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On prime binary relational structures
by
Ralph Seifert, Jr. (Hanover, Ind.)

Introduction. The operation of ecardinal multiplication, defined on
a class X of relational structures, can be thought of as a generalization
of the usual multiplication of positive integers. In this generalization,
the role of the prime numbers is usually played by the X-indecomposable
structures; i.e., the definition “p is prime if and only if p % 1 and either
g=1 or r=1 whenever p= gr” is generalized to the definition “¥ is
Jo-indecomposable if and only if X eX, X has more than one element,
and either 9 or 3 has only one element whenever 9, 3 e X and X o~ Px 3".
However, it i3 also true that a positive integer p is prime if and only
if p % 1 and either p|g or plr whenever p|gr; here | is the divisibility re-
lation. Generalizing this, we can make the following definition, where X|9
means that XX W =~ P for some structure I:

A structure X is J-prime if and only if
(i) XeX;
(ii) X has more than one element; and
(iii) if 9, 3 e¥K and X|(Yx3), then either X|Y or X|3.

The general question of comparing the notions of J-indecomposability
and Jo-primeness was first posed by Tarski. Although it is easy to show
that the two notions are not generally identical, one might think that
they do not differ by very much. However, Ralph McKenzie showed
(see [4]) that if <{ny, ..., 7> is any sequence of natural numbers, not all
zero, and X is the class of all algebras <X, fi, ..., f>, in which f; is an
ni-ary operation on X, then there are no X-prime structures at all. This
result may be somewhat surprising, but it is really -what should be ex-
pected. For, given X ¢ X, X having more than one element, consider how
we would show that X is not X-indecomposable. (For simplicity, assume
that isomorphs of members of % are necessarily members of .) To show
that X is not %-indecomposable, we must find non-trivial 9, 3 e %-such
that ¥ =~ Yx3. If such 9 and 3 exist, they can be found within the
set of cardinal factors of ¥; if ¥ is small, then this set will be small and
the search is very likely to fail. On the other hand, to show that X is
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not -prime, we must find 9, 3 ¢ 5 such that ¥|(Y x 3) but neither X|y
nor ¥|3. The search for such 9 and 3 will not fail unless it fails within
the intersection of % with the class of cardinal factors of cardinal multiples
of X; if X is large, this class will be large even if X is small, and the search
is very likely to succeed. Thus we may reasonably expect that for very
general classes X, such as the classes of all algebras just mentioned, there
will be considerably fewer X-prime structures than ¥ -indecomposable

ones. For highly restricted classes J, however, the two notions may be,

in closer agreement.

In this paper, we characterize the J-prime structures for various
classes Jo of binary relational structures, i.e. pairs (X, By in which X is
a non-empty set and B C X X X. The cardinal product of two such strue-

tures (X, R> and <(¥Y,8) is the structure (XX XY, R® &>, in which .

R® 8 is the relation sueh that <z, y> (BE® S)<{w, 2> if and only if both
zRw and ySz It will De seen that the class B of all binary relational
structures has no primes, but that the class RC $ of structures with
reflexive relations does have primes, which we ghall characterize. This
raises the question of where the “borderline” lieg; i.e. ay we define clas-
ses KXC B by increasingly stronger natural definitions, at what stage
between $ and R do primes appear? This question is answered in § 1.
We then turn to classes containing only finite structures. It will be seen
that the property of commecledness is of some importance in the study
of these problems. (A structure is connected if it is not the cardinal sum
of two other structures.) As a preliminary, we shall obtain, for various
K C B, a result which has as a corollary an interesting condition on two
connected members of J which is necessary and sufficient for their
cardinal product to be connected. As another corollary, we shall get
a strong mecessary condition for primeness in several classes of finite
structures, which we shall use to show that there are mo primes in the
class of all finite unary algebras (i.e. structures <X, B> in which X is
finite and R is a unary operation on X). This result is of interest because
R. McKenzie showed in [4] that for # > 1 there are primes in the class
of all algebras (X, f) in which X is finite and f is an n-ary operation on X.

In the class of finite, connected binary relational structures with
reflewive relations, the prime structures are the same as the indecomposable
structures. A proof of this fact will not be given here, as it follows from
results in a fortheoming paper by R. McKenzie. In the present paper,
however, we shall make nse of the just-stated fact to characterize the
primes in the class of all finite binary relational structures with reflexive
relatibns. : .

The author wishes to thank Professor Ralph McKenzie for suggesting
the problems considered here, and for several helpful ideas which con-
tributed to their solution. ‘
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We shall use the following notation. If B C XXX and Z C X, then
define R*Z to be {x ¢ X: (Hy ¢ Z)(y Bx)}; also, define E to be the inverse
of R, i.e. zRy if and only if y R>. Thus, if B C X XX, the domain of R
is B*X and the range of B is R*X. If also 8 C X X X, then R|S will denote
the relative product of B and 8, i.e. (R|S)y if and only if there is some
2 eX such that xRz and zRy. If X is a set, let Idx = {{z, %): x ¢ X}.
Tf RCXxX, let R =TIdx and let R"™”=R"™R for each natural
mumber #. If % C ®, then Pr(X) will denote the class of J-prime
structures and In(%) will denote the class of X-indecomposable strue-
tures. If X = <X, R> < $, we call X the universe of X, and denote it by {Xi.

We consider an ordinal number to be the set of all smaller ordinal
numbers; cardinal numbers are conceived as initial ordinals. If =, 4 are
cardinals, then »x 2 will denote their Cartesian product a;l.ld #-A ?7111
denote their cardinal produet (i.e. the cardinality of X 2). Ifxisa ea,r@nal
number, then »* will denote the next larger cardinal munber: The ca;rdlmx:l
number of a set X will be denoted by #(X). We say |2 if and o‘nly if
- == A for some ecardinal p; of course, if 4 is infinite we have x|4 if and
only if » <A ’

§ 1. Classes containing infinite structares. We consider the following
classes:

$ ={<X,RBy: RCXxX},
P = {<X,Ry: 0 #RCXxX},
W= {<X, R>: RC XXX and (E*X) v (R*X) = X},
D = {(X,Ry: RC XxX and R*X = X}, ‘
§ = {¢X,Ry: RCXxX and R*X = B*X = X},
R = {{X,Ry: RCXxX and xRz for every reX},
& = {{X,R>: B is an equivalence relation on X3,
U= {X,R): R=XxX}.
Obviously $ 2% D WI DI S R D& U. Note that it is not a foregone
conclusio;l th;t Pr(B), Pr(B’), ete. will be ordered in the reverse ord_er;
for in general X C £ does not imply Pr(X) 2 Pr(f), but only Pr(¥)3FKn
~Pr(L). However, we shall show that Pr($) = Pr (B') = Pr(W)=Pr(D)
= 0 and Pr(8) = Pr(R) = Pr(8) = Pr(U) = ¥, where
T={(X,R: R=XxX and #(X) is prime or infinite} .
We could also consider D' = {<X, By: RCXxX and R*X = X};
but this would yield nothing new, since obviously
Pr(D) = {¢X, R): (X, R>ePr(D)}.
For each cardinal number %, let 1, be the structure {x, %X % and let I,

be the structure {(x,Id.>.
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The two extremes on our list of results are trivial.

THEOREM 1.1. Pr(B) =0 and Pr(W) = 7.

Proof. Given ¥ e® with $(}X|) = »> 1, we can choose %) ¢ % such
that #(|9]) = » but not X|Y. (If XeW, take P=3,; if X¢U, take
9= 1U,.) Letting 3= <{0},0), we get X3 == <(x,0> =~PX3; but
neither X|9 nor ¥|3. So X ¢ Pr($). Hence Pr(B)= @. Furthermore,
if %, 2 are cardinals, then obviously L JU; if and only if x|4; since ¥ ¢ U,
if and only if ¥ =~ I, for some x, the result Pr(W)=9¢ follows from
simple cardinal arithmetie. ‘

We proceed to the proofs of the other results. The principal tool
used here is the following equivalence relation, which is also used by
Chang in [1]. o

DerFNrTIoN 1.2. If X = (X, B) ¢ B, we define

E(¥) = (<@, 9>: ©,9 ¢ X, R*{z} = R*{y}, and E+{z} = R*{y}}.

Obviously E(X) is an equivalence relation; it identifies points which
cannot be told apart by just looking at their relatives. If & ¢ X, then
#/E(X) will denote the E(X)-equivalence class containing ; and X, [E(X)
is {#/B(X): »<X}. Obviously E(X)|R|E(X) = R, so we ean define a re-
lation R/E(X) on X/E(X) by saying <z/B(X), y/B(X)> e R/E(X) if and
ouly if zRy. Let X/B(X)= (X/B(X),R/E(¥)). The important facts
about F(X) are given in the following Lemma.

Levwa 13. (a) If X,9 €8, then B(XxY)= EB(XQEQ). (b) If
XeW and P e B, then B(XxY) = B(X)QE (). (o) If E(xx9) =EX®
QB(D), then XxYEXxY) = {OxD: C ¢ |X|/B(X) and D ¢ |Y|/E(D)}.
(@) If £,9¢D and X/B(X) =~ Y/E(D) under some isomorphism ¢ such
that :’ﬁl:(qo(C')): H(0) for every C e |X|/B(X), then ¥==9. (e) If » is
@ cardinal and 9 e B, then W)Y if and only if #|#(0) for every C < |D|E (D).

Proof. (a,b) Suppose X = (X, Ry, 9P = (¥, 8. For xy Yy, w, 2>
€ XX Y, we have (BR8)*{(z, 1>} = (B*{z}) X (8*{y}) and (R®S8)*{<w, 2>}
= (B*{w}) X (8*{z}), by definition of ®. If <o, 4> B(X X Y)<{w, 2y, then
the left-hand sides of these two equations are equal. If %,@ €8, we thus
get Bz} = R+{w} and §*y} = §* {z} sinee all four sets are non-empty;
if XeW and Q).e B, we get the same result, this time hecause R*{z} = X
= E*{w}. Arguing similarly with  and § [(R®S8)” = R®#F], we see that

:flggrw and yE(9)2. Hence H(Xx9)C E(X)®FE(Y). The converse is

(e) Straightforward.

(d) For each Cc|X|/B(X), choose a one-to-one correspondence

?)etween .0 and ¢(C); the union of these correspondences is clearly an
isomorphism hetween ¥ and 2. ‘
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(e) If 1LY, ie. Upex 3 =Y for some 3 e B, and C  |Y|/E(D), then
by (b, ¢) O is equinumerous with the Cartesian product of an E(1I,)-class
and an FE(3)-class. But the only E(U,)-class is ». Therefore x{$(C).
Conversely, if |D|/E(Y) = {Cs: i eI} and x|3:(0;) for every ieI, then
we may assume C; = D;X x for some sets D;. Let 3= <Z, T), where
Z is the union of the sets D; and a7'b if and only if <a, 0> and b, 0
are related in 9 (we assume O ex). Then Z/E(3)= {D;: ieI}, and
matehing €; with D; gives 3/E(3) == 9/E(Y). Furthermore, matching
Dix % with Dy clearly gives U, X 3/E(U,X3) = 3/E(3). Composing the
two isomorphisms and applying (d), we see that 9 =U.x3. So U,[9.

‘We riow show that Pr(®’) = Pr(W) = Pr(D) =@ and Pr(8) = Pr(R)
= Pr(€) = F. We do this in three steps. First, we show that T-structures
are prime in 8, R, and §, but (secondly) not prime in %', W, or D. Thirdly,
we show that structures mot in & are not prime in any of %, W, D, S,
R, or &.

THEOREM 1.4. If X is any of the classes S, R, or &, then T C Pr(X).

Proof. The proof given by Chang in [1] for finite R-structures
works here. If X, 9 € K, 3 7, and J{(X x D), then we may assume J =1,
for some ». Since J& C8, Lemma 1.3 (a, ¢, ¢) gives =|4:(C X D) for every
C e |X|/E(X), De|D|/E(D). Since x is prime or infinite, if there is some
Cy ¢ |X|/E(X) such that not zx|3(C,), then x|3:(C,xD) implies »x|3:(D)
for every D e|9)|/E(Y). Thus either 1,JX or 1,|Y, by Lemma 1.3(e).

THEOREM 1.5. If X, then X ¢Pr(D) (whence X ¢Pr(W) and
X ¢ Pr(®), since DC WCB):

Proof. We may assume ¥ =1, for some » > 1. If = is finite, let

- u= »x—1; otherwise, let u= ». Let

D= (o {ah, (X %) © (<, a5 aend)
and
J=Luv i, KBy w: Bepw{u}}>.

It is clear that 9), 3 ¢ D and also that |9I/E(Y) = |, {=}} and [3/E(3)
= {u, {}}. Since %> 1, Lemma 1.3(e) gives us that neither .Y nor
U,|3. On the other hand, :

DX JIE(Qx3) = {xx{u}, (#xp) v ({{3xp) v (@3B

and  #(xx {u}) == and #H (=X p) v ({Fxu) v ({x @) =(p+
+p-1, the latter heing equal to »* if x is finite and = otherwise. So

(Y x3) by Lemma 1.3(e), and U, ¢ Pr(D).
THEOREM 1.6, If X is any of the classes B, W, D, §, R, or & then
Pr(X)C49.
. 13%
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_Proof. If X=(X,R)e®, define D(X)=R*X~RB*X and S(x
=R*X nR*X. Tf X,9 B, we have the following obvious faets:
(i) D(XxY) = (D(X)xD(D)) v (D(X) X S(D)) v (S(X) xD(D)).
(ii) I @« D(X), then z/E(X) C D(X).
(i) S(XxP)= S(X)xS(D).
(iv) If e S(X), then z/H(X)C S(X). .
_  XNow suppose X= (X, R>ePr(X). Since XCH’, we must have
R*X # @ and thus either S(X) 0 or D(X) 0. If S(X)# @, choose
#y € S(X); otherwise, choose @, « D(X). Let % = #(X) and let u =1 if x is
finite; otherwise, let u = »*. Pick some set Z such that #(Z) = u and
ZnX=0,and add Z to 2B (X); Le. define X' =X v Z,Rwu8u T,
where .S = (ZxB*zx)}) v (B*{w} xZ) and T=7ZXZ if oyRay, T=0
otherwise. The result; of this construction is that @/E(¥’) = Z v (m(,/E (36))
and w/E(X')=w/E(¥X) for weX N(mO/E(}C)). Furthermore, by Lemma
1.3(b, ¢} and the fact that »/E(U,)= {»} for any cardinal », we have

. EXWNE(EXU,) = {Cxr: (e |X|B(X)}
an
E'XWB (X' XW,) = {Dxv: D e |X|EX)}

f(?r any e@rdinal v. Matching w/B (X) with w/E(X') for every w ¢ X obviously
gives an isomorphism between (¥ x U,)/E(X xU,) and (X' X 1L, )/E (¥’ XU,);
now fix » to he the first infinite cardinal larger than ». Then #‘((wo/E' (%) % v)
== #((z v (2B (%)) x 'u), since #(Z U (1/B(¥))) < pt» <» and » is
infinite; and of course #(w/B (X)) = #(w/B(X)) for all we X ~(/ B ().
So Lemxfla, 1.3(d) gives XX U, =~ ¥'xU,; 50 we have X|(X¥'xU,), and
clearly X' ¢ X and U, ¢ U C X. Since X e Pr(X), we have either X|¥’ or X|11,.
In the latter case, obviously X e Uy 50 X ePr(K) ~n WCPr(W) =9 and
we are done. .So‘sqppose XX, or X3 =~ X' for some 3 eB. Then
p#1; 80 = lsl l'nﬁmte, and #(|X']) = $#(|3]) = »+. Let W be the
gna,ge of sr,,/E(%? in Xx |3| under the isomorphism. Now we claim that
R(*? #E%;(Fjr(}j lf- S(xiz ‘(g, then z,e D(¥) by construction, and also
~. 7Y since X e B'. By (i) above, 2/E(¥') C D(X/ i
Zo € D(X')); s0 (i) gives  WEFIC D) (obviondly

WCDEx3)=D(x)x(D(3) v §(3))

sxfnee S(X) =0 But then (R*XNR*X) X 13| is a non-empty subset
o X ><j3l', dlS]Opltv from W, with cardinality greater then x. But thig
Is impossible, since (XX |3))~W is equinumerous to X ~ (o B (X))
which has cardinality at most . Thig contradiction shows that S (OX) = 0’
and, eopsequently, that z, e S(%). Obviously, then, #, ¢ S(X'), and 7(—iv)
above gives w,/B(¥') C S(X'). Thus W CSxx3) = S(x) ><S(3)’. Further-

R. Seifert, Jr. ®

icm

©

On prime binary relational structures 193
more, we even have S(X)=X; for otherwise, (X~S(X))x 3] would
be a non-empty subset of X x |3, disjoint from W, having cardinality
greater than x, leading to a contradiction similar to the one above. Since
S(X) = X, we have X ¢ 8, whence X' ¢S and necessarily 3 ¢ 8. But then
W= 0xD for some (e X/E(X), De|3|/E(3) by Lemma 1.3(a,ec). Tf
X + O, then (X ~C) x | 3| is 2 non-void subset of X X |3}, disjoint from W,
with eardinality greater than x; this is impossible as before. So X = (,
or X e X|E(X); consequently E(¥)= XXX and Xe¢U, whence Xef
a8 before.

We say XeB is connected if and only if it is not the cardinal sum
of two structures; i.e. if there do not exist structures (¥, 8>, (Z,T) ¢B
such that Y nZ =0 and X =Y v Z,8 v T). If X C B, let X¢ denote
the class of all connected structures in X. The above proofs also show
that Pr(We) =Pr(De) =0 and Pr(S¢) = Pr(Re)= 7. (Obviously B¢
= Po= Wy and & = We = U.)

2. Connectivity in cardinal products. We now turn our attention to
classes of finite structures; if 3 C $, let X be the class of all finite struc-
tures in X. (Then X% is the class of connected finite struetures in JG.)
Suppose ¥ =<(X, R ¢B and O 5 ¥ CX; then both ¥ and the sub-
structure 9 = (¥, R~ (XX X)) will be called ideals of X if and only
if 9 is connected and R*Y v R*Y C Y. Thus the ideals of X are its
maximal connected substructures. Let L(X) denote the cardinal number
of the set of all ideals of X. In this section we consider the question: given
X,9 ¢ D/, how many ideals will ¥x9 have? Since any structure is
a cardinal sum of connected structures (its ideals) and cardinal multipli-
cation is distributive over cardinal addition (to within isomorphism),
it suffices to answer the question for X,9 e DF. The answer derived here
will be used in § 3 to deduce more about prime struetures.

DEFINITION 2.1. Let o, 7, and | be fixed symbols. The set T of strings
of these symbols is defined inductively as follows: (i) {a, « } CT; (i) if
0,7 ¢ T, then ofr ¢ T; (iil) T has no members not required by (i) and (ii).
If t«T and R is o binary relation, then t(R) will denote the relation
named by v when « is interpreted as B, = as inversion, and | as relative
product. The rank of any 7« T, denoted by e(z), is the integer named
by = when o is interpreted as 1, e as —1, and | as addition. The inverse
of v ¢ T, denoted by v, is defined by induetion on T as follows: (i) a*= o™ ;
(ii) (7)1 = q; (iii) (o}r)~* = 7710~ L Finally, if v ¢ T define @ =7, 7+
=My for all # > 0.

As an example of this notion, we see that (X, Ry is connected if
and only if for every z, y < X there is some 7 ¢ T with <z, y> e7(R). The
following facts are easily verified.
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TEMMA 2.2. (a) If R, 8§ are relations and 7 < T, then T(R®S) = 1(R)®
®(8). D) If (X, By e 8,z ek, and v € T, then <@,y ev(R) for some y ¢ X,

Now we note some facts about D, -structures. Ifn = {0, 1, ..., n—1}
i3 a positive natural number, we define G, to be the structure (n, R)
in which iRj if and only if i4+1=j (mO(_ln). Let , and v, be the two
projection functions defined on any Cartesian product; e.g., vi<, y> = ,
Yol Y =Y.

Tmmma 2.3, (a) If X = (X, B> ¢ DL, then for some n >0, X has a sub-
structure (¥,Rn (¥YXX)) isomorphic to GCu. (b) Suppose <X, R},
(¥, 8 D, 2C XXX is an ideal of <X, B)yX (Y, 8, and sBw. Then
there are p, q < Z such that p(E®S8) ¢, vi(p) = &, and y,(q) = w; and, conse-
quently, the projection of Z on X is all of X. ‘ _

Proof. (a) Choose any @, ¢« X; given e X, since #; ¢ B*X we can
¢hoose @i, € X s0 that @i Rus1. This gives an infinite sequence of points
in X, each related to the next. Since X i finite, this sequence must contain
closed cyeles; the shortest such cyele will be isomorphic to some Gr.
(b) Using (a), let 3, be a substructure of <X, R)X (¥, 8) such thab
13:| C Z and 3, =2 G for some % > 0. Let ¥, be the projection of |3|
on Y; if Do = (Fy, 8~ (¥x X)), clearly Py 8. Choose some u e |3y,
and suppose zRw. Since <X, R) is connected, there is some v <T such
that <w, p(u)) € T(R). Since Yo € S, by Lemma 2.2(b) there exist ¢, d « ¥,
such that <e;wy(u) €7(8) and dSc. By Lemma 2.2(a), {{w,c)>,u)
et(R®R8) and {z,d)(R®8){w, ¢y, Since u ¢Z and Z is an ideal, both
(&, d> and {w,c> must Delong to Z. So let p = <z, d> and g = (w,c>.

DEFINITION 2.4. IE X=<(X, R) ¢ % and # ¢ X, define

ER@)={o(r): veT and (@, ®y € 7(R)}
and ‘ i
K%)= U{E @): v X}.

Lewma 2.5. If X = <X, B> e Dk, then K¥x) = K(X) for every z ¢ X;
also, K(X) is a subgroup of the group of iniegers and K (X) = {0}.

Proof. To show the first assertion, it suffices to show that Kn(xr)
C E™y) for every @, y « X. But since X is connected, for any given «, y ¢ X
we have (&, y) ¢ o(R) for some o T} 5o if n ¢ K%(x) by virtue of veT,
we have <y, < (o(B) "l (B)o(B), or <y, y) ¢ (o-[z|o) (R), and o(o—*frlo)
is —p(0)+e(v)+ (o) = n. So-n ¢ K¥(y). Now to finish we need only show
that each K%(z) is a non-trivial subgroup of the integers. But this is easy;
if m, n ¢ E%(z) by virtue of a, 7, respectively, then —m « K¥(w) by virtue
of o7, and m+n ¢ K¥(z) by virtue of olr. By Lemma 2.3(a), some K*(x)
contains a positive integer and so is not {0}. :
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DEFINITION 2.6. If X eD, define k(X) to be the (unique) non-
negative generator of the group K (¥); then K (X) consists of all multiples
of k(X). )

TeEoREM 2.7. If X, D € Df, then L{XXY) = g.e.d. {k(X), k(D))

Proof. Let X=(X,R>, D=<¥,8), m=Fk(X), n=1Ek(9), and
s = g.c.d. {m,n}. By Lemma 2.3(a), choose 0 CX, DCY such that
O, RA(CX0)y =G, and <D, 8~ (DxD)y =~ & for some e,f> 0.
Obviously ¢ € K(X), so by Definition 2.6 we have ¢ = pm for some p;
similarly, f = gn for some q. Let ¢ = {¢;, 61, +.., Com—1} and D = {dy, dy, ...
<.y dgn—1} be enumerations such that e;Re; if and only if j = ¢ -+1 (mod pm),
and d;8d; if and only if j = {41 (modgn). Consider the set {<¢,, ds):
i< gn}.

CLATM 1. The s ideals of X X9 containing the poinis {cy, dy>, {Coy Ar> ---
wery {Cgy ds—1y are mutually disjoint.

Proof. Suppose on the contrary that (¢, di> is connected to <c¢,, d;>
for some 0 < 1 < § < 8; that is, {6, diy, <¢y, d5>> € T(R®S) for some 7 ¢ T.
By Lemma 2.2(a), this means <{c,, ¢,» e7(R) and <{d, d;> ez(S). In turn,
{Cy, o) €T(R) implies p(r) e K(X) by Definition 2.4, whence ¢(z)
= 0(modm) since K (X) consists of multiples of m. At the same time,
Ky, &> € 897 ginee <D, 8 ~ (DxD)y = Cy. So (di, di> e 7(8)[8Y™? and
thus g(t)—(j—%) e K(Y), or ofr) =j—1i (modn). The two congruences
o(t) =0 (modm) and o(z) =j—1i (modn) together imply that j—i is
a multiple of s; but this is a contradiction, since 0 < j—i <s.

Crame 2. If i << gn, then the poinis (6o, di> and ¢y, ditsmongn))
belong to. the same ideal of X£x9.

Proof. Since s = g.c.d. {m,n}, we have s=um—ovn for some
integers w,v. Since m = k(X), um ¢ K(X); so by Lemma 2.5, there is
some 7 € T such that o(z) = um and <¢,, ¢,> € (R). Since <D, § ~ (D xXD)>
€8, there is by Lemma 2.2(b) some d; ¢ D with <di, d;) € (8 ~ (DxD));
hence o(t) =j—1 (modgn) by the same sort of argument as was used
in Claim 1; or, j= %+um (modgn). Now by Lemma 2.2(a) we have
Loy @1y y Loy Aitumimoagnyyy € T(BE®S). In a similar way, vn ¢ K(2), there
is some o e T such that (o) = vn and <{dirummodgn), Fs+ummoagn € ¢ (S),
and, since <0, R n (Cx (), eS8, we get as before <¢y, Corvnmoagny € o (R),

. whence <<€y, di-+umtmodgn y {Co+vnmodpm; dirumemoagnyy ) € 0 (R®S). On the

other hand, it is obvious that
<<co’ di+um—177l(mod.qn)> bl <fo+un(madpm); di—i—um(mo{]qn)>> € (R®S)(m)‘ -

Hence {{eo, de , <o, dirsmotgm?y € T(RDS)|o(ROS)| (RRS)™) . This
proves Claim 2.
Let I; be the ideal of X¥x ¥ containing <¢, di, for 7 <s.
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Crame 3. U{Du i< 8}=XxT.

Proof. For convenience, let A= [J{Ls: i< s}. By Claim 2, we
have {c,} XD CA. For any j <pm, k< gn we have {6, dx—jmoagm),
oy, d> € (R@®S); hence ¢xDC A. Given any » ¢ X, since X is con-
nected there is some 7 e T such that <@, ¢ e7(R); given any de.D, by
Lemma 2.2(b) there is some d' e D -such that <d, d" e7(8). Hence for
any. £eX and deD there is some 7eT and d’ ;D such that
LLmy dy, <6, &)Y eT(BRS), by Lemma 2.2(a); and <6, d> e CXDC A,
50 <z, dy ¢ A since A is a union of ideals. Hence X xDC A. Now given
any % e XXX, let M be the ideal of X XY containing u; since (applying
Lemma 2.3(b) to 9 x ¥) the projection of M on Y must be all of ¥, the
set M ~ (X xD) must have a member, say . Since M is an ideal, there
is some o ¢ T such that (u,v> € o(R®S). Since v e X XD C A, this means
# e A. This proves XX ¥ C 4. . )

By Claim 1, Z{XX9) > s; by Claim 3, L(XXY) <. S0 we are done.

COROLIARY 2.8. If X= (X, Ry ¢ Db, 7> 0, and 3y, 3, are ideals
Jo XCr, then 3y o2 3s.

Proof. In the proof of Theorem 2.7, let 9 = G = {r, 8. Define

g Xxr->Xxr by ¢z, > = <@, j+1 (modr)y. It is clear that ¢ is an
automorphism of ¥x @, since in G we have j8k if and only if
{j+1 (modr), k+1 (modr)> e 8. Thus ¢ must carry ideals onto ideals.
But obviously ¢<c, diy = {Coy dit1moany for all i< 7, 80 ¢ carries each
ideal L; onto the ideal Liiriymoas and all the idealy are isomorphie.

COROLLARY 2.9. If % is cither of the classes D, 8 and X, 9 e KL,
then £X9 e Kb if and only if g.c.d. {k(%), (D)} = 1.

§ 3. Primes in classes of finite structures. It is rather easy to show’

that Pr(‘ll)f)=Pr('1D’g) =@, but the proof is not instructive and we
omit it here (it is given in [5]). Our first main goal in this section is to
. show that Pr(#') = Pr(#}) = 0, where

4= {<X,R)y: B*X = X and R is a function},

the class of unary algebras. (Mc Kenzie showed in [4] that Pr(4£) = Pr(+¢)

= (J.) We shall obtain this result with the help of two strong necessary

conditions for primeness which apply equally to D7, D, 8’, and §k. First,
o prime in any of these classes must be connected, i.e.

C Pr(Xf).

Proof. It suffices to show Pr(X) C3tb; we show the contrapositive
of this. Suppose X = (X, R) ¢%’ is mot connected. Then X = D:+9:,
a cardinal sum of two structures, where we may assume that |9),| is.an
ideal of X having the largest possible cardinality. Let # be a prime number

icm

TeEEOREM 3.1. If X is any one of the classes D, 8, or £, then Pr(3’)
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greater than #(X). Let 3= (VX Cu)-+(V2XxTn). Then since ©,xC,
22 €u X Jn, we have

3¢ (CaX Bu) 2 (D3 X (G X )+ (e X (G X )] 22 3K Gy -

S0 X|(3 X €y), and clearly 3, €, ¢ X/. Furthermore, not X[y, since X
is not connected and clearly any cardinal factor of €, must be connected.
Suppose %3, or XX W =~ 3 for some W = (W, I>. Then Y, x €,, which
is connected by Theorem 2.7 (n is prime and greater than #(]9,[)) and
is thus an ideal of 3, is isomorphic to some ideal A of X x W. Let X*, "
be the projections of |A! on X and W, respectively; it follows from
Lemma 2.3 that X’ and W’ are ideals of X and B, respectively. Further-
more, A C X' x W', so (U < FH(X")- FH(W"); dbub F#(IA) = n-F(D4)),
and F(X') < #(]9,]) since ¥, was among the largest ideals of X. So
(W) = n. Let X" be an ideal of X other than X', and let BC X" x W’
De any ideal of X xB; then B # [A|. By Lemma 2.3, the projection of B
on W is W’; so F(B) > » and the isomorphic image of Bin 3 is an ideal,
other than 9, x€,, with % or more elements. This is a contradiction,
since all the ideals of 3 other than 9; X €, are obviously isomorphie to
ideals of X, and- #(X)<m. This contradiction shows that actually
not X|3. Consequently ¥ ¢ Pr(X').

Second, we have the following strong necessary condition on con-
nected prime structures:

THEOREM 3.2. If X is either D, 8, or & and X € Pr(JCé), then k(X) = 1.

Proof. Suppose ¥ =<(X,R>eXs but m =k(¥)>1; we show
X¢Pr (J&Zé). Consider the structure XX Epe; for convenience, let €
= (m?, 8>. Of course ¥(Cy) = m?; so by Theorem 2.7 and Corollary 2.8,
XX e is the cardinal sum of m mutually isomorphic ideals, or XX Cpe
=~ P xXIp for some Y EJQB, Y an ideal of XX Epe.

Now suppose {{z,i>,{®, ) ¢ ¢(R®S8) for some <{x, % ¢|{Y|,0eT.
Then i, %) € o(8) by Lemma 2.2(a), and g(c) must be a multiple of m?.

.Consequently, every number in K (%) must be a multiple of m* On the

other hand, sinee m = k(X) there is some 7 ¢ X and some 7eT such
that o(z) = m and {y, ¥ <7(R); then o(z™) = m-+m—+ ... +m (m times)
= m?and <0, 0> e #™(8), 50 {{y, 03, <y, 0O e ™(R® S). Hence m? e K (),
which together with the fact that m? divides every member of E(9)
gives us that k(%)= m2 Thus, by Theorem 2.7 and Corollary 2.8, the
structure 9 X Cn is a cardinal sum of 7 mutually isomorphic ideals;
it 3 is one of these ideals, then the projection map 3->% is onto by
Lemma 2.3(b). Hence, if 3 is an ideal of 9 X Cn, then the projection
map 3 -9 is one-ome; for if both (¥, € |3 and (y,j> (3| for some
yelDl, i, <m, i j, then since #—(({y}x m)~{<y, %, <:3/,]-;T’}) =m—2
and there are m ideals of 9 X Gy, there must be some ideal 3 for which
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131 ~ ({y} x m) = @. But this contradicts the fact that the projection
3’9 is onto. Now that we know that the projection 3 +%'is one-one and
onto, we see that it is an isomorphism by Lemma 2.3(b). So 3 =~ 9 and
hence PXCpn 22 P X I

Combining the final results of the preceding two paragraphs, we.

get XX Epms 2 PX Cpr.

We now show that not X|9). Suppose that on the contrary, X x W = 9
for some W= (W, T>; then WeDs and #(W)=m, since #*(19))
= $#(X)-m*m. By Lemma 2.3(a), let B be a substructure of W such
that B =~ §, for some p > 0; we may assume B = €. As above, choose
yeX, veT such that o(r) = m and <y, 9> et(R). Then for all sep we
have (i, i{m(modp)> e7(T), since B = ;. By Lemma 2.2(a), {y, i),
<y, i-+m(modp)>) ev(B®T) for all iep; hence each of the points in
the list

Y505, <y, m(modp)>, <y, 2-m(modp)>, ..., <y, (m—1)-m(modp)>

is 7(R® T)-related to the next one, and thus the numbers 0, m,2m, ...
<oy (m—1)m are all different modulo p (since otherwise there would be some
beXxp,q<msuchthat 0 <g,<b, b et¥RQ T),and o(v@) = ¢.m < m2;
but Xx % is isomorphically embeddable in 9, and %(9)) = m?). Hence
p>m; but F(W)=m and B is a substructure of W, so p < m. Thus
p=mand W= B;ie., W = Cn. But then L(X X W) = m by Theorem 2.7,
whereas L(9)) =1 since 9 is an ideal. So Xx W 2% 9. This contradiction
shows not X|9.

Now we have X{(PxCn), 9, Cp eJCZ;, and not X|9. If also not X|Cp,
then X ¢Pr(JC£) and we are done. On the other hand, if ¥|C,, then it
is easy to see (using Lemma 2.3 (a)) that X ~ €, for some 5. But Cs ¢ Pr(JC{;)
since it is easy to see that G X (CaXJ;) o €p X e but not (LR

The next result complements Theorem 3.1.

TrroREM 3.3. If X is either D, S, 4, or R, then Pr(%k) C Pr().

Proof. Suppose X ePr(X}), 9,3 <%’ and ¥|(Yx3). Then XxW
=Px 3 for some W e X' Let MWy, W, ..., Wy, be the ideals of IW. By
Lheorem 3.2 (or trivially if ¥ = R), k(X) = 1; so by Corollary 2.9 (or
trivially if % = R) we have X x s « %4 for all 4 < m. That ig, the ideals
of XX W are just the structures XX Wi, i < m. Hence X is a cardinal
factor of every ideal of 9 x 3. Let Doy sy ..y Dy and B0y 1y o3 30 be
the ideals of 9 and of 3, respectively. If i < P, j < g then Pix3; is
a cardinal sum of ideals of 9 x 3, and hence i % 3 is a cardinal multiple
of X; since i,y 3 e Kland X e Pr(Jﬂé), this means that either X|%); or X|.3;.
Now if not X|9 we must have not X|9: for some ¢ < p, whence X|3; for
all j < g, and X|3. So either X9 or %13, and we have shown X e Pr(X/).
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We now know that Pr(9') = Pr(D}) and Pr(s =Pr(s}), and we
have strong necessary conditions for membership in any one of these
four classes. At present we are unable to completely characterize the
primes of D7, Df, §7, or 4 , although we know, in addition to the above
facts, that Pr(8’) & Pr(D’) (by the proofs of Theorems 1.4 and 1.5,
U, e Pr(8)) ~Pr(D’). We can also say that In(R%) € Pr(sh), whence
Pr(RE) & Pr(sh) (since Pr(R})=TIn(R%), as mentioned in the Intro-
duction); for if

X= <{07 1, 2}7 {‘(07' 0>,<1,15, (2, 2>,<0,13, <2;1>}>
and
9= {0,1,2}, {0, 15, 0,25, {,1>,42,05,<2, 1>},

it is easy to compute that XX €, >~ Y x €,, but neither ¥|9 nor X|G,.
So X ¢ Pr(sh), since 9, €, ¢ 8F; but X e In(R}).

Now -for the promised proof that Pr(;%’) = Pr(#4}) = 0. It CA,f> es
and we 4, we define inductively f°(z) = @, f"*(a) = f(f"(z)) for n > 0;
if f(z) = x, we call @ a fized point of {A,f>. It is easy to see that A, 1
is connected if and only if for every z, y € 4 there are numbers m, % such
that f™(#) = f"(y). A root is a finite connected unary algebra with a fixed
point; by the preceding sentence, a root has exactly one fixed point.
It is easy to see that a finite unary algebra % is a root if and only if % is
connected and k(%) = 1. Consequently, Theorems 3.1, 3.2, and 3.3 show
that Pr(#') = Pr(#fL) and that connected non-roots are mot A{y-prime;
thus, to show Pr(a%') = Pr(.&{;) =@, it suffices to show that roots are
not o&fg-prime.

THEOREM 3.4. If W= (4,f> is a root, then U ¢ Pr(Ak).

Proof. Suppose a, is the fixed point of UA. For each z ¢ 4, define
the depth of 2, or d(), to be the least integer # such that f*(x) = a,. Leb
ANy = max{d(x): x € A}. If d(A) = 0, then #(4) = 1 and % is not prime,
by definition. So we may assume d(H)= k-1 for some % > 0. Choose
some % e A 5o that d(Z) = k-+1. Choose some new object ¢ ¢ A and extend f
to A v {t} by defining f(t) = 2. Finally, define p(0) = 0 and p(n+1) ==
for n > 0. Now consider the algebras B =<B,q), €= <C,k), and
D=<D,j given by the following formulas:

B={¢r Yoy s Yrr1, 2>: 07 <k, yie A, d(ys) <1, and zed (v
U { oy ey Yry 200 Yre A, d(y) <14, and ze d v {B}}.
C={r,y»:0<r<k and yed} v {u},
where u i3 some fixed new object.

D= {(yo, vy Y1, 20t Yie A, d{yn) <4, and zed U{t}} .
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g<ry Yos ey Y1y B = <p(r),f(y1), ‘-~:f(?/k+1)yf(z)7 .
‘ <k;f(?/1);---3f(yk)5f(yo)1f(z)yt> it k> 0;

g"”“"""”’“’z>={<o,f<yo>,f<z>,t> it k=0,

B, gy = <o (1), F)>-

h{u) = <k, a5

oy ey Yrr1, 20 = <F0), ooy fH11), F(2), B
Tt is easy to see that B, €, D e#h; in fact, they are roots. Defim

&: AXB-CxD by:
LIy Yry 3 Yoy ooy Yr—1y &y Yrady cory Yit1y Dy

¢<"”7 <"';yn7"-;yk+1:z>> = if d(z) < T, v
{Lry @y Yoy ooy Y1, 2y if d(z) > .

’ \
D&, Yoy -y Yy By = Lty Yoy oovy Yry & D).

A straightforward computation shows that & is an isomorphism of
A xB onto €xD. (Note that f(¥) = fly,) = Yo = @, When d(y,) = 0 and
dy) <1.) . .

Now #(0)= (k+1)-#(4)+1, so since H#H(d)>1 we get mnot
$£(4)|#(0), and hence not A|E. Suppose AD, or AXE == D for some
© = ¢E, ¢); then necessarily € is a root. Let B’ = {wke B gkﬂ(@f) = g,,}}
and D' = {w € D: j*"(w) = dy}, where ¢, and &y = (ay, ['(3), ..., f(&), &, T
are the fixed points of € and D, respectively; let €, D’ be the subalgebras
of €, D whose universes are B, D’. Since 4() = k-+1 and ¢(€) < kJTJ.,
it is clear that AX & ~ D' under the given isomorphism. Now notice
that D' = {{Ygy -y Y41, 10 Ys € A and d(ys) < 4}, since (&) 5 a,. Define
R = {<u, vy e AxA: f(u) = f5(v)}, and similarly define R ('), R(D").

Obviousty R(Y), R(E), and RB(D’) are equivalence relations. Moreover,

Ly vy Yrs1, 0y oy ooy Yhaa, ) e R(D) if and only if Yy, Yirrr
€ R(%). Thus #(4/R(¥)) = #(D'/R(D"); on the other hand, clearly

4 (4/R(N) - #(B/R(E")) = #(D'|R(D)} .

So #{ER(E)) =1, ie. ekw)=¢, for all we H'. Hence d(E) <k,
and d(D) = d(Ax E) = max{d(A), d(€)} = k++1. But this is a contra-
diction, for jEtay, @y, Ggy -y Gy 7 dy and 50 @(D) > k-+1. Hence not
AD, and U ¢ Pr(Ah).

As mentioned above, results in & forthcoming paper by R. McKenzie
imply that Pr(:Ké):In(:KE); and, furthermore, that every structure
in ®% has a unique (except for order) factorization into indecomposables.
Our second main goal in this section is to characterize Pr(R’); using
the just-mentioned results, we shall show that Pr(:&’) = IIl(-'Kfo) v g,
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where J = {X: X o Jj for some prime k}. Notice that the members of J
are the only disconnected primes we have found in this study. Sinee
In(R%) = Pr(R5) and Pr(R%)C Pr(R)) (Theorem 3.3), we have In(RL)
CPr(®’); we proceed to show 3 C Pr(&).

LeMwma 3.5. If X e W and k> 0, we have Ti|X if and only if for every
ideal Y of X, the number of ideals of X which are isomorphic to Y is a multi-
ple of k.

Proof. This is obvious.

Lizvwma 3.6. Suppose that each of {,56;: ieI}, {95 jed} is a family of
mutually non-isomorphic R'-structures. Then there ewist dgel, joed such
that X5, X V;, & X:XD; whenever either © =i, or § # jo. .

Proof. In [3], Lészlé Lovisz shows that to each 3 eR’ we may
assoclate a denumerable sequence A(3) of positive integers in such a way
that two structures are assigned different sequences if and only if they
-are non-isomorphie; and for all u, the nth component of the sequence
A(3 X W) is the product of the nth components ef A(3) and A(W). I
3, WeR/, let us say 3 < W if and only if either #(|3]) < (|TW|), or
else #H(|3]) = #(|W]) but A(3) is lexicographically less than A(I);
further, say 3 < U if either 3 < W or 3 = W. Tt iz easy to see that
if 3<W and XeR’, we have (3% %) < (WxX). Furthermore, since
{¥¢: 1el} is a family of mutually non-isomorphic structures, it must
have a < -least member; call it X;,. Similarly, {9);: j ¢ J} has a <-least
member 9;,. Thus, if either ¢ # i, orj + j,, we have ¥; < ¥;and 9;, < 9;,
and one of these inequalities must be strict; consequently (XX Di)
< (X XYy) < (X:xYy) and at least one of these inequalities must be
strict. So the result follows.

THEOREM 3.7. If k is prime, then Sy e Pr(R)).

Proof. Of course I e R’ and %> 1. Suppose 9, 3 ¢ R’ and neither
3klY nor Jg|3- Let D (W) be the set of all ideals of W for any I, and

-if B is an ideal of I, let (B, W) be the cardinal number of the set of all

deals of W isomorphic to B. Now it is obvious that
DOXJ)={Px3J: P DY) and 3’ D(3)}.

Let 9y, ..., Dm be a list of mutually non-isomorphic ideals of 9 such
that, if 2B is an ideal of § and s(W, 9) is not divisible by %, then W is
isomorphic to some 9); on the list. Let 3, ..., 3» be a similar list for 3.
Both these lists are non-empty by Lemma 3.5. By Lemma 3.6, we may
assume that 9, x 3, 5% Vi X 3; whenever either 7 £ 0 or j = 0. Now let
Doy 307y vy Dy J¢» be a list of all those pairs <Y’, 3 in D(YP)xD(3)
for which we have that 9’ X3’ == 9, X 3, but either 9" £ 9, or 3' & 3;.
Then for each r < ¢, by the above either 9, is not isomorphic fo any
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of Vo, -y Ym OF else Jp'is 1ot isomorphic to any of 3q, ..., 3a; but this
means that one of 8(97, D), s(3r, 3) is divisible by k. Hence the number
of ideals of 9 X3 which are isomorphie to o X 3o, bub are not -the: product
of an ideal of 9 isomorphic to Y, and an ideal of 3 isomorphic to 3,
is divisible by %; i.e.

$(Dox 30, DX 3) = 5(Do, )-5(30, 3) (modF) .

Bub s(Dy, D)-5(3y, 3) is not divisible by k, so neither is (Do X 30, DX 3).
By Lemma 3.5, not 3x/(Px3). So SkePr(:Kf).

Our characterization is completed by the following result, the proof
of which was inspired by an example given by Hashimoto and Naka-
yama in [2].

TrROREM 3.8. Pr(R’) CIn(RH) v a.

Proot. Suppose X e Pr(®) but X ¢ In(RE); we show X  J. Obviously
Pr(®)) CIn(®)) and R} ~In(R)) CIn(RE), so we must have X¢R%.
Thus X has at least two ideals. Now assume that X ¢ J; then at least one
ideal of ¥ has an indecomposable factor, say 2B, with =(|2]) > 1. Since
¥ eIn(R’), W cannot be a factor of all the ideals of X. So we have X
o (Bx W) +3 for some B, 3 « R such that no ideal of 3 is a multiple
of I (as before ¥4 is the cardinal sum). Let Y = Bx W. Now we have
(D43 X (P +(Px3)+3%), since in fact

(D43)x (D' -+ (P x 3)+3") = (D439 x (P + (D x3)+3))

(where 9" is the cardinal nth power of 9), ete.). Since X ¢ Pr(R’), we have
either X|(9°4-3°) or X/(9°+(9 x 3)+3%). But if ¥/(V*+(9 x 3)+3%), then
since ¥ =~ P+3 and P+(Px3) =2 PYx (P+3), we get X (Y xX)+3%);
hence X|3% But this is impossible since none of the ideals of 3 have
W as a faetor, while at least one of the ideals of X does. Therefore
ED43Y, or XXP = P*+3° for some P e R,

Now let %,%,.. be a sequence of mutually non-isomorphic
R%-structures such that every ¥; is indecomposable and every indecom-
posable ,‘R{;'structure is isomorphic to some x;. Consider the domain of
polynomials, with integer coefficients, in the indeterminates x,, %, -..
It the positive integer n is interpreted as the structure I, then every
such polynomial with positive integer coefficients corresponds to a structure
in the obvious way; e.g., ¥+ 3, corresponds to >+ (Jy X x,). Furthermore,
since R%-structures have the unique factorization property, every
K- strueture is isomorphie to a unique cardinal sum of cardinal products
of the structures x; and these two correspondences are mutual inverses,
50 we have a sum- and product-preserving - one-to-one correspondence
between the isomorphism types of R’-structures and those polynomials
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in %, %, ... having only positive integral
and 3 correspond to positive-coefficient
respectively. Now of course

coefficients. Suppose X, B, 9,
polynomials X, P, ¥, and Z,

TP=T42=T4+2(TP~(Y-0)+2) = X-(V~(Y-2)+ 7.

Now it is well-known that the domain of polynomials in z, x,, ..
with integer coefficients is a unique factorization domain; hence P = i”:
—(Y-Z)+ 2% That is, Y(Y-2)+ 2% is equal to some polynomial
having only positive coefficients. Since the polynomials ¥ and Z have
only positive coefficients, this means that every term of the polynomial
Y-Z must be “cancelled out” by terms appearing in ¥* or Z% Let w be
the indeterminate corresponding to 98; then every term of ¥ has w as
a factor. Let t be a term of ¥ which has w as a factor the least number
of times, say % times. Then, since 7o term of Z has  as a factor, there
is a term t' of ¥-Z which has w as a factor exactly k times; but every
term of ¥? has w as a factor at least 2k times, and no term of Z2 has w as
a factor at all. So t” is not cancelled out, contradicting our earlier conclusion.
This shows that our assumption X ¢J was wrong, so ¥ ¢ J. This proves
Pr(®R’) v In(R}) C 3. :

COROLLARY 3.9. Pr(8") = 97 U 3 and Pr(gh) = 97

Added in proof: The “forthcoming paper by K. MecKenzie” mentioned on
pages 188 and 200 above will appear in Fund. Math. this volume, pp. 59-101, its title
is Cardinal multiplication of structures with a reflexive relation.
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