5)6 (M),

* IlepBaa wacrs paGoTe Omwa Hamedarasma B Homepe XIX.3 mypmama. -



