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An extension and axiomatic characterization
of Borsuk’s theory of shape

by
W. Holsztynski (Ann Arbor, Mich.)

The homotopy functor is rather a good funector for classifying com-
pacta homotopically dominated by polyhedra and mappings into them.
On the other hand, it is too delicate to be used in the classification of
general compacta. Following this idea K. Borsuk [1] introduced a new
classification and a new functor defined on the category of metric compact
spaces into the so called shape category. This functor is, from a certain
point of view, more appropriate (see § 5 of this paper). The aim of this
note is a full formalization of the above ideas, i.e. axiomatization, con-
struction and proof of uniqueness of shape category and shape functor.
The startpoint is a category-functor pair satisfying some general con-
ditions. In particular, the generalization of Borsuk’s theory onto the
category of all compact pairs is obtained (see Example (5.9)).

It will be convenient to use a generalize notion of category.

§ 1. Definition of category. A category K is a class ObXK, together
with a class Mor® and a partial binary operation on MorXK, called com-
position. We postulate that MorXK is a union of the form

MorK = |{J Morg(4,B),
4,Be0bK

where each Morg(4, B) is a set. When there is no danger of confusion,
we shall write Mor(4, B) instead of Morg(4, B). The image of the pair
(f, 9) e (MorK)* under composition will be called the composition of f
and ¢, and will be denoted by ¢ of. Composition is subject to three
axioms.

(1.1) The composition g of makes sense (is defined) iff there exist A, B,
('« ObE such that feMor(4,B) and geMor(B, C).

(1.2) Whenever one of the compositions (heg)of and ho(gof) makes
a sense then the other makes a sense and (hog)of="ho(gof).

(1.3) For each A ¢ ObK there exists an element 14 ¢ Mor(A4, 4) such that
liof=f and g o1, = g whenever the compositions make sense.
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Let K and L De categories. A covariant (contravariant) funcior
F: K—~L is an assignement of an object F(A) = Fop(A) e ObL to each
object 4 ¢ObK and a wmorphism F(f) = Fuyo(f) eMorL(F(A),F(B))
(respectively F(f) sMorL(F(B),F(A))) to each morphism f e Morg(4, B),
subject to the following conditions:
(1.4) If gof is defined in K, then

Flgef)=Flg) - F(f) (respectively F(g<f)=TF(f) - T(g)).

(1.5) F(IA) = lp(A) fOT each A e ObK.

The following easy and useful theorems are not true in the classical
theory of categories.

(1.6) ProrosmioN. Let F: K—~L be a covariant functor. Let us put
ObM = Ob K, Mory(4, B) = F(Morx(4, B)),
MorM = |J Moryu(4, B),
4,BE0bM

and let the composition g o f in MorM be defined as in MorL for each
pair (f,g) e Mory(A, B) xMoru(B, C). Then M is a category, and
F': KM and F'': ML given by
Fld)=4, F(f)=F(f) for AcObXK, feMork,
FA)y=F(4), F'(fy=f for AecObM, feMorll
are the covariant fumctors.

(1.7) DEFINITION (c.f. [4], p. 49). A covariant functor B: ¢ —FC from ¢

to o category B( is said to be a projection functor if the following
three conditions hold:

(i) Ob€ = ObEC,
(ii) BjObC is an identity,
(itl) B(Morc(4, B)) = Morge(4, B) for every A, BeOb(.
(1.8) COROLLARY. Given a covariant functor F: K —L, there ewist a uniquely

determined ccf,tegory EE and covariant functors B: K — B , G: BK —~L

such that E is a projection functor and G(f) = f for each f e Mor BK.
(1.9) ProrosrrioN. Let K be a category, A <ObK and let {BeObK:

feMorg(4, B)} be a set for each feMorK. We put

ObKE =
A BE%]JJE N[OI'K(A, _B) y

Morg,(f, g) = {h e MorK: 1 of =g},
MOl‘K_A = U MorKA(f: g)5

1,.0€0bE 4

then K., under the composition of morphisms which is given as in K,

is a category.
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Now we shall establish a relation between our definition and the
classical definifion of a category; a category in the sense of this paper
is like a classical category with an additional structure.

(1.10) TueOREM. Let K be a category. Let us put
ObL= ObK,
Morz(A, B) = Morg(4, B)X {{4, B)},

MorL = |J Morg(4,B),
4,BE0Dz,
and

(99 (B7 O)) ° (f) (A:B)) = (g"f: (-A-a 0))

for every feMorg(d, B), ge Morg(B, C) and A, B, Cc¢ObK. We
assume also that (g, (B’, 0) (f, (4, B)) is defined in MorL
iff B= B'. Then L = L(K) is a classical category (i.e. L is a category
such that Morz(4., B) and Morr(4', B') are disjoint sets for every
different pair (4, B), (4’, B)).

Furthermore, the equivalence relation = defined on MorL by
(f7(AsB))Zf{g:(C;D)} if f=g.

is a congruence for a composition “o” such that if (+) heMory(4, B),
b ¢ Morz(A’, B’ and h h’?h, then (4, B) # (4’, B’). On the other
hand, if I is a category (classical or not) with a congruence ~ defined
on MorL, then Lf ~ = (ObL, MorL/~) is a category. Any category K is
obtained in such a way from a classical category; this means that cate-
gory K is isomorphic to L(K)/%:.

The following property of a category K is trivial in the classical case.

(1.11) ProPOSITION. If e e Mor(A4, B) is a unit (t.e.eof=fandgoe=yg
whenever the compositions make sense), then

e=1,4=1g5eMor(4,4) ~ Mor(B,B).

§ 2. E-objects and F-category. For any category ¢ and object ¥
of € there is a contravariant funetor Mg from C to the category of sets
and functions which assigns to an object X of C the set M, Z(X) = Mor(X ,Y)
and to a morphism feMor(X,X’) the function Mgf: Mor(X’, Y)
»Mor(X, T) detined by (MZf)(g)=g-f for geMor(X’, ¥).

A covariant (contravariant) functor #: K T is called a continuous
functor for inverse systems if (F»(X),lv’(pt): te T) is a representation of
F(X) as a limit of an inverse (direct) system (F(X,), F(p}): t < u 1)
in L whenever (X, p;: t e T) is a representation of X as a limit of an in-
verse system (X, pi: t <ueT) in K.

11*
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(2.1) DrriNmoN. Let B: 0—D be a projection functor. An object ¥
of C is said to be an E-object if Mg o H: ¢ —~¥ns is a continuous
contravariant functor into the category of sets.

This means that ¥ is an E-object iff for every representation
(X, ps:teT)of X eObC as a limit of an inverse system (Xy, pi':t < u e T
the following two conditions hold:

(2.2) if feMorg(X, Y), then there exist a fe¢ T and f’' e Morg(X;, ¥)
such that

B(f") o B(ps) = B(f);
(2.3) if f, g eMorg(X;, ¥) and B(f) o« B(p:) = B(g) - B(p;), then
B(f) - B(p}) = B(g) « B(p¥) for an u>1.

Let us recall that an object Y is said to be an #-image of X if there
exist morphisms fe Mor(X, ¥) and g e Mor(Y, X) such that fog=1y.
In such a case f is called an 7-morphism and g is called an l-morphism.

(2.4) ProrositioN. Let EB: C—D be a projeciion fumctor. If, in category
D, X is an r-image of an H-object X, then Y is also an H-object.

(2.5) DEFINITION. A category O is said to be an B -category if any object
of O is an inverse limit of E-objects.

(2.6) PROPOSITION. An object of an E-category C is an I -object if and
only if it possesses property (2.2).

Proof. If an object X of an E-eaﬁegory C possesses property (2.2),
then

B(f) o Bp) = B(ly),

where (X, pg: teT) is a representation of X as a limit of an inverse
system of E-objects X;,teT. Hence X is an r-image of Xy, and we can
use Proposition (2.4).

Let us denote by E—O0b 0, or more briefly by Z—Ob, the class of
all E-objects of category (.

(2.7) ProrosrTiON. Let B: ¢ D be a projection. funcior and let OC be
a class of E-objects such that each object in C is an inverse limit of
objects of OC. Then an object X of C is an E-object iff there ewists
a Y e 0C such that X is an r-image of Y in D.

§ 3. Axiomatic definition of Borsuk’s Theory of Shape. Borsuk’s Theory
of Shape, briefly BTS, is a system (0, B, SO, B, F), where ¢, EC, 8C
are categories and

E: C-EC, F:FBC-SC
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are covariant functors such that the following axioms hold:

(3.1) Ob(C = ObEC = ObSC,

(3.2) E|Ob(C = F|Ob( = identity,

(3.3) E(Morg(4, B)) = Morge(4, B) for every A,Be0b(,

(3.4) O is an F-category,

(3.5) F|Morge(X, Y): Morge(X, Y)—+Morse(X, ¥) is & 1-1 mapping for
every object X and F-object ¥ of C.

The functor § = F o ¥ is said to be the funcior of shape. It follows
from axioms (3.1), (3.2), (3.3) that F is a projection functor.

(8.6) ExXAMPLE. We obtain the trivial BTS if we put EC = §C and
F =-identity.

A BTS is said to be a full BTS if

(3.7) for amy different morphisms f, g e Morge(X, ¥) there exist an
E-objeet Z and morphism h: ¥ ->Z in SC such that

hofshog.
A full BTS is said to be a continuous BTS if

(3.8)  for any representation (¥, ps;: teT) of ¥ as a limit in O of an
inverse system (Y;, pi: t<ueT) of E-objects ¥; and for the
morphisms f; e Morse(X, ¥;) such that

(Spf) ofu=1f: forany t<uel
there exists a morphism feMorge(X, ¥) such that
(8pe)of=14: for any teT.

§ 4. A natural continuous BTS for a given pair (0, E). Let B: C ~EC
be a projection functor defined on an E-category O. We shall define
a category Ex for each object X of . Let us put

ObEx = | {Morge(X, ¥): Y ¢ E—Ob}
and

Morzs(f: XY, g: X —~>Z)= Morgz(f, g) = {h e Morge(Y, Z): hof= g}
for any F-objects ¥, Z. The composition of morphisms in Fx is as in BC.
X
/
ObEXQf// \gEObEX

E-Ob>Y Z e E-Ob
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(41) Lemwma. Let (X, pi: te T) be a representation of X as a limit of an
inverse system (Xq, pit t <weT) of E-objects in category C. If
G, H: Ex—~Hy are covariant functors such thai
(1) G(f)=H(f)=F for any morphism f in Hx,

(i) G(B(p)) = H(B(p)) for any te T,
then G = H, for arbitrary object Y of C.
Proof. Let geObEx. Then ge Morge(X,Z) for an E-object Z.

It follows from property (2.2) of E-objects that ¢ = ¢’ o FH(p;) for an index
te T and g' e Morge(Xy, Z). Then g’ « Morg, (B (ps), g) and, by (i) and (ii),

g' e Morg, (G (B(py), 6(9)) ~ Mors, (G (H(ps), H(g)) .
Thus G(g) = H(g) = ¢’ » G(E(py)).

(4.2) CororrArY. The class of all (covariant) functors @: Ex-—>Ey
such that
(%) G(f) = f for each morphism ¢ of Bx
i8 o well-defined set.

Now we can define a category SC and a functor F: EC —80. We put

ObSC = 0bC
and

Morso(X,¥) = {¢: By~Bx: @ is a functor with property (%)} .

It follows from Corollary (4.2) that Morse(X,Y) is a set.

The composition of a morphism in SC is the respective composition
of functors (with converse succession).

From now on let us suppose about EC that

(43) if Morge(4, B) n Morge(4’, B') # @ then B — B’.
Then we put
F(X)=X for every X < ObEC,
and for feMorgo(X,Y) we define (F(f): By —+Ex) e Morge(X, ) as
a functor satisfying (+) and such that
(&4) (F(N))ovlg) = gof for (g1 ¥T—>2) €ObEy, Z e E-Ob(..

By.' property (+.3) of BC, the definition of F( f) does not depend on
the pair (X, Y). Also the following proposition iy a direct consequence
of this property.

(4.3) PB.OP?SITION. Let G eMorse(X, Y) and feMorge(Y, Z) for an
E-object Z (consequently f e ObEy). Then Goy(f) e Morgg(X y Z).
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Proof. Evidently 1;=1z. By (*) lz= G(1) =1gy. Then the
composition 1z o Gon(f) = Gop(f) is defined. Thus there exist X Z',z"
such that

Gob(f) € MOl‘Ec(X', Z') and 1z € MOI‘EU(Z', Z“) .

Then, by (1.11), 1zeMorge(Z’, Z'). Thus, by (4.3), Z=2' and
Gov(f) € Morge(X', Z). There exists also a Z" such that Gou(f)
e Morge{X, Z'), a8 Gou(f) € ObEx. Thus, by (4.3), 2" = Z. The proof
of Proposition (4.5) is finighed.

Evidently, Axioms (3.1)«3.4) are satisfied for SC and F defined
above. Next, if ¥ is an E-object, then the mapping of Morss(X, ¥)
onto Morge(X, X) given by

G ->Goy(ly)

is converse to mapping F[Morge(X, ¥): Morge(X, ¥) +Morsc(X, ¥).
Indeed, by Propdsition (4.5), Goy(ly) € Morge(X, ¥). Let g ¢ Ob Ey.
Then ¢ € Morg,(ly, g) and

(7 (Gon(15)))op (9) = 9 © Gor(1z) = Griexlg) = Gon(lr) = Gonlg)
as
9 = Guolg) € Morg,(Gon(ly), Gou(y)) -

Thus F(Gob(ly)) = @.
On the other hand, for any feMorge(X, ¥) we have

[F(NHNov(ly) =1yof=Ff.

Thus Axiom (3.5) is also satisfied and the system (C, EC, 8C, E, I')
is a BTS.

(4.6) PROPOSITION. Let G e Morgo(X,Y) and feMorge(Y,Z) for an
E-object Z. Then

F(f) o &=F(Gou(f)) -

Proof. (F(f)e Gos(lz) = Gou(F(f))on(1z)) = Gon(f) = 170 Gos(f)
= (F (Gov(£))Jon(12)- '

Thus Proposition (4.6) holds (see above for the proof of Axiom (3.5)).

Now let &, H € Morge(X, ¥) and G +# H. Then Gon(f) # Hon(f) for
an E-object Z and a morphism fe Morge(Y, Z). .

Thus, by Propositions (4.3), (4.6), and Axiom (3.5)

F(f) e G=F(Gon(f)) # F(Hon(f)) = F(f) - H.

This means that the BTS under consideration is full, i.e. that (3.7)
holds. g
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(4.7) TeEOREM. The described fumctor 8: C—>8C is continuous for in-
verse systems.

Proof. Let (¥, pi: teT) be a representation of ¥ as a limit of an
inverse system (Y, pi: t<wueT) in ¢ and let

fre MOI’SC(.X, :Yg) and ft = S(p;‘) ° fu

for every t <ueT.

Then, by Definition (2.1) of an - object, (Mﬁo( Y), M%s o B(ps):te T
Is a representation of M%yo H(Y) as the limit of the direct gystem
(MEc(Xr), MEq o B(p}): t<wuel) in Ens for every E-object Z. Thus
for such Z there exists exactly one mapping of sets fZ%: MorEo(_Y,Zj
~Morge{X, Z) such that

(£8)  (fu)ovMorpo(¥y, Z) = £ o (MFc o ) (py) for every e 1.
I f e Morgo(X, ¥) is the limit of fi, ie. if we have
(4.9) fo=18(py) < f for each te T,

then for every E-object Z and for fZ= f0b|MorEg(Y, Z) condition
(48) holds (as (S(pd)oslg) = (F o B(pe))(g) = g o Bips) = ((MZo o B) () (9)
for g eMo;'rl?g( Y, Z)). Thus there exists at mosh one feMorge(X, ¥) such
thait condition (4.9) holds. On the other hand, such a morphism f exists.
It is & functor f: By B3 defined by ‘

(*) frtorlg) = g for every g Mor By (see the definition of Morge(X, T))
and by the eondition

(*1 f0b2M9rEg(Y, Zy=fZ for every W-object Z, where fZ iy the
mapping of sets uniquely defined by (4.8).

We have only to verify that if g € Morg,(h, h’), then
Jutorg) = ge MorEx(fOb(h)’fOB(h/)) .

. Indzeed,, let g e Morg, (h, ') for h e Morgo(Y, 7), W e Morgo(Y, Z')
Zyel(‘gz)’zh amhe lg(ob]ects. Then g € Morgo(Z, Z') and goh=n" a,nd’
\e2)y h="hioB(p;) for a tcT and an ki € Mor i

: 2o( X, Z). Since
Je e Morse(X, Yy) is a functor from By, to By with property (:S, \3ve have

9= (fe)malg) ¢ Morgx((fon(h) y (fs)os(g o he))
(as ge MorEPt(Iz, 3§ ° k) and consequently

(4.10) ge ((ft)Ob(ht)) = (fedon(g © hs) .
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Thus, by (4.9) and (4.10)
g foo(h) = g f¥()
= gof? e (MEc - B)(ps) (he)
= g ((Ffdon(hs)) = (f)on(g © he)
=17 ((ME%c - B)(ps)) (g © he)
= f7lg o he o B(ps) = f7(W) = fou(R') .
The theorem is proved.

(4.11) COROLLARY. The described system (C, EC, SC, B, 8) is a continu-
ous BTS for every category C and EC with property (4.3) and funcior
B: C~EBC such that C is an E-calegory.

§ 5. Uniqueness and quotient properties of a continwous BTS and
a continuous shape functor. In this paragraph E: C--CE denotes a pro-
jection functor defined on an F-category C into a category EC with
property (4.3). We will call such a category a semi-classical category.

(5.1) TemoreM. Let (C, EC, 8C, E, F) be a BTS and let G: BEC D be
a functor such that G'=G-E: C—>D is a continuous functor.
Then there is exactly one funcior H: S8C—D such that ¢ = Ho §.

Proof. First, let us remark that if f, g e Morg(X, ¥) and Y is an
E-objeet and S(f) = S(g), then G(f)= G'(g). Next, for an arbitrary
object ¥ from C, if 8(f)= S(g) then

EBhofy=PR(hog) and G(hof)=G{hog)

for each E-object Z and % e Morg(Y, Z). Since Y is a limit of an inverse
system of F-objects and & is a continuous functor, we have &'(f) = G'(g).

It follows from the above considerations that we can give the following
definition of H: §C —»D:

H(X)= @G'(X) for every X eOb( = ObSC

and
H(f) = lim inv!(@(g,): ¢'(X) >G'(¥s), 1 T)

for every f e Morge(X, ¥), X and ¥ « ObC, where
E(g)=F'(8(p)of), teT,

for a representation (¥, p:;: teT) of ¥ as a limit of an inverse system
(Y1, p¥: t < weT). Let us remark that such morphisms g; exist and

E(ge) = B(pt) o B(gu)
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and consequently
Fg) = F(pF) » G'lgu) for t<u,
so that H(f) = lim inv@'(g;) is a well defined morphism. In the cage of

Y ¢ E-ODb we can put p; = 1y, so that H(f) = G o P~(f) (see Axiom (3.5)).
If f = S(f,), then

Ho8(fo)=&(fo).

Thus H -8 =@, as ¢’ is continuous. We have only to prove that &
preserves corposition.

Let heMorge(Y, Z) be another morphism and Z e B-Ob. Then

h="hio8(ps) for a teT and an hye Morge(Y:, Z). Hence (for
feMorge(X, 1))

H(hof)=Hlhio8(ps)of) = Hihso 8(ge)) = @ o T (ke o S(gy))
= (@ F () o (GoFY (8(g)) = (G F7Y(hs) o @(g0)
= (6T ki) o G'(p) o H(f) = G(F(ha) o Blps)) « H(f)

. =G F e S(pa)) o H(f) = H(b) « H(f),
le.

H(hof)=H(h)o H(f) if ZeB-Ob.

. Next, let Z be an arbitrary object of ¢ sy Zre B-Ob and g; e Morg(Z y Ze).
en

G'lgs) o H(hof) = H(8(gs)) cH(hef)=H(S(g)ohof)
= H(8(ge) o 1) cH(f)=H(S(g:)) o H(h) o H(f)
= @(g0) o (H(h) » H(f))
so that by the continuity of @
H(hof)=H(n)o H(f).

Thus we have constructed a functor & »
; - ; such that ' = Ho 8,
a functor H is the unique one since for such H 8. Such

)

(5.2) H(f)= G FY(f) for every feMorgo(X, ¥), Y ¢« B-Ob,
and @ ‘being a continuous functor,

H ig a.lso' the unique functor such that ¢ = H - p.

Indeed, since 7 is a projection functor, we have G — & o

The l]]ﬂlqlle]‘ 1€88 18 a Conse‘quence of the Contlnlllby of @ . The theorem
Now we are gOlﬂg 0 prove that the sha, pe f nctor of a continuous
BTb 18 conblnllous. !

icm®
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(5.3) Lmmma. Let 8: 0—~8C be a continuous funcior of shape and
(C, BC, 8'C, B, F') be a full BTS (which is based on the same pair
(C,B: C—~EQC)). We put 8' =F oE. Then the functor H from
Theorem (5.1), such that 8 = Ho ', has the following property:

if H(f)=H(g) then f=g for every f,geMorS'C.
Proof. It H(f) = H(g): X>Y¥ and h e Morgs(¥, Z), Z ¢ E-Ob, then
H(S'(h)of}) = 8(h) s H(g) = H(S'(h) = g) and, by (5.2),
Fo(F) S (h) of) = F o (F')(§'(h) o g): X7, 7 e B-Ob.
Thus '
S'(h)of=8(h)eg
and f=g¢, as the second BTS is full.

(5.4) THEOREM. A BTS 1s continuous if and only if its functor of shape
18 continuous.

Proof. Let (0, BEC, 8'C, B, F') be a continuous BTS and (0, EC,
S8C, E, F) be a BTS with the continuous functor 8 = F - E. Then for
8 = F' o E the functor H: 8'C —+8C given by Theorem (5.1) (such that
Ho 8 = §) has the property from Lemma (5.3). We have only to prove
that H{Morgo(X, Y)) = Morge(X, ¥) for every X,Y ¢ ObC.

Let f e Morge(X, Y). Then for any Z € E-Ob, g e Morg:¢(Y, Z) there
exists exactly one f, e Morgo(X, Z) such that

H(fs)=H(g)f-

Now, let (¥, ps: te T) be a representation of ¥ as a limit of an in-
verse system (¥, pi': t < u ¢ T) of E-objects ¥;in €. Weput fi = §'(ps) o f.
Then for t << u

H{S'(pY) o fu) = H(S'(p¥)) o H(S"(pu)) o f = H(S'(ps)) o f = H(f)
and » ’
S'(p¥) o fu= 1.

Thus, by continuity Axiom (3.8), there exists a morphism
f' e Morg-o(X, ¥) such that

S'(ps)of'=f: for each teT.
Hence

8(pe) e H(f') = H(8'(pe) o f') = H(fe) = H(8'(ps)) o f = B(pe) o f
for each te 7. Thus H(f') =f. The proof is finished.
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The following theorem on the uniqueness of BTS is a consequence
of the above results:

(5.5) TwmorEM. For any pair (C,H) where B: C—~EC is a projection
Sfunctor from an E-category C inio & semi-classical category HC there
exists a unique continuous BTS (0, BC, 8C, B, F). It is unique in
the following sense: If (C, BC, 8'C, H, I") is another continuous BTS
(and ' = F' o B), then there exist functors (which are uniquely deter-
mined) H: 8C—>8'C and H': 8'C->8C such that

H'oH: SC>8C and Ho-H': 8C->8C
are identity functors and
F=HcF and F=H -F.

(5.6) Remark. We can say that a continuous funetor of shape is a De-
dekind seetion between the functors of shape and the continuong
functors. ,

(5.7) Remark. Itis clear that Theorem (3.1) holds for the eontravariant
functors &, G' also. ' :

(3.8) Exawmpim. Given an arbitrary BTS (0, BC, 8C, B, F), let
Y ¢E-Ob(C. Then, by Definition (2.1), MEyoB: (—Tns is
a continuous contravariant functor. Then, by Theorem (5.1), there
exists a contravariant functor H such that Miog=HoF. Tt is
easy to see that it must be H = MZ,.

(5.9) Exawpre. Let H: ¢—>HC be the homotopy functor from the
topological category of compact pairs ¢ to the homotopy category
of compact pairs HC. Then H is a projection functor and ¢ is
an H-category. The Cech homology and cohomology functors
and the cohomotopy functors =» are H-invariant and continuous
on C. Thus they are shape-invariant in the sense of Theorem (5.1)
(see [2]. and compare [3] and Example (5.8)). H. -objects are precisely
the pairs homotopically dominated by polyhedral pairs.
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Some results on fixed points — III

by
R. Kannan (Calcutta, Ind.)

Recently many authors have proved fixed point theorems (see for
example [1], [4], [5], [8]) for operators mapping a Banach space X into
itself. In each of these theorems it has heen assumed that the mapping
is non-expansive ie., if ¢ maps the Banach space X into itself, then

(a) lp@)—pyl <lz—yl, forax,yeX.

The main purpose of the present paper is to prove some fixed point
theorems for operators mapping a Banach space into itself which, instead
of the non-expansive property, possess.the following: if ¢ is a mapping
of & Banach space X into itself, then
(b) lp@)—eWll < t{le—g@l+ly—e@)i} fora,yeX.

It may be noted that condition (a) implies the continuity of the
operator in the whole space while condition (b) has no such implieations.
Moreover, it is known [6] that (a) and (b) are independent. For relevant
works on fixed point theorems for operators mapping a metric space M
into itself which satisfy condition (b) on M, one may refer to [6] and [7].

Before going into the theorems, we state the following well-known
definitions and results.

DEFINITION (2], p. 27). A norm ‘in a normed linear space X is
uniformly conver if

2l = lgall =1 (n=1,2,..), 1}.1_]2 [lZa~+yall = 2

imply :
lim [jwgp—yal|=0 for xu,yne X .
n—+o0

THEOREM A ([2], p. 28). Let X be a uniformly convex normed linear
space and let &, M be positive constanis. Then there exists @ constant 0 with
0 < <1 such that

ol < M, i< M, —ylze
imply
ll -yl < 26 max (fjll, yll) -
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