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theories of fields.) It seems likely that in order to make an advance on
the problem one will have to use techniques like Ehrenfeucht’s condition,
or Keisler’s finite cover property [1, 41.

When working on this paper we proved the following result, which
may be useful.

TrEOREM 3. Suppose L is countable, and Mo and Moy are L-strue-
tures such that Th(M;) and Th(AG,) are totally iranscendental. Then
Th{Moy,® Moy) 15 totally transcendental.

This result fails if we replace “totally transcendental” by “w;-cate-

gorical”. To see this, take G, a8 Q, M, as g_)zz (p) where I is infinite and p

is prime, and use Lemma 4.
The result also fails for infinite direct sums and products. Thus,
Th(Z(p™) is totally transcendental, but, by Theorem 1, neither

TH@Z (")

nor ,
Th U’:IZ(pn))

is totally transcendental.
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Some theorems about the embeddability of ANR-sets
into decomposition spaces of z*

by
H. Patkowska (Warszawa)

1. Introduction. This paper is a continuation of my earlier paper [18],
in which the following general theorem has been proved:

THEOREM A ([18], p. 290). If X is a connected ANR containing no
n-wmbrella and if the cyclic elements of X are embeddable into E", then X is
embeddable into an n-dimensional Cartesian divisor of B

As a corollary to this theorem and to Claytor’s results ([6] and [7])
the following theorem has been deduced:

THEOREM B ([18], p. 291). If X is a connected ANR which does not
contain any 2-wmbrellas and any homeomorphic images of the graphs of
Kuratowski, then X is embeddable into S

This theorem gives a positive answer to a problem of Marde$i¢ and
Segal ([13], p-637). In [18] some historical remarks concerning Theorems 4
and B have been given, which we do not repeat here. The following re-
marks concern the terminology. Only metrizable separable spaces are
congidered. The ANR-gpaces are always assumed to be compact. We
base our considerations on the definition and the propositions con-
cerning cyclic elements given in [12], § 47, which have been recalled
in [18]. Therefore, we do not repeat them here, although, in general we
give references to respective propositions proved in [12], § 47. By an
n-umbrella we mean a one- pomt union of a (topologwa,l) n-ball @ and
of an arc I relative to a point p e Q and a point g € I.Bya graph we mean
any space which is a homeomorphic image of a compact, at most 1-di-
mensional polyhedron. A connected, acyclic graph (i.e. a graph which
is an AR-set) is called a tree. The graphs of Kuratowski (which are called
primitive skew curves by Mardefié and Segal) are the following polyhedra
K, and K, (cf. [11]): K, is the 1-skelton of a 3-simplex in which the mid-
points of a pair of non-adjacent edges are joined by a segment, K, is the
1-skelton of a 4-simplex. Given a space X, any space ¥ is called a Car:
tesian divisor of X if there is a space Z such that the product ¥ x Z is
homeomorphic with X.

18*
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If D is a decomposition of a space X, then D is called a null-de-
composition if for every 5> 0 there exist (at most) finitely many ele-
ments of D of diameter greater than 7. It is. clear that each null-de-
composition of any space X into compact sets is upper semi-continuous.

For each set 4, the boundary of 4 will be denoted by Bd(4) and
the diameter of A by 6(4). The set of the points which locally separate
a connected space X will be denoted by Lx. .

In [10] A. Kosiriski has introduced the concept of strongly cyelic
elements of a space X and has formulated (without proof) some of their
properties under the assumption that X ¢ ANR. In Section 4 of this
paper we shall recall the definition of Kosiriski and we shall prove more
properties, assuming only that X belongs to a class «. For the definition
of this class see Section 2. The following theorem, which corresponds to
Theorem A formulated above, is the main theorem of this paper:

THEEOREM 1. If X is a conmected ANR such that, for every strongly
cyclic element B of X and for every graph G C X such that E ~ G is-a finite
set (also if B=0 or G = 0), the union B U G is embeddable into K", then
X is embeddable into the space E'[D, where D is a null-decomposition of H"
such that all the non-degenerate elements of D are trees and almost all of
them are arcs.

Remark 1. It can easily be noticed (cf. the beginning of Section 8)
that in the case of n =1 we can replace the space E"/D in Theorem 1
simply by E". In the case of # = 2 this is also true, since Moore's well-

known theorem [16] implies that E*/D = E?. In the case of n = 3 (as for.

the Carbesian divisor of E"*' in Theorem A), this is not true by my
example [17] of two crumpled cubes in E®, the one-point union of which
relative to some boundary points is not embeddable into E°. However,
for n > 3 such an example does not exist. Indeed, if X,¥ C E" are two
disjoint AR-sets and «, e Bd(X), y, « BA(Y), then there exists an infinite
polygonal are L C B* for which L ~ (X u ¥) = (4,) u (y,) = I, and which

islocally tame at each point L. Thus, the set of the points ¢ L such that
L fails to be locally tame at # does not contain any homeomorphic image
of the Cantor set, which implies—by Cantrell’s result [5]—that L is tame
in E* provided » > 3. Consequently, E"|L = B", and therefore, the one-
point union X v ¥/(z,) v (y,) is embeddable in B™

In the proof of Theorem A given in [18] we bave. constructed an
embedding of X in the decompogition space E"D, where D is an upper
semi-continuous decomposition of E" with only countably many non-
degenerate elements, each of which is an arc (see [18], p. 296, Lemma).
It can easily be seen from the proof given in [18] that each of these arcs
can be constructed so that it is locally tame except a sequence of points con-
taining at most one accumulation point. Similarly, in the present proof
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of Theorem 1 (see Sections 8-10) one can easily construct each tree 7 C B"
belonging to the constructed decomposition D of E® such that each are
LCT is locally tame except a sequence of points containing at most
a finite number of accumulation points. Thus, the Cantrell theorem [5]
implies again that each one of these trees is tame in E" provided » > 3.
Consequently, the answer to the following problem seems to be positive:

PROBLEM 1. Given an n >3, can the space E"[D in Theorem 1 (as
well as the Cartesian divisor of E*™" in Theorem A) be replaced by E™

Remark 2. The following theorem has been proved by 8. Armen-
trout [1]: If © is a point-like decomposition of E™ with only countably
many non-degenerate elements, then the space E"/D can be embedded
in E™*, Recall that an upper semi-continuous decomposition D of B is
said to be point-like if each element A of D is a continuum such that
E"—A4 is homeomorphic with E"—(p), where p is a point of E". Thus,
by the preceding remark, we infer that for each n > 3 the decomposition
space ™D in Theorem 1 can be constructed so that it is embeddable
in B™, If n =3, then we can assume that B®C E* and we can extend
trivially the decomposition D of B® to the decomposition © of B, whose
elements are the elements of D considered as subsets of E* and the one-
point sets contained in E*— E°. Then, by the preceding remark and the
Cantrell theorem [5], the trees belonging to D can be constructed so that
they are tame in E*. Consequently, E4/D (and therefore.also E*D) is
embeddable in E°. Thus, we obtain the following

COROLLARY To THEOREM 1. If X is a connected ANR satisfying the
assumptions of Theorem 1, then X is embeddable in E*** for n > 3 and X is
embeddable in E™* for n = 3.

Remark 3. Gilman and Martin (see [8]) have proved that if D is an
upper semi-continuous decomposition of E" with only countably many
non-degenerate elements each of which is an are, then (E"/D) xEltpr”'“.
Recently, Meyer (see [15]) has generalized this theorem, replacing the
assumption that the non-degenerate elements of D are ares by the as-
sumption that they are (finite) brooms and, as he privately says, he
believes that the theorem also holds if the non-degenerate elements are
trees. Thus, the answer to the following problem seems to be positive.

ProBLEM 2. Is the space E"D (where D is a decomposition of E" as
described in Theorem 1) a Cartesian divisor of E™*'%-

The structure of this paper is as follows: In Section 2, we shall give
some useful definitions (specially, of the class o) and we shall prove some
eagy. propositions. In Section 3 we shall prove some properties of the
set Ly in any cyclic space X e a. These properties will be used in Section 4,
where we shall recall Kosinigki’s definition of strongly cyelic elements
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of X and we shall prove some of their properties for X € a. In Section 5,
we shall give a topological characterization of strongly cyclic polyhedra
which are embeddable in &% The results of Section 5 will be used in
Section 6, where we shall give a topological characterization of all polyhedra
which are embeddable in &% The result of Section 6 is an improvement
of MardeXié and Segal’s theorem (see [13] and [14]), which characterizes
the polyhedra which are embeddable in & among all polyhedra. In
Section 7, assuming Theorem 1 to be true, we shall give a characterization
of ANR-sets which are embeddable in S§°. This characterization is an
improvement of Theorem B, formulated at the beginning of the paper.
In the proof of that characterization, in contrast with the proof of
Theorem B given in [18], we do not use Claytor’s results ([6] and [7]),
because in the paper we can and do base our argument on the proof of
Marde§ié and Segal’s theorem given in [14], in which Claytor’s results
are not used, either. The last three sections are devoted to the proper
proof of Theorem 1 (although the results of all previous sections except
Section 7 are used in that proof). In Section 8 we shall reduce Theorem 1
to a lemma. The proof of this lemma for two cases (the second of which
is the general one) will be given successively in Sections 9 and 10.

2. Preliminary definitions and propositions. First, we shall vgive the
definitions of four classes of spaces a, qy, o’ and ag.

DEFINITION OF THE CLASS a. A locally conmnected continuum X
belongs to the class a if and only if there is a number ¢ > 0 such that no
simple closed curve § CX with 6(S) < ¢ is a retract of X.

DEFINITION OF THE CLASS qp. A locally connected continuum X k

belongs to the class ¢, if and only if no simple closed curve § C X is
a retract of X.

It is clear that the class o contains all connected ANR-sets and,
more generally, all locally connected continua which are semi-locally
1-connected. (Recall that a space X is semi-locally 1-connected if for
each point , ¢ X there is a neighbourhood U of #, in X such that every
map of the pair (&, s,). into (U, z,) is homotopic to the constant map
in (X, %,).) However, there is a space X « a, which is not semi-locally
1-connected. Actually, consider the 2-dimensional projective space P2
Then m(P?) = Z, 0. Nevertheless, no simple closed curve §C P is
a retract of P’ because the group Z is not a direct divisor of the group
Hy(P*, Z) = Z, (cf. [4], p. 42). Let Y, be a homeomorphic image of P>

1
such that 6(Y,) < " and let 4, e ¥,. Form the disjoint union
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and let X denote the compact metric space which we obtain from ¥ by
the identification of all points 3, and by a suitable definition of the metric.
Let us identify ¥, with its image under the identification map. Then
the sets Y, are the non-degenerate cyclic elements of X and therefore
retracts of X. It is now clear that X is not semi-locally 1-connected,
however, X e a; moreover, no simple closed curve S C X is a retract of X.

Analogically, it is clear that the class a, contains all AR-sets and,
more generally, all locally connected continua X such that the group Z
is not a direct divisor of the first homology group H,(X, Z) of X in the
sence of B. Cech. It is also clear that each retract of a space X ca (of
a space X € a,) also belongs to this class.

Recall that a connected space X (containing more than one point)
is said to be cyclic (in the sense of Whyburn) if it is not separated by
any point.

DEFINITION, OF THE CLASSES o' AND o5. A space X belongs to the
class o (to the class ag) if and only if X ea (X eay) and X is a cyclic
space.

It is clear that each non-degenerate (i.e. containing more than one
point) eyclic element of any space X e a (of any space X e ay) belongs
to the class o (to the class o). Therefore, the properties of the spaces
X e o' (of the spaces X e ap) whigh we shall prove in Sections 3 and 4 may
be understood as the properties of the non-degenerate cyclic elements
of the spaces X ea (of the spaces X ¢ ay).

Now, we shall prove four simple propositions, which will be useful
in the subsequent sections.

(2.1) Let X be a locally connected space and let Fy = FiCXfori=1,2,..
Then BA(() F3) C L) BA(Fy) ~ () Fi.
i=1 =1 i=1

Using the inclusion given in [12], (p. 168), we have:

13@1(61 ) = Bd(X— fjlm) = Bd(QX—-F;) CiQBd(X~F¢)

Bd(Fy),

=1

s

which implies the required inclusion, because F'; are closed sets.

(2.2) Let X be a locally connected continuum and let F' be o finite subset
of X containing more than one point and such that X —F is con-
nected. Then there is a tree TC X such that TDF, T—F is con-
nected and such that, for each x ¢ T, every component of T—(x) inter-
sects B (i.e. such that the set of the end-points of T is equal to F).
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One can easily prove this proposition by induction with respect to
the number of the points of the set F. .

(2.3) Let X be a locally connected continuum and let U CX be a region
(i.e. a subset of X both open and comnected) such that BA(U) is
a finite set. Then U is a retract of X. ,

By [12] (p. 170), U is a locally connected continuum. By (2.2), there

is a tree 7'C U (which can degenerate to a point) such that T'D Bd(U).

Since T € AR, there is a retraction r of the set (X—U) v I' onto 7.
Since (X—U)v T) ~n U=Bd(U) v I'=T, it follows that the function
s: X »U defined as : .

N if zel,
s(m)_{r(ag) if z2e(X-U)vT

is a retraction of X onto U. .

(2.4) Let X be a cyclic locally connected continuum. Suppose that U C X
s a region, s, € U for n=1,2,... and let Uy, be a component of
U—(@n). If Un~ Un=0 for n #m and lim o, = x,, then x, ¢ U.

On the contrary, suppose that e U. Let ¥ be any open neighbour-
hood of &, in X such that ¥ C U. We cap assume that, for n =1, 2, ...,

@y €V, whenee Up nV # @. Since X is a cyclic space, no U, is a com-

ponent of X-—({w,), and therefore U, ~ (X—V)=#@. Consequently,

Un ~Bd(V) #0, because U, is connected. Now, this is impossible,

since Bd (V) is compact and the sets U, (n=1;2,...) are disjoint.

3. Some properties of the set Lx in any space X e «'. In this section
we shall consider a fixed space X e o’. Let us fix for the space X a number
&> 0 with the property mentioned in the definition of the class «'.

(31) If UCX is a region with 6(U) < ¢ and @y Un Ly, then x, sepa-
rates U. Moreover, if V is a region such that w, ¢V C U and T, sepa-

rates V between two points @, x, ¢ V—(w,), then w, separates U
between these poinis.

Evidently, it suffices to prove the second statement of (3.1). Suppose,
contrary to this statement, that the points #; and @, belong to one com-
pouenj: U, of U—(,). Since U, is a region, there is an are J C U, such
that J = (z,) v (z,). Sinet:, V is also a region containing @, and x,, there
isan arc I CV such that I = (z;) U (,). Then Ty € Io, because 2, separates V
between the points #, and #,. Thus, replacing the arcs I and J by their
sub-arcs if necessary, Ve can assume that the set 0 =1 v J is a simple

closed curve and =, € I. Since z, separates V between the points ¢, and @,, -
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there are two open sets Vy and V, such that V—(2,) =V, v V,, Vi n ¥, = @,
x; € V; and z, € Vy. Denote the components of I—(x,) by I, and I,. We
can assume that I; C V; for ¢ = 1, 2. Now, let F' denote a closed neighbour-
hood of x, in X such that FCV and FndJ =08. Let F;=F ~V; for
i=1,2. Then F—(z) = F, UF,, F, " Fy =0, Fs = Fy U (), [, n F, = O
and I, n F, = @. -

Since x, € Int(F), it follows that Bd(F) is a compact subset of 7, v F,.
Let F; = Bd(F) n F; = BA(F) ~ F;. Since F; ~ Iy = Fin I; is a compact
subset of I;, there is an arc I; such that F;~ I; CI;CI;. Evidently,
there is a retraction r; of F;u I} onto Ii. Since F; and F; are compact
disjoint subsets of F and F;nI=F;nI;CIi it follows that the
map r: BA(F) v I =F; v F;uI->I defined as follows

r(z) it ®meFy,
[rg(w) if weF;,

T if wel

can be extended to a retraction 7 of F v I onto I.

Now, since I: C I, I; C I, and J are arcs lying on the simple cloged
curve ¢ = I v J such that #, ¢ I; v I, v J, we infer that there is an arc
K C 0—(x,) such that KD I;u I; wJ. The function s: Bd(F) v K>K
defined as

Fz) i @eBd(F),
z if 2eK

is a map, because Bd(F)~ KECF ~ (CI, since F ~J =G. Thus, the
map 8 can be extended to a retraction § of the set X—F v K onto K.
Finally, congider the function {: X —~C defined as follows:

hl
—_

) if geFoI,
t(@) =4 . —
{s(w) if zeX-FuKk.

To prove that ¢ is a map, notice that (Ful)n (X—F v K)
CBA(F) v C. If z e BA(F), then 5(z)=s(z)=7(=). If xeCn (Ful),
then 7(z) =r(z)= =, because On(Fol)=Tvd)n(FPol)=1, as
FPnd=0. I eCn(X—FuwK) then 5(x)=s(z)=x because
0~ (X—FUEK)=EK, as (—K CInt(F) (since O—K is a connected set
containing z, e Int(¥F) and (C—K) ~ BAd(F) C (I—Li— L) n (F1 v F2)
ClFin (I—-I)] v [Fs A {I-I)]=0). Since C=IvJCIVvECO,
which implies 7 v K = ¢, and since t(z) = » for # ¢ I v K, the map ¢ is
a retraction of X onto . Thus, we have obtained a contradiction with
the definition of the number e, because O =IvJ CU and §(U) <e.
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(3.2) Let UCX be a region such that 6(U) <& and lot {#n}ne1 be a se-

quence of points such that lima, =@ e U and @&, 7 ¥n e Lx for
n=0

n=1,2,.. Then there ewists a subsequence {Zaeti=1 Of the se-
quence {Tnlne1 such that for each %> 1 the point ®n, separates U
between the points Tn,_, and .

By (2.4), the set U—(,) cannot have infinitely many components,
and therefore, replacing the sequence {#.}n-: by a subsequence if neces-
sary, we can assume that all points #, lie in one component of U —(a,).
We also assume that all points o, are distinct.

‘We shall construct the sequence yx = ¥n, k=1, 2, ..., by induction.
Let y, = z;. Congider an m > 1 and suppose that the points ¥, ..., ym-1
have been defined. Set #, = %n,—:. Suppose that the point #, cannot
be found, i.e., that there is no n > n, such that , separates U between
Ym—1 and z,. Since 2, e Ly ~ U and 6(U) < ¢, it follows from (3.1) that @,
separates U. Thus, for each n > n,, there is a component U, of U— ()
containing neither y,_, nor x,. Since limx, = x,, we can assume, re-

placing the sequence %pgi1, Tngr2, ... DY 1;; subsequence if necessary, that
for each fixed n, > n, the set U,, does not contain any point @, for n > n,.
Thus, if ¢ > p > n,, then U, is a connected -subset of U —(2,), whence
either Up C Uy or Up ~ Uy=@. Since lim @, = a, ¢ U, it follows from

=00
(2.4) that there exist only finitely many ;egions Uy (where n > n,) which
are disjoint to one another. Consequently, replacing again the sequence
Fnyg+1; Tng+zy - DY 2 subsequence if necessary, we can assume that
Un C Upyy for each n > ny. Then &, € Upya, because Us v (2n) is a con-
nected subset of U— (zn.1).

Let U,= |J[Us| n>ng. Then U, is a subregion of U which
contains neither .= &,, nor ,, but which contains all points a,
for n > n,. Since U—as a region in X—is locally connected, considering
U as a space, we have Bd(U,)C J Bd(Un)—U, (cf. [12], p. 168),
whence Bd(U,) = (#,), because Bd(Un:)mz (#n) C U,. Consequently, U, is
a component of U—(x,) such that .1 e Uy and w,, ¢ Uy, which contra-
dicts the assumption that all points w, are contained in one component
of U—(x,), which has been made at the beginning of the proof. Thus

the point ym = ., with the required property can be found, which
completes the proof.

(38.3) Let be_ given an 1> 0 and lot {m,}ney be a sequence of points such
that }g;:c,,: @y and &y # ¥y € Ly for m= 1,2,.. Then there are
three indices k,1,m such that 1<k <l< m” and “such that the
set (@) © (z,) separates X between the points xx and Tm, the diameter
of the component of X — (@)~ () containing mm being less tham 7.
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Let U C X be a region with 6(T) < min(e, %) containing z,. By (3.2),
replacing the sequence {Zs}n=1 by a subsequence if necessary, we.can
assume that 2, ¢ U for n =1, 2, ... and that for each n > 1 the point z,
separates U between the points z,_; and 2,. It follows that for each n =1
the points , and a4, lie in the same component of U— (o), and therefore
there is a component ¢ of U—(w,) containing all these points. Since,
for n=1,2,.., #ne 0~ Ly and 6(C0) < 8(U) < ¢, we infer from’(3.1)
that #, separates C. By (2.4), O— (@) has only a finite number of com-
ponents, and therefore there is a component U, of C—(z,) such that
%y € Uy. Then the boundary of Uy, in U is equal t0 () v (x). Since, for
each % > 1, &, separates U between the points @, and w,, it follows
that pr1 e Uy and z,1 ¢ Uy,

We shall prove that there is an index m,>1 such that U, C U,
i.e., such that the boundary of U,, in X is equal t0 (2,) v (). Then,
setting & = n,—1, 1 = ny and m = n,+1, we shall immediately obtain (3.3).

- ot 0
For this purpose let Fn = Un~U and F = () Fy = U ~ [ U,. Then none
n=1 n=1

of the points 2, (n =1, 2, ...) belongs to F. Considering U as a space

and using (2.1), we have BA(F)C | Jzn n F = (). Consequently, F = (),
n=1

because ¥ cannot contain any component of U— (z,). Now, observe that
the formula @pi.e U, implies that Up.,C Uy, because Upi1 v (@nt1)
is a connected subset of C— (2y) and U, is a component of C—(z,),

Consequently, the sets U, form a decreasing sequence of continua,

o0
(1 Us is a continuum. Since, as we have proved,

and therefore
B n=1

F=TUn() Un=(m) and U is a neighbourhood of #,, we conclude that
n=1

N Un= (2). Thus, there is an index ,> 1 such that Uy, C U, which

n=1

completes the proof.
(3.4) Lx is a closed subset of X.

Suppose that, on the contrary, there is a sequence of distinct points
@nelx, n=1,2,.., such that lim @, = 2, e X—Lx. By (3.3), there is

n=00
an index I > 1 such that the set (x,) v (%,) separates X. Since X is a cyclic
space, the point @, belongs to the boundary of each component of X—

— (@) —(2p). Thus, if UCX iy a region such that ze U and ¢ U,

then #, separates U. Consequently, , ¢ Lx.

(3.3) If B is a component of X—Lzx, then the set BA(H) contains (at most)
finitely many points.
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Suppose that (3.5) is not true. Then there is a sequence of distinct

points x, e BA(H), n= 1,2, ..., such that lim @, = %, ¢ Bd (). By (3.4),
n=0a

E is open and therefore BA(E) C Lx. Thus «4 € Lx and, by (3.3), there

are three indices %, !, m such that 1 <%, <l < m and such tpa.t the set

(1) © (2,) separates X between the points zx and @,. Now, this is impos-

sible, becanse Fu (zx) u (Zn) is a connected subset of X — (i) — ().

4. The strongly cyclic elements of a space. X € o. As mentioned in
Introduction, A. Kosinski in [10] has defined the strongly cyclic elements
of a space X and has formulated some of their properties for X ¢ ANR.
Now, we shall recall the definition of Kosidski, first assuming only that
X is a locally connected continuum.

The strongly cyclic elements (abbreviated to s.c.e.’s) of a space X are
the following sets:

1° For every point z ¢ Ly, the set ().

2° For every point a ¢ X—Ly, the set B, consisting of all points
2 ¢ X such that no finite subset F of X —(x)—(a) separates' X between
the points 2 and a.

It is clear that the s.c.e.'s of X cover X and that this covering is
a refinement of the covering of X by cyclic elements. Notice also that
in the definition of the set E, we can restrict ourselves to the consider-
ation of the sets F which separate X irreducibly between # and a. Such
a set F' is contained in the closure of each component of X —F, which
implies that F C Lr, because if # ¢ 7, then « separates each region UC X
such that #¢ UC(X—F) o (z). Thus, in the sequel we shall assume
that the set F' considered in 2° is a subset of Ly. It follows that b e E,—Lx
implies that By = E,. Indeed, if © < B,, then for every finite set F C Lx—
—(x) the points @, # and b lie in one component of X —F, which
implies # ¢ B, and, similarly, » ¢ B, implies ¢ E,.

A connected space X containing more than one point will be called
strongly eyclic if X is not separated by any finite set F C X. Thus Ly = @
implies that X is strongly eyelic, but not conversely. The s.c.e. of X which
contain more than one point will be called the true strongly cyclic elements
and abbreviated to t.s.c.e.’s

The following proposition is obvious.

(41) IfaeX—Ly and A is a strongly cyelic subset of X containing the

point a, then A C E,.

Remark 1. We shall prove next (see (4.11)) that the t.s.c.e.’s of
a space X e o' are subsets of X maximal with respect to the property of
being strongly cyclie spaces. The following example shows that this is
not so for arbitrary locally connected cyclic continua. Let X = D, v
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v Dy glIt, where D; are dises such that D, ~ D, = 131 Ia) 132 = (@),
Lim Iy=(2,) and Ti, i=1,2,.., are disjoint arcs such that Iy~
12=00
~ (D v D,) =@, one end-point of I; belongs to ﬁl—(wo) and the other
to 1')2—(920). Then D, v D, is a t.s.c.e. of X which is evidently separated
by x,. However, a positive answer to the following question seems to
be. probable:
PrROBLEM. Let X be any locally connected comtinuum. Is each s.c.e.
of X a retract of X3 (If X ¢ a, then the answer is positive by (4.4).)
Remark 2. It can easily be proved that a connected polyhedron P
(containing more than one point) is strongly eyelic if and only if for each

_ triangulation G of P each 1-simplex of G is a face of a 2-simplex of B

and if P is strongly connected in dimension 2, this means that for each
triangulation B of P and for each pair of two simplexes ¢, o’ ¢ B there
is in G = finite sequence of two simplexes the first of which is o and the
second ¢’ such that simplexes with successive indices intersect in a com-
mon 1-dimensional face. Thus, the t.s.c.e. of a connected polyhedron P
are the subpolyhedra of P maximal with respect to that property.

In the sequel of this section we shall consider a fixed space X ea'
and we shall assume that the respective number & > 0 is fixed. Since the
cyclic elements of a space X ea belong to o, the results are applicable
to such (non-degenerate) cyclic elements.

(4.2) Thet.s.c.e.’s of X coincide with the closures of the components of X —Lx.

Let o e X — Ly and let B denote the component of X— Ly containing
the point a. We shall prove that £ = B,. Indeed, if 2 ¢ E, then no finite
subset of Lx—(x) can separate X between z and a, whence = e E,. On
the other hand, if ¢ X —E, then, by (3.4), the set Bd(H) separates X
between x and a ¢ B = Int(F). This set is finite by (3.5), and there-
fore @ ¢ B,, which completes the proof.

(4.3) If B is a t.s.c.e. of X, then the set E ~ Ly is finite and it does not
separate B, and we have B~ Ly DBA(E) v Lg. If B # X, then
Ba(E) > 2.

It follows immediately from (3.4), (3.5) and (4.2) that the set B ~ Ly
ig finite, does not separate B and contains Bd(K). Now, if ¢eB—Ly,
then E—Ly is a neighbourhood of # in X (and in E), and therefore ¢ Lg,
a8 @ ¢ Lx. Thus Ly C B~ Lx. If E # X, then Bd(E) # @, and it contains
more than one point, because X is a cyclic space.

(4.4) If B is a ts.ce of X, then B is a retract of X. Consequently, E is

o locally commected continuum (moreover, B ea) and if X ¢ ANR,
then also B ¢ ANR.
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This is an immediate consequence of (2.3), (4.2) and (4.3).

(4.8) If B is the union of a finite number of t.s.c.e’s of X, then X—F
has (at most) a finite number of components, the boundary of each
one being a finite subset of B and the closure of each one being a e-
tract of X.

It ¢ is a component of X— &, then, by (4.3), Bd (0} is finite as a sub-
set of the finite set BA(H) and, by (2.3), 0 is a retract of X. Supposﬁ
that there is an infinite sequence C,, C,,... of components of X— 7,
Since the set Bd(#) has only a finite number of subsets, we can assume
that Bd(Cs) = Bd(0y) for all ¢ and j. Since X is a cyclic space, Bd(Cy)

contains at least two points. Let
n=minfe(x,y)| ¥ #y; o,y e BL(0))].

Since Cy is connected, there is a point #; e ¢; such that o, x5) = 52
for each point x ¢ Bd (). Let «, denote the limit of a subsequence of the
sequence {wi};—;. Then =, € Ls(04)—Ls(Bd(Cy), which is a contradietion
by [12], p. 169. v

(4.6) If By, B, ... is & sequence of distinct 1.5.c.e.’s of X, then Lm é(By) = 0.

Nn=00

Consequently, the set of the t.s.c.e.’s of X is at most countable.

First notice that the set G Bd (B;) must be infinite. Indeed, if it is
=1

not so, then, replacing the sequence {H;}32, by a subsequence if necessary,
we can assume that Bd(E;) = Bd(H,) for all i. Thus the sets Int(E;),
i=2,3,..., are distinct components of X —H,, which is impossible
by (4.5). o

Now, suppose that (4.6) is not true. Then we can assume that there
is a number %> 0 such that 6(H;) > n for 4=1,2,.. Since each set

Bd(E) is finite and the set | JBd () is infinite, replacing the sequence
i=1

{B}: by a subsequence if necessary, we can assume that there is
a sequence of points @ e Bd(E;)— UBd(By), i=1,2,.. Thus, % # 24
j<i

7
for i # j and, by (4.3), 2 ¢ Lx. We can assume that lim #; = x,. By (3.3),

there are three indices %,7,m such that 1 <k<l<m and such that
the set (1) v (z,) separates X between the points xx and @, the diameter
of the component € of X— (#)— (2,) containing the point #, being less
than 5. By (3.4), #,¢ Ly and, by (4.2); Bn—(w))—(2) is a connected
subset of X — ()~ (z,) containing the point . Consequently, B, C C,
and therefore 6(Fn) < 6(C) < 4, which yields a contradiction.

° © '
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(4.7)  Each simple closed curve 8 C X such that 3(8) < & is contained in
a t.s.c.e. of X.

First, notice that the set § ~ Ly must be finite. Indeed, if it is not
s0, then there is a sequence of distinet points @ e § nlz,i=1,2,..,
such that lim #; = @, ¢ 8. By (3.3), there are three indices k,1, m such

1=00
that 1 < %k <! < m and such that the set (@) v (@,) separates X between
the points xx and z,. Let A and K denote respectively the closures of
the components of X— (@)~ (x,) and of §— (#1)~—(x,) containing .
Evidently, there are a retraction 7, of 4 onto K and a retraction r, of
X—4 onto S—K. Since A ~X—4 — (@) v (2) = K~ §—K, the re-
tractions 7, and r, determine a retraction » of X onto 8, which contradicts
the definition of the number & because 08 < e
Now, suppose that (4.7) is not true. Then, by (4.2), there are two
components I, and L, of §—Lx which lie in different components of
X—Lx and for which I, ~ L, #@. Let @, eL, ~ L, and let B denote
the component of X —TLyx containing IL,. Thus, if VCX is any region
such that V ~ Bd(B) = (z,), then x, separates V between some two points
of which one belongs to I, and the other to L,. On the other hand, since
8(8) < ¢, there is a region U.C X such that UD § and 6(U) < &. Then «,
cannot separate U between any two points belonging to §— (i,). Thus
we have obtained a contradiction with (3.1).

(4.8) If Yea (specially, if Y is a cydic AR), then Ly =@ and the
only s.c.e. of Y 4s equal to Y. Consequently, FE is a t.s.c.e. of X such
that 6(B) < ¢, then E e ap, Lg =0 and Lx ~ E = Bd(R).

Suppose that, contrary to (4.8), there is a point y e Ly. Since, for
the space ¥, we can assume that e = §(¥) +1, it follows from (3.1) that y
separates Y. Now, this contradicts the assumption that ¥ is a cyelic
space. If E is a t.5.c.e. of X such that 6(B) < e, then, by (4.4), B € a, and,
by (4.3), B is a cyclic space, whence E ¢ . By (4.3), BA(E)CE ~ Lg.

" If # «Int(Z), then » ¢ Lg implies that » ¢ Ly.

(4.9) Let By, By, ... denote the sequence (finite or not) of all t.s.c.e.’s of X.
Then, for each i, there is a tree Ty C E; such that the set of the end-
povnts of Ty is equal to BA(By) (if BA(B:) =0 then T;= o), the
set @=Ly v U T': being a graph (or the empty set). Consequently,
Lx is a closed Subset of a graph G C X and, if X = Lx, then X is
a graph.

(2.2) and (4.3) imply the existence of the trees 7. Let
Gﬂ = [Lx-—U IDt(Ei)] v U T( .
* 1+
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If #; is a retraction of H; onto T4, then, by (4.6), the function r: X @,
defined as :
€ if xeLx— U Int(Et) y

"= e i wem

is a vetraction of X onto G,. Consequently, &, is a locally connected
continuum. Since G, ~ B;= Ty, it follows from (4.7) that &, contains
no simple closed curve § such that 6(8) <, and therefore G, is a local
dendrite. Since X is a cyclic space, X has no end-point. Consequently,
one can also easily show that @, has no end-point, and therefore G, must
be a graph.

Now, it follows from (4.3), (4.6) and (4.8) that the set Ly ~ L1J Int(H,)
is finite. Since @ is the union of G, and of that set, we conclude that ¢
is a graph.

(4.10) If E is ats.ce. of X and if the diameter of B is sufficiently small,
then the set BA(B) = E ~ Lx contains exactly two points.

By (4.3) and (4.8), if 6(E) is sufficiently small, then BA(F) = B ~ Lx
and Bd({E) > 2. If (4.10) is not true, then infinitely many trees T\
described in (4.9) must contain ramification points and therefore the
graph G from (4.9) contains infinitely many ramification points, which
yields a contradiction.

(411) The t.s.c.e’s of X coincide with the subsets of X which are maximal
with respect to the property of beimg strongly cyclic spaces.

Let A be a strongly cyclic subset. of X. Since no graph contains
a strongly cyelic subset, it follows from (4.9) that A — Ly # @. Fix a point
@ € A—Lx. Then, by (4.1), A C E,. On the other hand, it follows from (4.3)
that E, is a strongly cyclic space.

(4.12) If X e ANR, then all the s.c.e.’s of X are ANR-sets and almost all
are AR-sets. ‘

It follows from [4], p. 101 that there is a number 6 > 0 such that
each subset of X of diameter less than 6 is contractible in X. By (4.6),
this holds for almost all s.c.e.’s of X. By (4.4), all g.c.e. of X are retracts
of X, and therefore almost all of them are contractible in themselves.
Consequently, (4.12) follows from [4], p. 96.

Conversely, we shall prove that:

(413) If X e a(we do nmot asswme that X is a oyclic space) and if all s.c.e.’s
of X are ANR-sets and almost all are AR-sets, then X 4s also an
ANR-set.
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- Let Z be a non-degenerate cyelic element of X. Let G CZ denote
the graph constructed for Z as deseribed in (4.9). Consider an arec IC @
Let A(I) denote the union of I and of all t.s.c.e’s B of Z such tha’é
FEeAR and B~ G = F ~ I. It follows from (4.9) that B ~ I is a subare
of I and if B, E'CA(I) are two different t.s.c.e.’s of Z such that
EnE #@, then B~ F' is a point which is an end-point of both ares
B~ Iand B ~ I Thus, each t.s.ce. BC A(I) is a cyclic element of A4 ().
Consequently, A (I) is a locally conneeted continuum all cyclic elements
of which are AR-sets. Hence, Borsuk’s theorem [3] implies that A (I) € AR.
Let 4 denote the subset of Z which is the union of & and of all t.s.c.e.'s
B of Z such that ¥ ¢ AR and F ~ @ is an arc. Then there is 3 finite number

of arcs Il,...,I;Z,CG such that ItnIJ=I'¢ni’j, for ¢ #j and such
that A = G u };JIA(L). Bince A(I)n A(Ij)=I;n1I;, for i35, we
infer from the addition theorem for ANR-sets (see [4], p. 90) that
A ¢ ANR. It follows from (4.9), (4.10) and from the agsumptions of (4.13)
that there ig only a finite number of t.5.c.e.’s of Z which are not contained
in A, Since Z is the union of A and of all these remaining t.s.c.e.’s of Z
and since each such a t.s.c.e. intersect 4 on a subgraph of G, we conclude
(using once more the addition theorein for ANR-sets) that Z < ANR.
Thus all non-degenerate cyclic elements of X are ANR-sets. Tt follows
from [12] (p. 238, No. 9 and p. 263, No. 15) that almost all of them belong
to ag, and therefore, by (4.8), they are t.s.c.e.’s of X. Consequently, all
cyclic elements of X are ANR-sets and almost all are AR-sets, which,
by an easy extgnsion of Borsuk’s theorem [3] (see [18], p. 292), implies
that X is an ANR-set.
" Remark. Let us notice that (4.13) without the assumption that
X e« is false. Actually, all s.c.e’s of the space X from the Remark 1
below (4.1) are AR-sets, but X is not an ANR.

5. A topological characterization of strongly cyclic polyhedra which are
embeddable in 8% First, notice that:

(5.1) If X is a cyclic locally conmected continwum which does not contain
any homeomorphic images of the graph of Kuratowski K, then X
contains no 2-umbrella.

Otherwise, suppose that there are a disk @ CX and an arc LCX
such that @ ~.L'= (p,) and p, ¢ é ~ L. Since X is a cyclic space, the set
X—(p,) is avewise connected, and therefore there is an arc K C X —(p,)
such that K = (p,) v (p,), Where p, € L—(p,) and py ¢ Q- (p.)- Replacing
the are K by a subare if necessary, we can agsume that K ~{L v @)= @.
Then it is easily seen that the set @ v L v K CX contains a homeo-
morphic image of the graph XK,, which yields a contradietion.
Fundamenta Mathematicae, T, LXX 19
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Suppose that S% has the polyhedral strl}cture determined t.)y 2 homeo-
morphism of §* with the boundary of a 3-simplex. The following theorem
is the main result of this section. ;

TaEoREM 2. Let X be a strongly oyclic space. Then X is ‘homeomc'w.phic
with a polyhedron P C S if and only if X satisfies the following conditions:

1° X ea. .

2° X{contains no homeomorphic images of the graphs K, and K,.

The necessity of these conditions is obvious. In order tq prove t.ha,t
they are also sufficient we shall first establish a lemma, which provides
a characterization of a disk. This lemma can easxlylbe deduced from
Claytor’s results [6] and [7], but we shall give here an independent proof.

Lemva 1. Let Xgbe a oyclic locally conmected comtinuum. which does
not contain any homeomorphic images of the graph K,. Suppose that thmte
is o simple closed curve SC X such that 8 does fnot- separate X and S is
not a retract of X. Then X is o disk (whose boundary is equal to S).

Proof. An arc LC X will be said to span 8 if LC 8 and LC X—8.
First, notice that X contains at least one such an arc. Indeed, it follows
easily from the assumptions that X —8 is connected and non-empty that
Bd(X~8) contains at least two points. By [12], p. 194, the get of the
points belonging to Bd (X — 8) which are accessible from X — 8 is a del‘:se
gubset of Ba(X— 8). Thus, there are two different points @, 2, € § which
are aceessible from X—§. Since X—§ is arcwise comnected, it iy easy
to0 see that there is an are L C X such that L= (@) v (#p and LC X -8,
which implies that L spans 8. By the van Kampen characterizatlc?n of
a disk (see [9], . 80), it remains to show that each are I, C X spanning 8
irreducibly separates X. .

First, we shall prove that:

(8.2) Fach arc LCX spanming S separates X between the components
of 8—L.

Suppose that (5.2) does not hold. Then there is a component O of
X—T containing §—L. Since C is arcwise connected, there is an arcL,
C ¢ C X—L joining a point belonging to one component of §—L with
a point belonging to the other. Since Ly n 8 =L, n (8 —L1L), replacing
the are L; by a subare if necessary, we can assume that the are I, spans 8.
Thus L v lo}1 C X — 8. Since § does not separate X, there is an are L,CX—-8
joining a point belonging to I with a point belonging to L}]. Replacing
also the are I, by a subarc if necessary, we can assume that Ly ~ (I v Ly)
— . Tt is easily seen that the set § w L u Iy v L, C X is homeomorphic
with the graph K, which yields a contradiction. ) :
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Next, we shall prove that:

(5.3) Each arc LC X spanning S irreducibly separates X between the
components of 8—L.

Let 8, and 8, denote the components of §—L. Suppose that (5.3)
is not true. Thus, there exists a set L' = L' C L # L’ which separates X
between 8; and S,. Replacing L' by a larger set (which is also a both
proper- and closed subset of L) if necessary, we can assume that both
L,=8,v L and L,= 8, v L' are ares. Let (; denote the component
of X—L' containing 8;. Then there is a retraction », of the set ¢, v L’
= 0, v I’ onfo the arc L, = 8, v L'. Since X0, 8, v L' = L,, there
is a retraction r, of the set X — ¢, = X — C, onto the arc L,. Since (X — ;) n
N (CyvI)=L =1L, L, it follows that the function r: XL, v I,
defined as

{rl(w) it zeC ol
7 (%) = .
rfz) if xeX-—-0C,

is a retraction of X onto IivI,= 8, v§ul =8 ul' Since § is
a retract of § v L, we infer that § is a retract. of X, which contradicts
the assumption of the lemma.

Thus, by (5.2) and (5.3), there are two different components C;, C,
of X—TL such that C;D §; and Bd(C,) = L= Bd(0,). In order to com-
plete the proof, we must show that L is also the common boundary for
the remaining components of X1 (if they exist). Hence, if it is not so,
then there exists a component C; of X —I such that L % Bd(C;) C L.
Since X is a cyclic space, Bd(C;) contains at least two points. Moreover,
since § does not separate X, Bd(C;)— 8 = @. By [12], p. 194, each point
belonging to a dense subset of Bd(C,) is accessible from ;. We conclude
that there exists an are I,C C, such that Io;,C C;C(X—L)—(8,v 8y)
=X-L—8, I,CBA(C;) CL and I,—8 +#@. Let L’ denote the com-
ponent of L—1I,; bounded by both end-points of I;. Since, for i=1, 2,
8:C C; and I’ C BA(Cs), we infer from [12], p. 194 that there is an arc
I,C C; such that one end-point of I; belongs to S; and the other to L’
and such that IO;C 0;—8:C X—L—8S—1;. Evidently, (I,—L) ~ (I,—L)

B 8

= @. It is easy to see from our construction that the graph S v L v | I
=1

contains a subgraph homeomorphic with the graph K, which contradicts

. the assumption of the lemma. Thus the proof is complete.

LemMuA 2. If X € ag and X does not contain any homeomorphic images
of the graph K., then X is either a disk or ‘a simple surface (i.e. a sel
homeomorphic with S%).

Proof. The definition of the class e and (3.1) imply that Lx = @.
It follows that no pair of points z,y ¢ X separages X. Suppose that X is

19*
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not a simple surface. Let us apply the Bing cha.mcterizat’ion of the
2-sphere §* (see [2]), which says that a locally connected continuum Y is
a simple surface if and only if no pair of points #,y e ¥ sepalia,tes Y but
every simple closed curve §C Y separates Y. Thus, there is a simple
closed curve § C X which does not separate X. Since X € ag, it follows
that all assumptions of Lemma 1 are satisfied and therefore X is a disk.

Now, we pass to: )

The proof of theorem 2. Let X be a strongly cyclic space satis-
fying 1° and 2° and let us fix for X a suitable number &> 0. We can as-
sume that X is not a simple surface. It follows that:

(5.4) X does not contain any simple surface.

Indeed, if there is a simple surface §C X, then X8 # 0 and the
arcwise connectedness of X implies that X contains a 2-umbrella, which
contradicts (5.1).

We shall prove that:

(8.5) If SCX is a simple closed curve such that 6(8) < &, then there is
exactly one component O of X—8 such that C= Cu S is a disk
(whose boundary is 8).

Tt follows from (5.4) that there could not exist two components
0y, 0, of X—§ with the property described. In order to prove that such
a component exists it suffices to show the existence of a component ¢
of X— & such that § is not a retract of ¢ v §. Indeed, the remaining
assumptions of Lemma 1 will be satistied by € v § in virtue of 2° and
Dbecause the eyelicity of X implies the cyclicity of ¢ v 8, since a component
of (0w 8)—(v) disjoint with S— (), i.e. contained in the open set O,
could not exist for any e Cw 8.

Thus, let us suppose that, for each component ¢ of X8, 8 is
g retract of ¢ w 8. In order to obtain a contradiction with the definition
of the number & we have to show that S is a retract of X. We shall as-
sume that the sequence of the components 0y, C,, ... of X—§ is infinite;
if it is not so, then the proof is simpler.

Since § ¢ ANR, there is a neighbourhood U of § in X such that § is
a retract of U. Let r: U8 be such a retraction. Since X is a locally
connected continuum, there is an index m, such that ¢, C U for each
5 > ny. For every n < m,, let 7, be a retraction of Cn v § onto 8. It is
easy to see that the function #: X —+8 defined as

(@) i @weCpul, where 1< n<n,
_TD(',E) if meUOnUS

n>ng
is a retraction of X onto §, which completes the proof of (5.5).

r(zx)

e ©
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Now, if § C X is a simple cloged curve such that §(8) < ¢, the com-
ponent of X — 8§ described in (5.5) will be denoted by E(S) and will be
called the Buclidean component of X — 8. Evidently, E(S) is homeo-
morphic with E* and is open in X.

Next, we shall prove that:

(5.6) If there is a set X,C X containing at most one point and such that

. for every point x € X —X, there is a simple closed curve 8 C X such
that 6(8) < e and x € B(S), then X is a 2-manifold (without boundary),
and therefore a polyhedron. -

Since the case X, = @ is trivial, we shall assume that X, consists
of exactly one point x,. Since X —(x,) 7 @, there is at least one simple
closed curve S C X such that 6(8) < e. By the van Kampen character-
ization of 2-manifolds (see [9], p. 83), we have to show that each such
a simple closed curve irreducibly separates X. If § is such a simple closed
curve and S does not separate X, then X—§ = E(S), which implies
that X = E(8) w 8 is a disk and the assumption of (5.6) is not satisfied
by any point x € §—(z,). Thus, S separates X. If § does not irreducibly
separate X, then there is a component ¢ of X —§ different from E(8)
such that § % Bd(C) C 8. Consequently, there is a point », e Bd(C)— ()
such that ord, Bd(0) < 1. By the assumption of (5.6), there is a simple
closed curve 8, CX such that 8(8;) < e, and @, e B(S;). Then there is
a region UCX such that ¢ UC UCE(S,) and such that the seb
Bd(U) ~ BA(C) contains-at most one point. Since U is homeomorphic
with a plane region and since Bd(C) is a both proper and closed subset
of 8, it follows that the set U—Bd(C) is connected. Since »; € U ~B4(0),
UnC+#0 and therefore U—Bd(0)C (. Thus U ~ E(8)=@, which
is impossible, becauge U is a neighbourhood of #, « § C E(8). We conclude
that § irreducibly separates X, which completes the proof of (5.6).

Now, we are in a position to prove that X is always a 2-dimensional
polyhedron. For this purpose we shall prove that:

(5.7) For each point z, e X there is a neighbourhood of x, in X which is
the union of a finite collection of disks Dy, ..., Dy such that i+ j
implies Dy~ Dy = ().

By (5.6), we can assume that there is a noint @, # %, such that for
each simple closed curve 8 C X, where 6(8) <&, @ ¢ E(S). Since X is
a strongly cyclic space, we infer from (4.3) and (4.11) that the set Lx is
finite. Evidently, (%) is & continuum, the complement of which is con-
nected. We infer from a proposition given in [12], p. 189 that there is
a continuum H C X —(%,) such that H D (%) v (LX——(mo)), (X—H)<e
and such that X—H is a region. Applying once more this proposition
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now to the continuum H, we infer that there is a locally connected
continuum F C X — H such that z, ¢ Int (F) and such that X — F is a region.
Thus, 6(F) < ¢ and (z) v (Lx— (%)) CX—F. Let U denote the com-
ponent of the set Int(F) containing @,. By (2.4), the set U—(x,) has
a finite number of components. Every such component i & region disjoint
with Ly, and therefore it is not separated by any point. It follows from [12],
. 238 that each such a component is contained in a cyclic element of F.
This eyclic element contains z,, because it is a closed subset of F. We
conclude that there 13 4 finite number of.cyclic elements of F, say Dy, ..., Dy,

such that U D¢D U and each D; contains x,. Thus U D; is a neighbour-

hood of a:., amd by [12], p. 236, D ~ Dy = (m,) for % ;&J

In order to complete the proof of (5.7) it remains to show that each
set D; is a disk. By [12], p. 236 and p. 238, each D, i§ a cyclic locally
connected continunm. By assumption 2° of the theorem, D; does not
contain any homeomorphic images of the graphs K, and K,. By (5.4),
D; is not a simple surface. Thus, if we prove that no simple closed curve
8 CDy is a retract of Dy, Lemma 2 will yield the conclusion that D
is a disk.

Consider any simple closed curve § C D;. Since D; CF and 6(F) < ¢,
we infer that §(8) < & Since E(S) is open in X and since E(8) n X—F
= (B(8) v 8) n X—F = B(8) n X—TF, the set H(8) ~X—F is a both
open and closed subset of X —F. Since X—F is a region, the inequality
E(8) ~n X—F # O implies X —F C E(8). But this inelusion is impossible,
because @, ¢ X —F. Consequently, E(S)C F. Since D, is a cyclic element
of F containing §, we conclude from [12), p. 238 that #(S) = E(8) v 8CDy.
Thus, 8§ is not a retract of D; (because it is not a retract of E(S)), which
completes the proof of (5.7).

As A, Kosiniski has proved (see {101, p. 26), the property of being

2-dimensional polyhedron is a local one for the class of compacta. Thus,
(5.7) implies that X is a 2-dimensional polyhedron. Now, the assumptions
of the theorem, {5.1) and the theorem of Mardefié and Segal [14] imply
that X is embeddable in &%, which completes the proof.

6. A topological characterization of polyhedra which are embeddable
in &, First, we shall prove the following

THEOREM 3. 4 space X is homeomorphic with a oyclic polyhedron
PCRK if and only if X satisfies the following conditions:

1° Xed,

2° X has a finite number of t.s.c.e. ’s, i.e. the set X—~Lx has a finite
number of components.

3° X does mot contain any homeomorphic images of the graphs K,
and K,.
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Proof. Since the necessity of these conditions is trivial, we shall
only prove that they are sufficient. Let X satisfy 1° 2° and 3° Then,
by (4.4), (4.11) and by Theorem 2, each t.s.e.e. of X is a (2- -dimensional)
polyhed_ron By (4.2) and (4.3), two different t.s.c.e.’s of X intersect in
a (at most) finite subset of Lx It follows from 2° that the union & of
all t.s.c.e.’s of X is a polyhedron. By (4.5) and (4.9), the set X — & has
a finite number of components, the closure of each being a graph (and
therefore a polyhedron) and the boundary of each being a finite subset
of B. Tt follows that X is a polyhedron. By 1°, 3° and (5.1), X contains

.no homeomorphic images of K, and K, and no 2-umbrella. Thus, the

Mardeié—Segal embedding theorem for polyhedra (see [14]) implies
that X is embeddable in §°, which completes the proof.

TEEOREM 4. A space X is homeomorphic with a connected polyhedron
PC S8 if and only if X satisfies the following conditions:

1° X € q,

2° X has a finite number of t.s.c.e.’s and a finite number of end-points,

3° X contains no 2-umbrella and no homeomorphic tmages of the graphs
K, and K,.

Proof.. As previously, we shall only prove that these conditions
are sufficient. It follows from Theorem 3 that each cyclic element of X is
3 polyhedron. Since, by 2° X has only a finite number of non-degenerate
cyclic elements and since, by [12], p. 236, two different cyclic elements
intersec}s in a set which contains at most one point, it follows that the
union Z of the non- -degenerate cyclic elements of X is a ‘Dolyhedron.
If ¢ is & component of X — Z, then, by [12], p. 231 and p. 239, C is a locally
connected continnum. By [12], p. 238 No. 10, C contains no simple closed
curve, and therefore it is a dendrite. Bach end~p0'1nt; of C either is an
end-point of X or belongs to a non-degenerate cyeclic element of X. Since,
by [12], p. 236, No. 6, every arc joining two different points belonging to

‘one cyclic element is contained in that cyclic element, it follows that

no two different end-points of C belong to the same cyclic element of X.
Consequently, 2° implies that € has a finite number of end-points, and
therefore it is a tree. Each point # ¢ BA(0) = C— C is an end-point of C,
because otherwise € would contain a simple. closed curve passing through
that point, which is impossible. Thus, Bd(C) is a finite subset of Z. Conse-
quently, in order to conclude that X is a polyhedron it remains to show
that the set X —Z has a finite number of components. R

Indeed, by 2°, there is only a finite number of components of X—Z%
containing end-points of X. If ¢ is a component of X —Z containing no
end-point of X, then O contains at least two end-points, which belong
to different non-degenerate cyelic elements of X. It follows from [12],
p. 236, No. 6, that the boundary of no component of X— 7 different
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from C can contain a pair of points belonging to the same pair of non-
degenerate cyclic elements of X. Thus, by 2°, X—Z has a finite number
of ‘components and therefore X is a polyhedron. Now, 3° and the Mar-
defié-Segal theorem [14] imply that X is embeddable in 8%, which com-
pletes the proof.

COROLLARY. A space X s homeomorphic with a contractible polyhedron
PC & if and only if X satisfies 2° and, instead of 1° and 3°, the following
two conditions:

1" X e ag,

3" X contains neither o 2-umbrella, nor any homeomorphic images of
the graphs K, and Ky, and X is nol & simple surface.

Proof. Tet X satisty 1, 2° and 8’. Then, by Lemma 2 (see Section 5),
each non-degenerate cyclic element of X is a disk, because if a cyclic
element of X different from X were a simple surface, then X would con-
tain a 2-umbrella. Thus, each cyclic element of X is an AR-get, which
implies (see [3]) that X is also an AR-set. Thus, by Theorem 4, X is
a contractible polyhedron embeddable in &%, which completes the proof.

Other corollaries to Theorem 4 concerning the topological character-
ization of arbitrary polyhedra which are embeddable (or quasi-embeddable)
in & or E? can be obtained by easy modifications of conditions 1°, 2°
and 3° in Theorem 4. Namely, conditions 1° and 2° now have to be
satisfied by the components of X (X is assumed to be a locally connected
compactum). The suitable modifications of 3° are the same as the -modi-
fications of condition (c) in Theorem 1 of [13], given in Theorems 4 and 5
of that paper. These eorollaries are obtained from Theorem 4 in the same
way as Theorems 4 and § are obtained from Theorem 1 in [13].

Remark. In the proof that any space X satisfying the assumptions
of Theorem 3 is a polyhedron, we have applied only conditions 1°, 2° and
the fact that each t.s.ce. of X is a polyhedron. In the proof that any
space X satisfying the assumptions of Theorem 4 is a polyhedron, we
have applied conditions 1° and 2° and the fact that each non-degenerate
cyclic element of X is a polyhedron. Since each non-degenerate cyclic
element of any space X satisfying conditions 1° and 2° of Theorem 4
satisfies conditions 1° and 2°of Theorem 3, it follows that the following
proposition is true:

(6.1) If X satisfies the conditions 1° and 2° of Theorem 4 and if each
i.s.c.e. of X is a polyhedron, then X is also a polyhedron.

.7. A chara.cterizaﬁon of ANR-sets which are embeddable in §° In this
section, assuming Theorem 1 (as formulated in Section 1) to be true, we
shall deduce some corollaries concerning the case of n = 2.

* ©
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THEOREM B. A connected space X is-homeomorphic with an ANR-set
Y C & if and only if X satisfies the following two conditions:

1° X ea.

20 X contains neither a 2-umbrella nor any homeomorphic images of
the graphs K, and K,.

Proof. The necessity of 1° and 2° is trivial. Thus, let us assume that X
satisfies these conditions. We can and do assume that X is not a simple
surface. Then X 'does not contain any simple surface, because other-
wise X would contain a 2-umbrella. Fach t.s.c.e. B of X satisfies the
assumptions of Theorem 2, and therefore, it is a polyhedron embeddable
into E*. If 8(E) <& then E satisfies the assumptions of Lemma 2 of
Section 5, and therefore E is a disk. Thus, all s.c.e.’s of X are ANR-sets
and almost all are AR-sets, which implies—by (413)—that X ¢ ANR.

If B is a s.c.e. of X and GC X is a graph such that E ~ @ is a finite
set, then ® o @ is a polyhedron. It follows from 2° and from the theorem
of Mardetié and Segal [14] that # v @ is embeddable in E?, because
F o @GCX is not a simple surface. Consequently, X satisfies the as-
sumptions of Theorem 1 and therefore there is an upper semi-continuous
decomposition. D of E* whose all elements are trees and for which X is
embeddable in E¥D. By Moore’s well-known theorem [16], D is
homeomorphic with E* and therefore X is embeddable in E?, which
completes the proof.

CoROLLARY. A space X is a homeomorphic with an AR-set ycs
if and only if X satisfies the following fwo conditicns:

1’ _Xﬁdo,

o' X eoniains meither a 2-umbrella mor any homeomorphic images of
the graphs K, and K, and X is not a simple surface.

Proof. Let Z be a non-degenerate cyclic element of X, where X
satisfies 1’ and 2'. Then, by [12], p. 263, Z is a refract of X and there-
fore Z ¢ af. Since Z, as a subset of X, satisfies 2', it follows from L.emma 2
of Section 5 that Z is a disk. Thus, all eyclic elements of X are AR-sets,
which implies (by Borsuk’s theorem [3]) that X ¢ AR. By Theorem 5,
X is embeddable in S

Other corollaries to Theorem 5, yielding a characterization of
arbitrary ANR-sets which are embeddable in E? or 8, are easy to obtain
if one omits the connectivity assumption in 1° and if one modifies 2° in
the same way as in [18] (in the deduction of Corollaries 1 and 2 from
Theorem 3; see [18], p. 291).

Remark. It follows from Theorem 5 that any space X ea is em-

‘beddable in §* (B?) if and only if it is quasi-embeddable in §* (E*); more

exactly, X is quasi-embeddable in S if and only if X satisfies 2°, and X is
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quasi-embeddable in F* if and only if X satisfies 2’ (cf. [13] a.nd.[ls],
p. 291): We shall prove in the next paper [19] that the saJn.:le conditiong
characterize arbitrary locally connected continua which are quasi
embeddable in §* or B

8. Reduction of Theorem 1 to a lemma. First, notice that Theorem 1

is true for n = 1. The assumptions of Theorem 1 imply in this case that X

contains no simple closed curve and X has no ramification point. Thus
X is an arc (or a point), which evidently. is embeddable in B

Therefore, in the sequel we shall assume that # > 1. The subsets
of E" will be marked with “primes”. In this section we shall prove that
Theorem 1 follows from

LeMva A. Let X be a space of the class o' satisfying the assumplions
of Theorem 1 (emcept the assumption that X ¢ ANR). Then there is a space
X’ C B belonging to o’ and a map g from X' onto X such that: -

1° ALl non-degenerate inverse sets g=(w) are trees and almost all are arcs.

9° For every n> 0 there is only a finite number of points x e X such
that 8(g~(=)) = 7. ‘ ,

3° The t.s.c.e’s of X' are in a one-to-one correspondence with the t.s.c.e.’s
of X, so that, for each t.s.c.e. B of X', the map g|E' is a homeomorphism
of E' onto the corresponding t.s.c.e. of X.

Remark 1. By 3° and by (4.13), X e ANR implies that X' < ANR.

Remark 2. Tn the same way as that followed in deriving Theorem A
from Lemma B given below (cf. [18] (p. 296)), one can derive from
Lemma A the following corollary, which can be named the embeddability
theorem for the spaces of the class o:

COROLLARY TO LEMMA A. If X is a space of the dlass o satisfying the
assumptions of Theorem 1 (except the assumption that X « ANR), then X is
embeddable in the space E'[D, where D is a null-decomposition of E™ such
that all the mon-degenerate elements of © are trees and almost -all are arcs.

In the proof that Lemma A implies Theorem 1, we shall make use
of the following lemma, which has been proved in [18] (p. 296).

Lemva B. If X is a connected ANR containing no n-umbrella and
if the cyclic elements of X are embeddable in E", then there ewist a locally
conmected continuwum X' CE" and a map g from X' onto X such that:

1’ The non-degenerate inverse sets g—%(x) are arcs,

2' Identical with 2° of Lemma A,

3" The non-degenerate cyclic elements of X' are in a one-to-one corre-

spondence with the non-degenerate cyclic elements of X such that if Z' corre-
sponds to Z, then the map g|Z' is a homeomorphism of Z' onto Z.
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We shall first prove that: .

4’ If Z is a non-degenerate cyclic element of X and w, e Int(Z), then
g~ Ymy) 18 @ point. ,

B’ Given a finite number of mon-degenerate cyclic elements of X,
Zyy oy Zxy if Zy corresponds to Z3, them, for every point @ e Z;— ) [Z;]
1<j<k, j #1] such that g-*(x) is an are, the point (912} () is oné of
its end-points.

First, we are going to prove that 4’ can be fulfilled. For this purpose,
suppose that X’ and g satisfy Lemma B. Let Z be a non-degenerate cyclic
element of X, z,e¢Int(Z) and let Z’' correspond to Z. Suppose that
I' = g\(x,) is an arc. In virtue of 3', I' ~ Z' = (g|Z’) () is a point ;.
Thus, each component of I'— () is contained in a component of X'—Z’,
which is bounded by @, in virtue of [12], p. 232, No. 4. If ¢’ is such
a component of X'—Z’, then I' ~ 0" is a both closed and open subset
of C'. Indeed, since ¢(I' ~ C')= (m,) CInt(Z), there is a neighbour-
hood U’ of I' ~ ¢" in ¢ such that g(U’) CInt(Z). If there is a point
o' € U’ such that g(2') = = # x,, then g—(z) cannot be connected, be-
cause (wg) = Bd(C') ¢ g~Y(z) and because (g]Z') (=) eg ‘(x)— (. Since
this contradicts 1’, we conclude that "= I"~ (",

Now, define X; as the subset of X’ which arises if, for each non-
degenerate cyclic element Z’ of X', one removes from X’ each compo-
nent ¢’ of X'—Z’ of the form considered above. Then, it is clear that
the set XoC E" and the map ¢|X; satisfy Lemma B together with 4'.

Now, we shall prove that condition 5’ can also be satisfied. We shall
proceed by induction with respect to k.

If ¥ = 0, then 5’ presents no novelty. Now, suppose that k> 1 and
that 5’ can be fullfilled for each ¥ satisfying the assumptions of Lemma B
and such that the number of the distinguished non-degenerate cyclic
elements of Y is less than k. Consider the cyclic element Z, of X. By the
assumption of Lemma B there is an embedding k, of Z, in E". Let
Zi = (Z,). Order in a sequence gy, ds, ... (finite or not) all points belonging
to Bd(Z,) and let aj = hy(as). Notice that each point a; belongs to the
boundary of Z; in E". Indeed, a; would otherwise be an interior point
of a topological n-ball @ C Z; and, since a; e Bd(Z;), X would contain
an w-umbrella. Sinecé X ¢ ANR, it follows that Z{tﬁ, Z, e ANR and

therefore each point a} is accessible from E"— Z; (ef. [4], p. 217). We infer
that for each ¢ there are an arc I;C E" and a geometric n-ball Q;C E"
such that:

(Tiv Q) nZi=(a) CIi—Qi, IinQi=Iin¢Qi isa point;

e

e
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if i #j, then (@i v Ii) ~ (€5 v ;)= and if the sequence 01y Goy . 18
- infinite, then Lim &(I v Q1) = 0.

Let 4 denote the closure of the union of all compone}lts 0 of X _.z1
such that Bd(C) = (a:). Since 4; is a retract of X and since the.dlstm-
guished cyclic elements of A, are those OI{QS from_ Z,, = Zy which &}“e
contained in 4;, it follows that 4. satisfies the mdgcmve hypothesis.
Thus, there is a locally connected continuum A;CQ%jnd & map g
from 4% onto A; which satisfy the analogues of 1'-5'. Iff 'y Eaz) 18{ a point,
define b; to be this point and, if g7 (as) is an are, dei_?me b; to be one of
its end-points. Since a; e Bd(4,) (in X), by 3’ an.d since ’X -con?ms. no
n-umbrella, it follows that b; i§ a boundary pou}‘ﬁ of A7 in E". Since
A; e ANR and since, for locally connected continua, the prgperty of
being an ANR depends on eyclic elements (cf. [18], p. 292), it follows
from 3’ that A} ¢ ANR. Thus, we can assume that b; l?elf)ngs to the
boundary of the unbounded component of E"—Aj and it is acgessﬂ)le
from this component. Consequently, there is an arcJ; such that J; C Q,Q —A%,
one end-point of J} is equal to b; and the second one fills up the set @; ~ Ii.
Now, define X’ by the formula:

X' =Zu UIQUJ;-UAQ-.

It easily follows from the construction that X' is a locally connected
continuum and that the non-degenerate cyclic elements of X' are Zi
and the non-degenerate eyclic elements of the sets 4.

Define g: X'»X by the formula:

) if & e Zi,
gy =1 ay it o eIiudy,
gi(z') it a'ed;.

Then ¢ is a map, because (I; v Ji) n Z) = (af), (Ii v Ji) n A;= (bi),
gilbY) = @ = ki *(ai) and because the sets Iju Jio A} are disjoint and -

their diameters converge to 0 (as well as the diameters of the sets Ai),
whenever the sequence a,, a,, ... is infinite. It follows from the definition
of I, J; and b} that the set

g Na) = Ii o Ji o g )

is an are, the point a;= (g]Zi)""(a;) being one of its end-points. Since,
for a point z e X which is different from each point a;, the inverse set
g™!(z) is equal either to ky(x) (if # € Z,) or to g '(w) (if © € 4), and since ky
is & homeomorphism and 4;, gi: 4;—>4; satisfy 15" with respect to A,
it follows that X' and g: X'+X satisfy 1'-5' (with respect to X). Thus,
the induction step, and therefore the proof of (8.1), is completed.
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Now, we pass to

The proof that Lemmas A and B imply Theorem 1. Let X
satisfy the assumptions of Theorem 1. In order to obtain the theorem, we
shall proceed as follows: First, making use of Lemma A, we shall construct
a space Y satisfying the assumptions of Lemma B and g map f from ¥
onto X. Next, making use of Lemma B together with (8.1), we shall
construct a space ¥’ C " and a map ¢ from ¥’ onto Y. Finally, we shall
construct the desired decomposition space of E™ such that X is em-
beddable in it collapsing to a point each set of the form B (@), where
zeX and b= fg.

Let Z, Z,, ... be a sequence (finite or not) congisting of all non-
degenerate cyclic elements of X (cf. [12], p. 238). There is. only a finite
number of Z; which are not AR-sets (cf. [18], p. 292). By (4.8), Z; ¢ AR
implies that Z; is a t.s.c.e. of X, and therefore—by the agsumption of
Theorem 1—Z; is embeddable in E™. Thus, there is a number m, > 0
such that exactly m, of the elements Z,, are not embeddable in B". Reor-
dering the sequence Z,, Z,, ... if necessary, we can assume that thege
are the elements Z,, where m < m,.

Now, we shall prove by induction with respect to m, that:

(8.2) There are a connecled space ¥ ¢ ANR and a map f from ¥ onto X

such that: '

1° AUl eyclic elements of ¥ are embeddable in E".

2° The non-degenerate cyclic elements of ¥ can be ordered in
a sequence Z,,Z,, ... (which has as many of the elements as the
sequence Zy, Z,, ...) such that:

(a) For each m < my the set Zm (which can be assumed to be a sub-
set of B" by 1°) and the map f|Zn satisfy Lemma A, with respect 10 Zp,.

(b) For each m > my the map f|Zm is a homeomorphism of Zum

onto Znp.
(¢) For each @ ¢ X such that f~(x) is not a point, there is an index
M My Such that @ ¢ Zy and if my, ..., me are all such indewes,
k A
then f7 (@) = | (f|Zmg) (%) is a tree.
=1

(d) For each point ye¥, if there is an index m such tﬁat
Y eBA(Zm), then f(y) eBA(Zm) and if Twm= (f|Zn)""(f(y)) is
a non-degenerate tree then ord, Ty = 1 and Ty~ Bd(Zn) = (y).

First, let m,= 0. Then all cyclic elements of X are embeddable
in B, and assuming ¥ = X and f = identity, we see that (8.2) is satisfied.
Now, let m, > 1 and suppose (8.2) to be true for each set Z satisfying
the assumption of Theorem 1 and which has less than my cyclic elements
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which are not embeddable in E". Since the s.c.e.’s of a cyclic element
of X are at,the same time s.c.e.’s of X (cf. [12], p. 232, No. 5), it follows

that the eyclic element Z, of X satisfies the assumptions of Lemma A, '

Thus, (since Z; is an ANR, as X is one) there are a eyclic ANRZ, em-
beddable in E” and a map ¢, from Z, onto Z, which satisfy the lemma
with respeet to Z;. Order in a sequence a,, 4, ... (finite or not) all points
which belong to Bd(Z,) and, for each i, choose a point &; e g7 (a;) such
that if gy *(a;) is a tree containing more than one point, then &, is one of
its end-points. )

Let A; denote the closure of the union of all components ¢ of X— 2,
such that Bd(C)= (a;). It is easily seen that the sets A; satisfy the
induective hypothesis. Thus, there are a set Aiand a mapfi: Ay >4, which
satisfy (8.2) with respect to A;. Evidently, the non-degenerate cyclic
elements of A; are those among Z; which are contained in 4;. The corre-
sponding cyclic elements of A; will be denoted by Z;. We shall define
the point bie f:*(a1). Assume that the set f7*(as) contains more than one

k N .
point. Then, by (8.2), 2° (c) fit is equal to | J Ty, where[Tsy = (fi| Zm,,) *(as)
=1

and Mg, ..., M are all indexes™m such that 2 <m <my and as e Zp
(which impliesA that Z» C Ay). Bach Ty is a tree and, by (8.2), 2° (d), the
set Ty ~ BA(Zm,) consists at most of one point, which (if it exists and
does not fill up Ty) is an end-point of Ty. If %k =1, define b e Tyn
~ Bd(Zm,) if this set is non-empty, otherwise define 5; to be an arbitrary

. . k
end-point of Ty. If k> 1 then, since | J Ty is connected and since two
different cyclic elements can intersect only at their boundary points,
- ' . ~ k ~
there is exactly one point & e[ Ty. In this case define b; = &.
j=1

Now, form the disjoint union
Z]. v U Ag
i

ar.:u%, .if the. sequence 4, A, .. is infinite, suppose that a metric in this
disjoint union is defined such that lim8(4,) = 0. Let ¥ denote the comv-
i=00

pact metric space we obtain from this disjoint union by the identification
of the Points Qs and b; for each 4 and by the suitable definition of a metric.
Since Z, and all 4; are connected ANR-sets, it follows that Y is a locally
connected continuum and it can be seen that the non-degenerate cyclic
elements of Y are the images of the sets Z: under the identification map.
We infer from [18] (p. 292) and from the analogue of (8.2), 2° (a) and (b)
with respect to .Ai,..Af and f; that Y is a connected AN ih
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Define f: ¥ ->X by the formula (where we identify 7, and A; with
their images by the identification map)
o) i yel,
fily) i yeds.
Since gy(a:) = a; = fi(?n) and since l.imd(zﬂ) =0 = lim 6(4;) whenever

{=00

) ={

the sequence A, 4,, ... is infinite, it follows that f is a map. Since Z,
and ¢, satisfy Lemma A with respect to Z, and A, and f; satisfy (8.2)
with respect to A, it follows from the construction (especially, from the
definition of b;) that ¥ and f satisfy (8.2) (with respect to X). Thus, the
induction step, and therefore the proof of (8.2), is completed.

" Now, observe that ¥ satisties the assumptions of Lemma B. Since
other assumptions are contained in (8.2), it remains to show that ¥ does
not contain any n-umbrella. Thus, suppose that @ C Y is a topological
n-ball and IC Y is an arc such that Q ~n I = é ~Tisa point y. Since
n > 1, there is a cyclic element Z of ¥ such that Z D@ (cf. [12], p. 238,
No. 10). It follows fropl (4.11) that there is a t.8.c.e. EofZ (and therefore
also of ¥) such that & D Q. By (8.2), 2° (a) and (b), f(Q) Cf(¥) is a (topol-
ogical) n-ball and f(E) is & t.s.c.e. of X. It follows from (8.2), 1° that
y ¢ Bd(Z). Therefore, by (8.2), 2° (d), f(y) e BA(f(Z)) and f(Z) is the
cyclic element of X containing f (E). Consequently, there is an are J C X
such that f(E) ~J = f(y) and f(y) eJ. Since fly) is an interior point
of £(Q)Cf(%), it follows that f(H) v J is not embeddable in B, which
contradicts the assumption of Theorem 1.

Thus, Lemma B together with (8.1) (where in 5" we assume.Zm,
for m < my,, to be the distinguished cyeclic elements of Y) can be applied
to ¥. Consequently, there are a connected ANR Y'C E" and a map ¢
from Y’ onto Y, which satisfy the analognes of 1’-5’. Then

(8.3) h=1fg

is a map of ¥’ onto X. Let D denote the decomposition of E" into the
sets of the form h ' (z) for © ¢ X and the individual points #' ¢ B"—X".
Then X is embedded in a natural way in the space E"/D. We shall prove
that D is the decomposition required in Theorem 1, i.e., we shall show that:

(8.4) B Y(&) = g7 f (@) is always a tree, there is only a finite number
of points © € X such that 1 (x) is meither an arc nor a point and for
every n > 0 there is only a finite number of points x e X such that
S(n7(@) = .

Considering the sets h™(z), we shall distinguish the following four
cases: (1) @ € Int(Zy,) for an m; < mq, (2) @ e BA(Zm,)— U [Zn[Im < my,
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m 5= m,] for an m, < my, (3) @ belongs to at least two from the sets Z,
where m < m, and (4) « ¢ |J [Zm] m < m,]. We shall denote by Z, the
non-degenerate cyclic element of ¥’ which corresponds to Zm (cf. 3" in
Lemma B). Thus, we have the one-to-one correspondences ZmHZm«-)Zm
Dbetween the non-degenerate eyclic elements of ¥/, ¥ antll X.

First, let case (1) hold. Then, in virtue of (8.2), 2° (d ), f (@) C Int(Zml)
Tt follows from Lemma B, 8’ and (8.1) 4’ that h”(w) g7 (f (@) is the
image of j_ (z) under the homeomorphism (g[.Zml We conclude from
(8.2), 2° (a) that, in the case (1), (8.4) is satisfied.

Now, let case (2) hold. It follows from (8.2), 2° (¢), (d) ) and from the
connectivity of ¥ that f(z)C Dy — U (Zm| m < Mgy m % my] is a tree
and there is exactly one pomt yef () ~Bd(Zm,), which is an end-
point of thig tree if it is non-degenerate. We infer from Lemma B and
from (8.1) that the set A '(z)= g’l(f‘l(w) is the union of the image
of 7Y m) under the homeomorphism g[Zml ! and of the arc g~ '(y), the
pointy’ = (ggZ;m)' () b emg an end point of this arc if it is non-degenerate.
Since (g1Zm,) " (f @) ~ g7'(y) = (%), it follows that A~ Yz) is a tree,
which is an are if the former seb is an are. We infer from (8.2), 2° (a) and
from Lemma B, 2 that (8.4) is satisfied in this case. .

Next, let case (3) hold. Let ml, ...y Mg be all indexes m < m, such
that z Zm and let Ty = (f|Zm) () for 1 < i < k. Then, by (8.2), 2° (c),

k
(@) = U Tt is a tree. We infer from (8.2), 2° (d), from the connectivity
=1

of f(x) and from the fact that two different cyclic elements can inter-
sect only at their boundary points that there is exactly one point y; € Ty »
ABd(Zp) and ¥, = gy = ... = y5. Next, it follows from Lemma B’ and
(8.1), 4’ that h™(w) = g~ "'(f '(#)) is the union of the images of T under
the homeomorphisms (g{Z;n,.)"l and of the are ¢g—%(y,). Since the trees
(g}ZA;m)'l(Ti) can intersect one another and the arc g—y,) only in the
points (g[Z;u)"l(yl) (and they do intersect the arc), we conclude that
1 '(x) is a tree. Since two different cyclic elements can intersect only
at one point (cf. [12], p. 236), we see that the number of the points
belonging to case (3) is finite, which completes the proof of (8.4) in
this case. !

Finally, let case (4) hold. Then, by (8.2), ¢), f\(z) is a point and,
by Lemma B, 1, A7 @)= ¢ (f (=) is an arc Lemmw B, 2’ 1mplles
that (8.4) is satisfied again. Thus, we conclude that the decomposition D
satisfies the requircments of Theorem 1, which completes the reduction
of the theorem to Lemma A,

It remains to prove Lemma A, which will be done in Seotions 9 and 10.

Remark. It follows from the preceding proof (cf. (8.2), (8.3) and
Lemma B, 3') that:
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(8.0) There 1is a one-to-ome correspondence between the t.s. c.e.s of ¥' and X
such that if B’ corvesponds to E, then the map h|H is a homeomor-
phism of B’ onto B.

9. A proof of Lemma A in the case where X has only a finite number
of t.s.c.e’s. First, let X satisfy the assumptions of Lemma A for n = 2.
Then X satisfies the assumptions of Theorem 3 (see Section 6) and
therefore X is homeomorphic to a polyhedron P C 8% If X were a simple
surface, then it would have a t.s.c.e. non-embeddable in E?, which
contradicts the assumption. Thus, X is embeddable in E°

Now, let X satisfy the assumptions of Lemma A for a given n > 2.
‘We shall prove that:

(9.1) There are o space X' CE" and a map g: X'—>X satisfying the
conclusion of Lemma A, where conditions 1° and 2° are replaced by
the following one:

L If z € X and g=Y() is not a-point, then there is a t.s.c.e. B of X
such that x « BA(E) and g~Yx) is a tree (I implies 1° and 2° in
virtue of (4.3)).

Suppose that X has exactly m of t.s.c.e.’s.

We shall prove (9.1) by induction with respect to m.

First, let m = 0. Then, by (4.9), X is a graph, which evidently is
embeddable in E" and (9.1) is clear.

Now, let 0 < m < oo and suppose (9.1) to be true for every space
Y satisfying the assumptions of Lemma A, where ¥ has less than m of
t.s.c.e.’s. Choose a fixed t.s.c.e. B, of X. Evidently, we can assume that
X —E, #@. By (4.5), the sett X — E, has a finite number of components.
Denote the closures of these components by Ay, ..., 4i. By (4.5), the
set A; ~ By is finite and therefore, by (2.2), there is a tree T; C 4, such
that the seb of the end-points of 7 is equal to B, ~ 4,. By the assumption

of Lemma A there is an embedding h of the set B, v U T; in E™ Let
B = h(E,). Since each set h(T)— B is connected, it follows that:

(9.2) There is a component O of B"— B} such that C;2 h(d:~ By) and
if @iy ooy Qunsy are all points of the set Ay ~ By, then each point
aij = h{ay) is accessible from C;. There are (geometric) n-balls
QiC 0 (1 <i<) such that i +j implies Qi ~ Q) = 0.

Now, apply (2.2) to the set F, and its finite subset A; ~ B,. Thus,
there is a tree T C E, such that the set of the end-points of 7 is equal
to A; ~ B,. Since X is a cyclic space, @ ¢ 4, implies that every component
of A;—(») intersects the set Bd(4:) = 4~ H,. It follows that ¥
= A¢v T, is a cyclic space. Since 7ie¢ AR and F; ~ A; = Bd(4,), we
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infer that Y: is a retract of X. Consequently, Yie a’: Eviflently, the
t.s.ce’s of Y; are the t.s.c.e’s of X which are contained in A;, and
therefore Y, satisfies the inductive hypothesis. Thus, there are a set
¥;C Q1 and a map g¢i¢ ¥;—Y; which sa,tlsfy the analogue of (9.1) with
respect to Y. Let Al = g7 (4s) and T = g7 Y4, —Ay). Since the sets A;
and T;—A, are both connected and g: is a monotonic map, 1‘? follows
from [12], (p. 123) that 4} is a continuum and 7 is a region in ¥} disjoint
with A}. Thus, we can assume that 7% is contained in the unbounded
component of B"—A'. Since each point ay (see (9.2)) is .an end-point
of T , it follows that the set. (Ti-—Ai) v (ay) (and its counter -image
under g; also) is connected. Consequently, there is a point bj; € T ~ g7 ay).
It follows from Lemma A, 3° (with respect to Yi, ¥; and g;) that the
set T is contained in the complement of the un}on of all t.s.c.e.'s of
Yiea'. Hence, by (4.9), _’ZT’{ is a graph. We infer that each point bj; is
accessible from T i, and therefore from the unbounded component of
BE"— A} also. Since A;C Y; CQ2 and n > 2, we conclude from this and
from (9.2) that

(9.3) There are some collections of ares Ii, .., ] ;
such that 1= (aly) v (), Tty (B JA) =@ and Ly Iy
=@ if efther i £ p or j #¢.

Now, define X’ by the formula:
U Uaiory

i=1 j=1

(9.4) X' =E v

Now, observe that the set 75— T can consist only of the points bj,
because gi(@-) = T; contains no simple closed curve and (in virtug of
(9.1), I with respect to ¥y, ¥; and g) ¢4/ T is one-to- -one. Thus ¢4 is
one-to-one, and therefore it is a homeomorpmsm of T' onto Ti Since
Yied, we infer that 4;= ¥;— 7% belongs to o and that &' e A; implies
that every component of Aj;—(s') intersects the set T; T B ed,
because it is a homeomorphic image of E, which is a t.s.c.e. of X ea’.
Rince each simple closed. curve of sufficiently small diameter contained
in X’ must be contained either in B or in one of the sets A;, we conclude
from (9.4) that X’ ea’. Since ¥Y;= A}u T, it is evident from (9.4)
that E; and the t.s.c.e.’s of all sets ¥ are the t.s.c.e.’s of X',

Now, define ¢g: X’ ->X by the formula:

o) it @ e B,
9(@") = | gi(z") it a'eA;,
1271 if 2 e I";j .

I;‘k(i) CE" (T/ = 17 ey l)
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It follows from (9.2), (9.3), (9.4) and from the definition of the
points bj; that g is a map. Since 4, ..., 4; are the closures of all com-
ponents of X — By, the maps ¢; are onto and A= g7 (4y), we infer that g
maps X’ onto X. Since 27" is a homeomorphism, ¥ and g, satisty (9.1)
with respect to ¥; and since the t.s.c.e.’s of ¥, are the t.s.c.e’s of X
contained in A4, we see that X’ and g satisfy condition 3° of Lemma A.
Condition (9.1), I is clearly satisfied for each point # ¢ X—Bd(H,). If
o € Bd(#,), then g- ( ) is the union of the arcs I; such that h(z) = ai e I
and of the sets g7'(#), whenever ¢ 4;. It follows from (9.2) and (9. 3)
that these arcs form a broom with %(x) as a vertex, the sets g7 ( ) being
trees disjoint to one another and intersecting the broom at the respective
points b;. We conclude that g—(2) is a tree, which completes the proof
of (9.1) and therefore of Lemma A in the case under consideration.

10. The proof of Lemma A in the general case. Let X satisfy the
assumptions of Lemma A. We can assume that X has infinitely many
t.s.c.e’s, By, B, ... It follows from (4.8) and (4.10) that there is an m, > 0
such that m > m, implies Fy € oy and that Bd(E,) consists of exactly
two points am and bm. Let I, C By be an arc joining a, with b, and les

U Inm.

M> My

(10.1) Y=(X— U Bn) v

m>my

One can easily show that ¥ is a retract of X (cf. (4.6)), and there-
fore Y ¢ a. Since X is a cyclic space, it is seen from (10.1) that ¥ is also
& cyclic space. Evidently, the sets En, for m < m,, are the t.8.c.e.’s of Y.
It follows that the result (9.1) of Section 9 is applicable to ¥, and there-
fore there are a set ¥’ C B™ and a map g,: ¥’ —¥ which satisfy (9.1) with
respect to ¥. For each m < m,, denote by Em the t.s.c.e.’s of ¥’ which
corresponds to By (see Lemma A, 3°). Let B = | B,,. Then, by (4.5)

m<my
and (4.9), the set G¢' = Y—F is a graph. Tt follows from (9.1) (with

respect to ¥, ¥’ and g,) and from the definition of the ares I, that, for

each m > my, Tp= g5 (In) C & and glgs"(Ln) is one-to-one. We infer
that I, is an arc and that the map g\l is a homeomorphlsm of I,
onto Ip. Let

(10.2) (am) =Im N go(am) and  (bn) = Ik A g5 (bm) .

Evidently, a,, and b}, are the end-points of Ij,. Since f,,, CInt (E,,;)
is an open subset of ¥, we infer that the sets I = g0 1(Iom) are open and
disjoint subsets of ¥'. Modifying the sets lgén if necessary, one can -
construct a sequence of (geometric) n-balls Q;, C B (where m > my)
such that:

20*
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(10.3) Qn ~ X' is a subarc of Iy contained in I, whose interior is con-
tained in é;n. If msp, then Qun Q=@ and Y}Li:?cé(Q;n) = 0.

Now, consider a t.s‘e.e. By, of X, where m > m,y. By the definition
. of @y and by, BA(Bn) = (am) v (bn). Since X is a cyclic space, there is
an arc J, C X such that Jm A By = (m) v {bn) = Jm. By the assumption
of Lemma A, there is an embedding hm of Emqu into Qm Let
B = bu(Bn); dm= hn(an) and b = hum(bm). Since hm(Jm) CE"—E}, w
can assume that &, and bj, belong to the closure of the unbounded com-
ponent of E"—F;, and, evidently, they are accessible from it. Denote
the points belonging to Qh ~ Iy by ¢, and dp, in such a way that in the
ordering of the arc I,, from a,, to by the point e, precedes d, (ef. (10.2)
and (10.3)). We infer that there are two arcs K, Ly C Qn such that:

Ko b COn—Bh, K= (en) < (i) ,
Lin = (dm) v () ,
Now, we can define the desired set X' C B" by the formula:

U Q;n)u U Kypv By L.

m>mo m>ma

(10.4)

(10.5) X = (Y-

Bach set Ej, for m > my, belongs to af, as a homeomorphic image
of By € a. Since Y’ eo, it is easily seen from the construction (cf. (10.3),
(10.4) and (10.5)) that X’ is a eyclic locally connected continuum. More-
over, each simple closed curve §'C X’ is contained either in a subset
of X' homeomorphic with ¥’ or in a set X, where m > m,. Consequently,
X' ¢ o. Evidently, the sets B, m= 1,2, ... are the t.s.c.e.’s of X",

Now, we can define the desired function §: X'—~X by the formula:

golz") it #e¥Y— U Inm,
Mm>Mmy
(o) = hm(a’) it o eBj, for an m > m,,
o, it 2 eKyolamen],
10 if & €Ly v [daby],

where [ancn] and [dnb;,] denote the subares of the arc I, bounded by
these pomts It follows from (10.2), (10.4) and from the definition of the
points am, bm, ¢n and d;, that G B v Ky v Ly v [amCm] v [dmbn] is
a map of this set onto Ey,. Since the diameters of these sets converge
to zero and since g, is & map, we infer that g is a map. Since g, maps ¥’
onto ¥, it follows from (10.1) that ¢ maps X’ onto X. We shall prove
that X' and g satisfy the conditions 1°-3° of Lemma A.
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Considering the sets g=*(z), for # ¢ X, first notice that x ¢ X— | B,
m>my

implies that g~ '(x) = g (), because the points 2’ ¢ X’ such that g(z")
# go(2’) are mapped by g into |J Bn. In this ease, by (9.1), I (with

> 0y

respect to ¥,Y’ and g,), the setgl g‘nl(x) are trees and, except of a finite
number, they are points. If z ¢ Int(En) for an m > m,, then evidently
¢~ ®) = hm{x) is a point. Now, suppose that x e Bd(Ey,) for an m > m,
and that g5 *(«) is a point #’. Since Y,VY’ and go satisfy Lemma A, 3° it
tollows that #’ belongs to the graph G' = ¥’'—&'. If »' is not a ramifi-
cation point of G, then »" belongs to (at most) two of the arcs Iy, and
it is an end-point of either. It follows from (10.4) and from the definition
of g that g—Y(«) is the union of at most two ares, either being of the form
[apmen] © K, where &' = a,,, or of the form I;, w [d.b}.], where by, = o'
Thus ¢-x) is an are. It follows from (10.3), (10.4) and from the fact
that the sets ID w are open and disjoint subsets of the graph G that the
diameters of these arcs converge to zero. Now, suppose that 2’ is a rami-
fication point of G'. Then g—(z) is a broom which is the union of a finite
number of ares of the form described above, ' being a vertex of the
broom. Evidently, this case can hold only for a finite number of points
zeX.

Finally, suppose that g5 "(#) is & non-degenerate tree T'. Condition 3°
of Lemma A (with respeet to ¥,Y’ and g,) implies that 7" is contained
in the graph G'. Thus, only a finite number of the arcs I,, (which are
contained in @' also) can intersect 17, and if 1" ~ I, # @, then either
T ~Ip=(an) or T'~ I, = (bn). It follows that g-i(x) is the union
of T', of the arcs [amem] v K, where I, ~n 1" = (ay) and of the arcs
L, v [dmby] where I, ~ T’ = (bn). Since these arcs can intersect one
another only at their common points with 7 (i.e. in ay, or by,), we con-
clude that g-*(x) is a tree. By (9.1), I, go (%) is non-degenerate only for
a finite number of points # ¢ X. Thus, we see that X’ and g satisty the
conditions 1° and 2° of Lemma A. Condition 3° is clear by the definition
of g and h» and by the respective property of g,. Thus, the proof of
Lemma A is concluded.
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characterization of locally connected continua
which are quasi-embeddable into #*

by
H. Patkowska (Warszawa)

1. Introduction. We shall consider metrizable spaces only. A map f of
a compactum X into a space Y is said to be an e-mapping if
diamf (y) < ¢ for every y ef(X). A compact space X iy said to be
quasi-embeddable into Y if for every &> 0 there is an e-mapping f: X > Y.
The problem of finding a characterization of locally connected continua
which can be quasi-embedded into §* (B*) has been raised by Mardekié
and Segal in [6] in connection with the following

THEOREM OF MARDESIG AND SEGAL. If P is a connected polyhedron,
hen the following statements are equivalent:

(a) P is embeddable into S,
(b) P is quasi-embeddable into S,

(¢y P does mot comtain any homeomorphic images of the Kuratowski
graphs K, and K, and any 2-umbrella.

The graph K, is the 1-skelton of a 3-simplex with midpoints of a pair
of non-adjacent edges joined by a segment and the graph K, is the
1-skelton of a 4-simplex. A 2-umbrella is the one-point union of a disk
and of an are relative to an interior point of the disk and an end-point
of the are. ‘

In [8] I have generalized that theorem, namely I have shown that
the equivalence of (a), (b) and (c) holds for each locally connected con-
tinuum P satisfying the following condition: There is a number &> 0
such that no simple closed curve § C P with diam§ < ¢ is a retract of P.
Another similar generalization has been found by J. Segal (see [10]).
He has shown the equivalence of (a) and (b) for locally connected con-
tinua which do not contain any homeomorphic images of the curves K,
and K, (described by Kuratowski in [4]).

In this paper we shall prove the equivalence of (b) and (c) for
arbitrary locally connected continua, i.e.
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