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Refinements of Lebesgue covers

by
James C. Smith, Jr. (Blacksburg, Va.)

1. Introduction. Let (X,p) be a metric space and G = {Gu: a e A}
be a cover of X. The cover § is called Lebesgue if there exists some real
number 6> 0 such that for every #e¢X, 8(x,d) C G, for some acA.
Here S(»,0) = {y ¢ X: g(2,y) < }. In [3], Theorem 3.3 the author has
proved the following.

THEOREM 1.1. Let (X, o) be a metric space. If S is a countable Lebesgue
cover of X, then S has a locally finite Lebesgue refinement.

A natural question now arises as to what other types of Lebesgue
covers of X have locally finite Lebesgue refinements. In § 2 we answer
this question for point finite and star-countable Lebesgue covers and
characterize such covers in terms of a ‘“uniformly” locally finite property.
In § 3 we show that all Lebesgue covers having a loeally finite Lebesgue
refinement also have the somewhat strong property of being “Lebesgue
normal”. In § 4 we generalize these results for uniform spaces.

2. Locally finite Lebesgue refinements. .
DErINITION 2.1. Let §= {Ga: ac A} be a cover of a metric space

(X, ). Then G is mmformly shrinkable if there exists a real number é > 0
and a cover ¥ = {F,: ae A} such that

(1) F,C@Q, for all ae 4,

(2) o(Fay X—Ga) > Sfor all aed.
In [3], Theorem 2.2 the author proved the following

TeEOREM 2.2. Let § be a cover of a metric space (X, p). Thm S i
Lebesgue if and only if § is uniformly shrinkable. Also the umiform shrink
of S can be made Lebesgue.

TEEOREM 2.3. Let § be a Lebesque cover of a metric space (X, o). If S 4s
point finite, then S has a locally finite Lebesgue refinement.

Proof. Let §= {Gi: ae A} be a point finite Lebesgue cover of X.
By Theorem 2.1 G is uniformly shrinkable. Hence there exists 8 > 0 and
a Lebesgue cover F = {F,: u ¢ A} such that

(1) . CG, for all ae 4,

(2) ¢(Fuy X—@Go) > 6 for all aeA.
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Since » belongs to only finitely many (., then 8(w,d) intersects only
finitely many I',. Hence F is locally finite.

COROLLARY. Ewvery o-point finite Lebesgue cover of & metric space (X, o)
has a locally finite Lebesque refinement.

Proof. Let § = Dgi be a Lebesgue cover of (X, o) such that 8;
i=1 .
= {2t ae Ay} is point finite. For each ¢ define Gy= |J G, so that

a€d;

{G: i=1,2,..} is a countable Lebesgue cover of X. By Theorem 1.1
there exists a locally finite Lebesgue refinement {Hy: ¢=1, 2, ...} such
that H;C G4 for all i. Clearly {{H:} ~Gy: i=1,2, ...} is a point finite
Lebesgue cover of X which refines 8. Hence by Theorem 2.3, S has a locally
finite Lebesgue refinement. C S

Remark. It should be noted at this point that the neighborhoods
used in both the proofs of Theorem 1.1 and Theorem 2.3 to establish
local finiteness were of uniform size. This immediately brings up the

question as to whether this type of uniformness plays an important role

in finding locally finite Lebesgue refinements. ‘

DEFINITION 2.4. Let § = {8i: A<} be a collection of subsets of
& metric space (X, ¢). Then § is called wniformly locally finite if there
exists a real number 6 > 0 such that for every x ¢ X, §(=, d) intersects
only finitely many members of §.

Remark. This definition of “uniform local finiteness” should not
be confused with that of Katétov [1]. Katétov’s “uniform loeal finiteness’
ig stated for normal spaces and means that there exists an integer n > 0
such that each ¢ X has a neighborhood N, which intersects at most n
members of the given collection.

THROREM 2.5. Let § be a Lebesgue cover of & metric space (X, o).
Then S has a locally finite Lebesque refinement if and only if 8 has a wuni-
Jormly locally finite refinement.

Proof. (i) Let §={@y: o ¢ A} have a locally finite Lebesgue Te-
finement. We may assume that this refinement is one-to-one and hence
denote it by & = {F.: a e A} 50 that F,C G, for all a e 4. Since F ig
‘Lebesgue, by Theorem 2.2 .above . there exists a uniform ghrink J€
= {Ha: aeA}-such that H,CF, and g(Ha, X—F,) > 6> 0 for all ac 4.
Alsosinge F is locally finite, for each = ¢ X, there exists a neighborhood N,
such that N, interseots only finitely many members of F. Therefore
8(N;, 8) intersects only finitely many members of I, and hence € is

uniformly locally finite and refines G, .

(ii) Let.§ = {6af 0 ¢ A} be a Lebesgue cover of X which hag a uni-
ff)rmly locally finite refinement. Then there exists a 6> 0 and 2 re-
finement ¥ of § such that § (@, 8) intersects only finitely many members
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of & for all z¢X. Again we may assume F = {F,: a €4}, Define 3
= {Hu a e A} where H, = §(F,, 6/2) for all a < A. Clearly % is Lebzsgue
and S(z, 6/2) infersects only finitely many membars of Je for all z ¢ X,
Thus A = {G.'~ H,: ae A} refines § and is a locally finite Lebes-
gue cover. 7

COROLLARY. Let 8 = {811 1€ A} be a unformly locally finite collection
in a metric space (X, g). Then each 8y can be enlarged uniformly such that
the resulting collecticn is still un formly locally finite.

THEOREM 2.6. Let §= {Ga: ac A} be a star-couniable open cover
of a T, space X. We divide the indew set A into subsels {Ag: B « BY such
that o and y belong to Az if and only if there ewists a positive integer n such
that G.C St"(@,,S). Difone Xp= Lﬁ Gae Thuen we have the following:

acdp

(1) X =) X,
BeB

(2) Xg'n Xy =0 for § #§,

(3) Xj is opcn and closed in X for each f e B,

(4) {Ga: aeAg} is a countable opcn cover of Xjp for each B < B.

Proof. See [2], Theorem 2.

THEEOREM 2.7. Every star-countable Lebesgue cover of a metric space (X ,0)
has a locally finite Lcbesgue ref.nement.

Proof. Let §= {¢.: aed} b> a star-countable Lebasgue cover
of (X, g). By Theorem 2.6 above we partition X as follows:

(1) X= U X;, '

BeB

(@) XpnXy=0 it f+ 4,

(8) X; is open and closed in X for each f§ e B,

(4) Sp= {@Ga: a € Ay} is a countable Lebasgue cover of X for each f € B.

By Theorem 1.1 S; has a locally finite Lebesgue refinement F, s for
each f e B. Since {Xj;: § ¢ B} is discrete, 5 :,;ijg Fp is a locally finite

- Be,

Lebesgue refinement of G.

COROLLARY. Bwvery o-star-countable Lebesgue cover of a melric space
(X, 0) has a locally finite Lebesgue rcfinement.

DeFINITION 2.8. Let 8§ = {Si: Aed} be a collection of subsets of
a metric space (X, o). Then § is called wn formly discrete if there exists
a real number 6 > 0 such that for each # ¢ X, §(z, 8) intersects at most
one member of 8.

THEOREM 2.9. Hwvery star-countable Lebesque. cover of a metric space

(X, 0) has a o-un’formly disercte Lebesgue refinement,

Proof. This follows immediately from Theorem 1.1 and Theorem 2.7
above. ) .
1+
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3. Lebesgue normal covers.’

DrrNmTioN 3.1. Let X be a set and §= {S:: 1 ¢ 4} be a collection
of collections of subsets of X. For.each 1 ¢4, let §; = {Ga: a € 4;}. Then

A8 = 1N G al) cdiyded).

TEEOREM 3.2. Let §= {6 a e A} be a locally finite Lebesgque cover
of a meiric space (X, o). Then § has & A-refinement which s locally finite
and Lebesque. ‘

Proot. By Theorem 2.2 above § iyuniformly shrinkable to a Lebesgue
covers § = {F,: a e A} such that ~ . o

. (1) FoC @, for all ae A,
(2) o(Foy X—Go)> 0> 0 for all o< 4. ) .

Define &= A {G., X—F.}. By [3], Lerama 1, 4 is a locally finite

aed
Lebesgue cover of X. It is well known [2] that if H ¢ J and H ~ F, % d,
then H C @,. Therefore St(z, &) C 8t(F,, 3) C @, for some a ¢ A, since &
covers X. Hence J A-refines S. )

DEFINITION 3.3. Let § be a Lebesgue cover of a metric space (X, o).
Then § is called Lebesgue normal if there exists a sequence of Lebesgue
covers {8;}i~: such that §=6, and Sp4y 8 a *-refinement of G, for
n=1,2,3,..

N

TEROREM 3.4. Bvery locally finite Lebesgue cover of a metric space
(X, 0) is Lebesgue normal. .

Proof. By Theorem 3.2 there exists a sequence of Lebesgue. covers
{8i)7=1 such that 8, = 8 and G, is a A-refinement of S, forn=1,2,..
Define 6} =6y, for n=1,2, ..., 50 that now Gi,; is a -refinement
of Gi. Hence § is Lebesgue normal. ’ ‘

CoROLLARY. The following types of Lebesque covers are Lebesgue normal:

(1) point finite,

(2) ¢-point finite,

(3) star-countable,

(4) o-star-countable.

Proof. All of the above have locally finite Lebesgue refinements,

4. Uniform spaces. In [4] the concepts of Lebesgue covers, uniformly
shrinkable, and uniformly separated are extended to uniform spaces.
The reader is referred to this paper for these definitions. The following
theorems are also proved. :

THEOREM 4.1. A cover § of a uniform space (X, W) is Lebesque if
and only if § i8 Us-shrinkable.
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THEOREM 4.2. Let (X, W) be a uniform space. Then every countable
Lebesgue cover has a locally finite Lebesgue refinement. :

‘We now obtain analogous results for uniform spaces to those proved
in the previous sections.

THEOREM 4.3. Let 8 be a Lebesque cover of a uniform space (X, Us).
If G is point finite, then G has a locally finite Lebesque refinement.

Proof. Let § = {G,: a4} be a point finite Lebesgue cover of X.
Then there exists U e U such that {U(x): # e X} refines §. Choose V e W
such that V is symmetric and V?C U. Define F,= {x: V(z)C G} for
all c e A and F = {Fa: a e A}. Then by [4], Theorem 2.4, ¥ is a Lebesgue
cover which refines G. Since § is point finite, # ¢ X implies # belongs to
only finitely many members of §. We claim that V(x) intersects only
finitely many members of F. For if y ¢ V() ~ F,, then 2 eV (y) C Ga.
Hence F is locally finite. ‘

COROLLARY. Every o-point finite Lebesgue cover of a uniform space
(X, W) has a locally finite Lebesgue refinement.

DEFINITION 4.4. Let 8= {Si: 1¢ A4} be a collection of subsets of
a uniform space (X, U). Then § is called uniformly locally finite if there
exists U ¢ W such that for each » ¢ X, U(x) intersects only finitely many.
members of §. ’ : ’

THEOREM 4.5. Let G be a Lebesgue cover of a uniform space (X, W)e
Then S has a locally finite Lebesgue refinement if and only if S has a uni-
formly locally finite refinement.

Proof. (1) Let G be any locally finite Lebesgue cover of X. Then

- any uniform shrink of § iy a uniformly locally finite refinement as seen

by Theorem 4.3.

(2) Let 8 = {G.: « € A} be a Lebesgue cover of X and F = {F: ¢ € 4}
be a uniformly locally finite Lebesgue refinement. Then there exists
U € U such that for each » ¢ X, U{x) intersects only finitely many mem-
bers of F. Choose V. e W such that V is symmetric and V*C U. Define
H, = St(F,,V) and 3 = {H.: a € A} where U = {V(2): # ¢ X}. Thus J is
a locally finite Lebesgue cover of X, Clearly SA & is the desired refinement
ag in Theorem 2.5 above.

TEEOREM 4.6. Every star-countable Lebesgue cover of a uniform space
(X, W) has a locally finite Lebesgue refinement.

Proof. Same ag Theorem 2.7.

DErFINITION 4.7. Let 8 = {Si: 214} be a 'collection of subsets of
a uniform space (X, 9W). Then § is called wuniformly discrete if there
exists U ¢ U such that for o X, U(x) intersects at most one member of 8.

THEOREM 4.8. Hvery star-countable Lebesgue cover of a uniform space
(X, W) has a o-uniformly discrete Lebesgue refinement.
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Proof. Same ag Theorem 2.9.

THEOREM 4.9. Let S = {G.: ac A} be a locally finite Lebesgue cover
of a wiiform space (X, ). Then 'S has a A -refinement which is locally fimite
and Lebesgue.

Proof. By the proof of Theorem 3.2 above, it suffices to show that
8= {6 acd} and F = {F: ae A} are Lebesgue covers of X and
is o uniform shrink of G, then X = /L {G., X—F,} is Lebesgue in the

aE€.

uniform sense. As before we may assume that there exists U e U such
that F. = {z: U(2) C .} for all a ¢ 4. Choose V ¢ U such that V is sym-
metrie and V*C U. Let # ¢ X and define A; = {a e A: V(x) C G,}. Note
that § ¢ 4, implies that V(z) n (X — @) # B, 50 let ze V() ~ (X —Gp).
Then for y e V(x) we have (z,y) ¢ V and (%, 2) ¢V, so that (v, 2) ¢ V:C U.
Thus # € U(y), and hence y ¢ Fy. Therefore V(x) ~ Fy= G forall e A—A,.
Finally we have V(z)C [ ﬂ G [ ﬂ (X —Tp)], so that 3 is Lebesgue.

THEOREM 4.10. Every locally f'Lmte Lebesgue cover of a uniform space
(X, W) is Lebesgue normal.

5. Concluding remarks. It is still unknown whéther ah arbltrary
Lebesgue cover of a metric space (X, o) has a locally finite Lebesgue
refinement. Thig problems seems very difficult. An affirmative answer
to this question would answer a number. of unsolved problems in Di-
mension Theory as well as give the extremely _Strong property that every
Lebesgue cover is Lebesgue normal.
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On compactifications with continua as remainders

by
J. W. Rogers, Jr. (Atlanta, Ga.)

1. Introductxon A compactification of a space X is a compact Haus-
dorff space X with a dense subspace X' homeomorphic to X. The set
X X' is called a remainder of X in X. We are concerned here with spaces
that have every continuum (compact connected metric space) as a re-
mainder in some :compéactification. Aarts and van: FEmde Boas have
shown [1] that every locally compact, non-compact, separable metric
space is such a space. Harlier, in [4], K. D. Magill had given an argument
that, as observed in [2], shows that every Peano continuum is a re-
mainder in some compactification of any locally compact, non-pseudo-
compact Hausdorff space. (A space is pseudocompact if and only if there
is no unbounded real-valued continuous function on it.) More recently,
Steiner and Steiner have observed [5] that the methods of Aarts and van
Emde Boas are also applicable to Magill’s theorem. We show here that
their methods can in fact be used to generalize both their theorem and
Magill’s, i.e. we show in Theorem 2 that non-pseudocompactness is
a necessary and sufficient condition on a locally compact Hausdorff
space X in order that every continuum be a remainder of a certain type
of X in some compactification of X.

It would be of interest to characterize the spaces which have every
continuum as a remainder in gome compactification, without any added
conditions on the remainder. 'We give in Section 3 an example to show
that there is a pseudocompact space with this property.

2. Theorems.

DrrrnNITIoN. A collection G of subsets of a space X is discrete (in X)
if and only if each point of X lies in an open subset of X which does not
intersect two elements of @.

THEHEOREM 1. A completely regular space is pseudocompact if and only
if there is mo infinite discrete collection of open subsets of it.

Proof. If a space X is not pseudocompact, it is not difficult to get
a map f from X into the non-negative real numbers such that f(X) contains
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