8. Leader and L. Finkelgtein

THEROREM 5. Given a regulated lattios (8, A,v, <) there emists g unique
locally compact, Housdorff space X with a base $ of interiors of mmquc‘,
sets such that (8, ~, U, €) is isomorphic to (S, AV, <€) X is (/;(mpact
if and only if (8, A) has an identity. o

. Progf. Theorem 2 under Proposition 1T gives X and 8 with (8,n, g
isomorphic to (8, A, <). Since 8 is a distributive lattice < i

i ic o (8, A, . under <
isomorphism implies that § is a distributive lattice under set incl\t;siz}xlle

Hence v corresponds to U by Proposition ITT. Finally, + )

ence P .. ¥, the compact

criterion follows from that of Theorem 2 by I’ropogiti,on I. Taches
A study of lattices along the lines of section 5 would lead u

more than Stone’s theory [6]. For we have the following »
trivial proof we omit.

Prorostrion IV. Let (8, A,V) be a lattice with partial ordering <

Then (8, AV, <) 1 o A X '
iy (8, A,V <) is @ regulated lattice if and only if (8, A,V) is a Booloan

§ t0 nothing
esult whoge
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Cardinal multiplication of structures
with a reflexive relation

by
Ralph McKenzie * (Berkeley, Calif.)

Intrﬁduction. This paper is a sequel to investigations of Chang,
Jénsson and Tarski (reported in [1, 2, 3]) dealing with refinement prop-
erties for the operation of cardinal multiplication (direct product,
cartesian product) of relational structures. The results presented here
extend, and almost complete that theory, insofar as it applies to structures
having a reflexive binary relation.

Our main result is a Lemma (3.1) whose formulation is rather
technical, but roughly states that a structure has the “strict refinement
property” defined in [3], provided that indistinguishable elements of the
structure are identified. The lemma is proved for strictures of the form
9 = (4, 8 in which § is a binary relation over A and the relations 8|8
and 5[;5’ are connected over A; in particular it applies if § is reflexive
and connected over A. The lemmsa yields for structures in this class
a reduction of the ordinary refinement property to a purely set theoretic
question, which is easily answered in every gpecific case if the general
continuum hypothesis is assumed (Theorem 4.4). Independently of
the GOH, it follows that every finite structure of this class has the re-
finement property.(*) Thus we obtain: a useful deseription of the algebra
of all finite reflexive isomorphism types—under operations of binary
cardinal addition and multiplication—which has been suspected for s:)Lme
time: viz. this algebra ig isomorphic to 2 “gemi-ring” of polynomials, Z™ (]
{Theorem 5.1). i )

Departing briefly from the main line of development, we prove.in §7
an interesting and unexpected form of the Cantor Bernstein theorem:
(Corollary 7.2) Let A, B, € and C;.be similar relational siructures of am
arbitrary similarity type and assume that €, xA=B and € xB=A. If,
in addition, N is denumerable and @, is finite then A ~ B.

* The work reported here was‘supported by the National Science Foundation

through grants GP-7578 and GP-6232X3. .
(%) This solves the central problem studied in [21.

.
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Lemma 3.1 plays a fundamental role in the general theory of eardina]
multiplieation, considered as an abstract operation on reflexive binary
types—i.e. on isomorphism types of structures <A, R> where R ig g binary
relation, reflexive over 4. (This theory still presents some challenging
unsolved problems, cf. § 9.) The later sections of our paper are devoted
to this theory under the following headings: refinement theorems (§ 4),
polynomial representations of structures (§ B, § 6), cancellation theorems
(§ 8). Among noteworthy new results we mention here the following:
(Theorems 8.4 and 8.9) Let %, B, € be reflewive binary siructures, and
suppose that W is finite and that U x BN x C. From cach of the following
suppositions it follows that Bz €: (1) A 4s conmected; (2) B is denumerable
and is the cardinal sum of finitely many connected structures.

In the ninth and final section we discuss several techniques, both
“old and new, by means of which the basie results can be applied to a wide
variety of relational and algebraic Systems. Some of the results thus
obtained will be stated and some open problems connected with our
work will be mentioned. ‘

This paper is largely self contained although we frequently refer to
Chang—Jénsson~Tarski [3]. We recommend that the reader consult also [1]
and the first section of [6] for a history of results published prior to 1966,
This opportunity is taken to give credit to Ralph Seifert and Alfred Tarski.
Seifert’s dissertation, [10], contained two important ingtances of Corol-
lary 4.7 below, thus encouraging the author to find a more general

theorem. Tarski’s fertile questions led eventually to substantial im-
provements of the first results obtained.

1. Preliminaries. The basic concep

8 are to a large extent the same
a8 in Chang-Jénsson—Tarski [8]l. BxC

and };Ai are the cartesian products,
1€,
respectively, of the sets B and ¢ and of the sets A;

set of all functions which map I into A. Since a
identified with the set {0,1,.

(i eI), and T4 ig the
natural number » is

«yW—1}, "4 is the set of all n-termed
sequences @ = (%, &, ..., 2y._,)> all of whose terms belong to 4. A re-

lation R of rank n, or #-ary relation, over A ig simply a subset of "4,
When R is binary we write #Ry in place of <%,¥> e R. The relative
product of two binary relations F and G i3 the relation H = F|@ such
that zHy iff for some ¢, tF2Gy; G is the converse of G (vGy iff yGua);
and ida is the identity relation over 4. A Dinary relation R C%4 is re-
flexive over 4 iff idsC E; and is connected over 4 iff for _(;very two
distinet elements @,y ¢ 4, there ig a finite sequence {Boy -oey #m) With
# =0, #n =y and for every k < m, ¥y 251> € R U K. The domain and
the range of B will be denoted by dom R and rng R, respectively.

The usual ‘notation for equivalence relations will be employed so

that, e.g. if ¥ is an equivalence relation over 4, then @/ iy the H-class.

icm®
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ioh @ = {#/B: @ e B} when BC A. The kernel of
v th'h y ]23 eiznf; E‘i];(g*f,B/if of {céurse the equivalence relation ¥ such
p flmctl(vmiff. fx) =7f (y). The canonical map zg from A to 4/E maps
:ha;/zEan \.VP have kermgy = F. In this paper the cardinal number of
’ ¥ will be ented by *(X).
* setBX ;Vli"lel];:ioifflre:tmctwe yor, briefly, structure we mean a systera
9 = 8;, EDwr consisting of a non-empty set A,‘aid q_fﬁi s‘?ﬁgﬁz ;TQ
jation R of some finite positive rank o(t) over A. > fur on. &
?I l d a similarity type and two structures are Sa:ld: to 1.)e' Sl'n'..l
is ol 2 thé sdme sii’nilarity type. To avoid "certain tnw?hhtles W.e
el h&.V licitly assume that each of the funda;mentfal ‘relatlons R; is
Dty Thé notion of the isomorphism of two s1mlla;r.struc‘cures,
HO{E&TP;(??’V- 8, ig the usual one. We follow the custom (:i denogn'gt:j:;l:l;
tur nd its ¢ 2 german letter and i
WT?, hy a'n %:" nl-‘nggrl::r(il:;l :I:a;lhztlalt’ai;isgte tﬁ 9 various properties of _the
6(1;1 12&1?;‘ Wz may Wriée that ¥ is finite, or infinite, or that some equiva-
) —.g.
i 7 is defined over U - o
lenGeFrelj t:i:mfn;;rgeopemtions on structures -will be needed: caz%;:ﬁ
I du(:'): cardinal sum, and the formation of subs‘_cruetures andtqusubseb
Siractun Tf 9 is a structure of type ¢ and B is a non—emp;;3 thsch
S’BTHOWT‘@S- by UA(B), the restriction of A to B, we mean the s 1'1;I o
¥ Al,% the:(l”Bgrr SB7is called a substructure otf Y—written B CA—
;B; ‘;I(r;.?) Le,ttwéhere be given a system of similar structures

1) Bi= “'\’Biy Siioer, tel.

—i bols

By the direct (ov cardinal) product of the siStsz(z P B and, for

P58¢~We mean the structure B = (B, Spwr Wher el (0

“Iht 7. 8, is the set of all @ ¢ ®®B such that <&my(i), #i(0), s Za-2t8)?
each te T, S:

‘ e 1) we first
€S{,t1f101or?i‘;ir}‘;o define the sum of the system of structures (1)

irwise digjoi = @J whenever
assume that the sets involved are pa,n?ms; dllsy%m% Bzi: frjn iy tho wrion
o o ols —

i % §.(*) Then the cardinal sum—in sylzl ;B’ 7 e i B

1 in other words the struc ure B = (B, . o

T tBat oT) and S g €T 3 the sels e st B,

;isjoint 1i;hen, of conxse, we first replace the B by 1ts;!(1)11::; *gl e .
whose fundamental sets are disjoint, and then cons

4 y i Ssa:l'll?
LT s th card nal sum 18 nece;
hich we &g d(’:note b 2 SB(- Thu e 1

2
defined only up to isomorphism.
structures B and € will be-deno

i roduct of two
ardinal sum and pro £
‘;:(Eageb(; B+ € and BxC, respectively.

ver
fundamental set of a structure be non-empty, whene
of

- ive that th f a st that I # O
the !(’) S(:?‘c: ;‘;’:::1%1“:11:01?:.5 (1) is discnssed we implicitly assume
m
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We write m¥ (respectively A™) for the sum (product) of m structureg
each isomorphie to %, where m iy an arbitrary cardinal number; and we
express the relation “9f is a direct factor of §”—i.e. there exists g B with
U X B~ C—by writing A|C.

The théory of eardinal addition, isolated from ecardinal multiplication,
is known to Dbe rather trivial. One calls a structure A connected if U ig
not the sum of two of its substructures. [Note that if 9 — <4, Ry,
E binary, then this is equivalent to R being connected over 4 ag previ-
ously defined.] It is well known that every structure % has a unique
repregentation as the sum of connected substructures, called the conmected
components of . From this fact the basie properties of cardinal addition
are easily deduced. The importance of cardinal addition for the theory
of cardinal multiplication stems from the following fact: Let J, (iel)
be a family of (non-void) sets, lot J = (U{Js: © e I} and assume that By (jed)
8 a system of similar structures. Then

P )8~ > P By

iel fe7y fephzsl
iel

Finally we define the related concepts of quotient structure and
homomorphism, with the aid of some auxilisry notions. A function f: 4 B
induces a number of other maps for which we also uge the symbol f. For
example, if n is a natural pumber and z A then we put f(m)
= {foo, fa, ooy find; it XC A, or X C"4, then we put f(X) = {f(z):
2 e X}. Thus, if % = {4, Rer is a structure then we also have a structure
FO) = <f(4), F(R)dter which may be called the f-image of 9. In these
terms we say that f is a homomorphism from % to B, written f: %A->B,
provided that f(A) C B. Lastly, it ® is an equivalence relation on 9 and m.
is the canonical map z—~+a/B then we put WEH = (%) = {A|E, Re|BYer
and call it the quotient structure of A modB. .

The refinement property. The formuls U= PB: iy said to give
: i€l

a direct decomposition of 9 into the
have two isomorphic products
1 P8 p @:j .
iel jed
The assertion that the two
ie. that (1) has a refinement, i
tures D;,; which satisfy _

factors B;. Assume now that we

products possess a common refinement,
8 taken to mean that there exist gtruc-

By ij‘)’:bp,i and @, ig_@i,q

forallp e Iand g eJ. Asin [3],

Wwe say that a structure % hag the refinement
property iff every pair of dire

¢t decompositions of UA possess a common

%) © . )
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refinement. We recall that, at least for finite structures, the refinement
property is equivalent to the wunique factorization prop.eﬂ:y, i.e. to the
roposition that a given structure has up to isomorphism exactly onhe
geeomposition into a product ofAinflecomposa.ble struFtureg. (Where B i3
indecomposable if #(B)>1, and B =~ ¢ xD implies either #(C)=1
* b = 1.) ' . . 3 . .
* EAS) was mentioned in the introcuction, the principal object of thig
aper is to further extend the class of structures known to have the
fefinement property. We will now describe the methods developed for
this purpose in [3]. ' .
Factor relations and decomposition functions. Evgry direct -d.ec(?mposr
tion of a quotient structure A/H, when coupled with a specific isomor-
phism, say .

h: WEH = ];%i,

leads to a standard decomposition

1) h: UE = PUF:,

where U/F; == B; for each i, and we have

(2) ECPF; and h(z/B); = 2/F;, for every iel and ze 4.

The relations F, appearing in the standard decompdsitit?n are defined
by the formula ¥, = ker(prq o b o 71z), where pr, is the projection hom(s)li
morphism from P B; onto B,.(*) In case B = id4 we replace A/E by

iel

and @/# by = in the above and arrive at the important not‘ic?'n of a standg;d
decomposition of 9 associated with a given decomposition A = ig i

The relations F; (¢ ¢ I) are then said to form a (comx.Jlete) s.ys.tefm of factor

relations for 9. More precisely, we make the following definitions.
DerFINITION 1.1. Suppose that EC Fi(iel) w]’aere E and F;f aﬁe

equivalence relations over %M. We say that E is the direct product of the

relations Fy—in symbols

’ B=[]m,

tel

if (1) holds when the map kb is def}ned by (2). This is equivalent to the
satisfaction of the following conditions:
(i) B="{Fe: iel} (if =0 this means B=">4) Lior
(ii) For each z.« T4 there exists u ¢ A such that @ Fu for all ¢el.

. ! : "
(3) The restriction that none of the fundamental relfmons of a structure is empty
is necessary to make the projection map a homomorphism.
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(iii) For all teT and #e®4, if »/F;cR/F; for all iel, then
5|E ¢ RyfB.

If @ and H are equivalence relations over U, then we put

a¢xg=[]x

i€l

_ where F,= G and F, = H—provided this product exists.

DEFINITION 1.2, (i) Suppose that ¥ and F' are equivalence relations

over %, F is said to be a factor relation of & over A provided F = F xI"
for some equivalence relation F’ over 2.

(i) We denote by FR (¥, E) the set of all factor relations of B over U,
and we put FR(A) = FR (A, id4)—i.e. the set of all factor relations of A

For fairly obvious reasons, virtually every positive result regarding
the refinement property has involved a study of the factor relations
of a structure, in some form or other. Typically, some weak and rather
natural assumptions on 9 are shown to imply special properties of FR (2f)
from which the existence of refinements can be deduced. The concept
of a decomposition function, which will be defined next, i3 a very con-
venient aid for formulating and proving these results. It is possible to
associate with every standard decomposition of a structure a de-
composition function which. caxries all the relevant information. However,
for our purposes, it proves sufficient to work with decomposition functions
for products of two factors onmly.

DrriNrrioN 1.3. (i) Suppose that F,F e FR(A) and idg = I xF'.
By the associated decomposition function of % we mean the unique function
f: 2A~4 such that #Ff(z,y) and f(z, y)F'y for all #,y ¢ A. The set of
all decomposition functions of % will be denoted by DF().

(ii) Let feDF (). Then f* is the decomposition function for which
flo,9)=f(y,0). It o,ycd then we put fuly)=fly,s) and fi(y)
=f(z,y) )

Clearly, if f ¢ DF'(%) is the decomposition function for the decompo-
sition ids = F xF, then we may recapture F' and F' from f—in fact,
F = kerf; and F'.= kerfZ for any @ ¢ A. From this, one may easily derive
the intrinsic characterization of the set DF() [3; Definition 5.1 & Corol-
lary 5.2]. The basic properties of factor relations and decomposition
functions required in this paper are rather trivial and will be mentioned
at the appropriate place in § 2.

Strong refinement properties. We briefly recall the two strong
refinement properties which were defined and studied in [3]. A structure %
possesses the sirict refinement property it the formula id, = H =16

jeJ
always implies that F, = [l FylGy and G = [ [ 76y, for every pel
je

Im Cardinal multiplication of structures with o reflexive relation 65

and for every gedJ. A structure with this property obiviously has the
refinement property, as defined previously. In fact, if we replace two
direct decompositions % o= lf By~ 1}; €; by corresponding standard de-

compositions A P [Ty == P A/G;, then the structures D, ;= A Fii6y)

will serve as the deslred refmement The followmg eqmvalent form of
the strict refinement property proves very useful and suggestive.

TI{DORDM 1.4. [3; Theorem 5.6] The structure W possesses the strict
refmemem propm ty 7ff whenever f, g e DF(A), and @,yed, we hm:_e
f2galy) = Gafy)-

The second of the strong refinement properties can be regarded as
a local form of the: first. The pair (%, u) has the intermediate refinemient
property (where u e A) provided that the two formulas fugu(e) =% and
guful®) = v arve equivalent, for all f, g ¢ DF() and for all » ¢ A. If the
pair (W, u) has the intermediate refinement property, we cannot im-
mediately infer that % has the (ordinary) refinement property. However,
the implication does hold when u ig a reflexive element in f—i.es
(y Uy iey U € Ry for each of the fundamental relations R; of A [3 Theo-
rem 6.6]. In that case, given that

m_«ﬂn e,
eI  feJ

the quotient structures W/F, and QI/G‘Q will be eanomcally 1somorphlc‘
to ‘the products of substructmes, P?I( |Hp,;) and. PQI (w/H,q), respec-

tively, where .
~—ﬂ{1’1 i#pkn ﬂ{G‘f J#q}

The refinement property for cardmal numbers Oardma,l mulmphca.tlom
applied to structures of the form A= <A>, having no relations, is
basically no more than the ordmmy multiplication of cardinal numbers.
We have to say & few words on this topic because -some of our consi-
derationg reduce to this. By the produet of a system, b;(i eI), of
caidinal numbors—in symbols, Pbt—We mean, of course, f,he cardinal

number b which is equal to 1he cardmallty of any cartesian product,
P Xy, in which W(X ) = by for every 4 eI The theory of this operamon

1s obvmualy strongly influenced by the fundamental assumptions of et
theory, e.g. by the continuum hypothesis or its negation.
We say that a non-zero cardinal number t has the refinement property
iff the formulm e Lo L e
= Pm= Pm o
1el jeJ o A N “
Fundsmenta Mathematicae, T. LXX 5
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always implies the existence of cardinals b, ; sich that
fp= Pbpy; and my= Pbd;,
jeJ ) iel

for all p eI and kq €J. Let us observe that the above formula will have
a refinement if for some p el and ged, 1, =1 =1y for we can then

take di,q = 1y and by,; = my, and dsy =1 for all 4 # p and J # ¢. Observe »

that every finite (non-zero) cardinal has the refinement property, and
" likewise the least infinite cardinal, s,. An infinite cardinal of the form 2"
does not have the refinement property (2" = 3", and this cannot be
refined).

If the general continuum hypothesis is assumed then it is an easy

matter to decide which cardinals have the refintement property, viz. they
_are ‘the finite (non-zero) numbers 4nd the infinite limit cardinals. For
example; the continuum hypothesis—2" ="x—ig equivalent to the as-
sertion that x; does not have the refinement property. The refinement
problem for cardipa\.l"numbers lies outside the scope of our paper and we
will 'say 1o ‘more-about it.

We close this section with an elementary result which will be used
a8 a lemma in the proof of Theorem 4.4, We give the proof now in order
to avoid obscuring the principal features of the later argument; however,
sinee it iy rather involved and not very well motivated, the reader might
profitably postpone reading what follows until the need for it arises in § 4.

DEFINITION 1.5. Suppose that Xy, (i eI ) J skJ) is a system of non-
empty sets indexed by a product set I xJ. Let D, el xJ.

(i) We put X, s = ]3 Xp.1, and likewise, Xu = P X
je iel

iy

(ii) For an arbitrary function f Dbelonging to the product of.the
system X, we define fp,« ¢ X, x and fx,, € X+, by the formulas f, +(j)
=7(p,7) and fxq(i) = f(s, g).

THEOREM 1.6. Let X be the cartesian product of a family of non-empty
sots Xiy (iel,jed). Assume that correlated with all the Sunctions fe X,
geXps and heXug ({p, > eI xJ) there are given mon-zero cardinal
numbers n(f), np(g) and my(h), respectively, which satisfy

) n(f) = Puifi = Pmlfey)

€ 7€

Jor every f e X. Assume also that the smallest of the numbers w(f), call it 1,
has the refinement property, and that either

(i) n 7s finite; or

(') = n(f) for precisely one element feX.

Under these assumptions, there ewists g system of cardinal numbers b, ;(x),
Jor we X, ;, which satisfies

icm®
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(iii) np(g) = ;I; b5,5(9(5)) and my(h) = i{; Di,g(h()) whenever (p,q> e
je.
eIXJ, geXp« and he X ,.

Proof. We derive the conclusion first under the assumption that
the families X 4, nt, ng, my satisfy (i) and (ii). We proceed by induction
on the number of prime factors, counting repeated factors, of the finite
number . _

Let first T = 1. Choose f ¢ X to satisfy Ti = n(f). For each <k, I} e I xJ
and & € Xy,; define f[%, I; 2]« X to be the function which has the value @ )
at <k, 1> and agrees with f everywhere else. We can see now that there
is only one possible choice for by, (z). In fact, for every f € X, (i) and (iii)
imply n(f)= P b:s(f({,5)). Whence we must have bd;;{f(,4)) =1 and

i .

(1.1) (@) = n(j[k, I; 2]) ,

since [k, l; #] agrees with f except at <(k,l). We define dzi(#) by (1.1)
and verify that (iii) is then satisfied. R

It follows from (i) that wi(f[k, I; #]i,%) = na(fs,») = 1 and my(f[k, I; @]+, 5)
= 1my(fs,;) = 1 for i £ & and j # I. Thus from (i), applied to f—é ik, 1; ],
we obtain (by (1.1))

(1.2) br(w) = m(fLk, I @], %) = mu(Flk, I 21e) -

Finally, let p ¢ I and let g € Xp . Defining f ¢ X by the requirement
that fp+=g¢ and fix=fi« for .all ie¢I—{p}, we have that fs;
= f[p,3; 9(j)1« for all j eJ. Thus, in view of (1.2), the condition (i) for
this f, when factors equal to 1 are discarded, becomes

(1.3) n(f) = ny(g) = 15 05,1{g(9)) -

The other half of (iii) may be verified in the same way, thus concluding
the proof in the case m = 1.
Let now 1 be a finite integer greater than 1, and assume that the

theorem is valid in’ every case in which the least of the numbers n(f)y

is a finite integer with fewer prime factors than 1 (counting repeated
factors). Again we choose f such that i = n(f). Let p be one of the prime
divisors of 11, and let Ty = {i € I: mu(fi,+) # 1} and Jo = {j e J: my(fe,5) = 13-
From (i) and the assumption that T is finite we have

(2.1) I, and J, are finite; my(fis) = 1 for i e I—1T, and my(fs;) =1 for
jed—d,.

Our plan involves constructing a new system ', np, my satisfying (i)
and for which n'(f) = Ti/p. The following well-known facts will be needed:
Writing f-g for the product of two cardinals f, g, and gl (g divides )
to denote the existence of an { such that h = f-g, we have:

. 5+
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(a) if. f-g==1f-h, where f iy a finite non-zero cardinal then g= ¥y,
(b) if p]] 1; bx, where p is a (finite) prime number and bz = 1 for all
€. v . .
but a finite number of % e K, then p|hs for some % ¢ K.
The key statement to be proved is‘the following::

(2.2) There ewist iy ¢ I and jo € J such thai for every g ¢ Xy« and for every
hoe X joy U gljo) = h(d) = [{dy, Jo)- then plunlg) and pimy(h).
. T:n the proof of (2.2) we will assume without loss of generality

(2.3) 'Whemver il there is a function ¢ e Xy such that p does not
divide 1(g). <

If (2.3) fails we can get (2.2) very quickly as follows. Let iy € I guch
that pln,(g) for all g € Xy, 4. By (i), pu(f) for all f ¢ X; and if f ¢ X satistied
fri=f4,; for all j eJ—d,, then by (1), (2.1) and fact (b) we must have
plmy{fs,5) for some j e J,. These facts imply that for some Jo € Joy plmyy(hy
for every h e X, j—simply.because any system of functions 1% ¢ X, %7 (j )
{1efines a function f ¢ X for which fi,; = 1% for every j eJ. Now the oy Jo
Just obtained will fulfill (2.2). C

'Proceeding with the proof of (2.2) under the assumption (2.3), we
let & be any element of I for whith Pittao(fin, ) (existence of 7, is ensured
by (i), (2.1) an‘d fact (b)). Now, by (i), (2.1) and (b), assuming f e X satisfies
fai = faj 10 j ¢ J~Jy, and also fi, x = i, «—i.e. fx,; agrees with Ja ; ab 4o,
for every. j e J——we necessarily have that ‘plmy( fx.7) for some j. Hence

by an aJ.rgument entirely analogous to that in the last pa.i‘agmph, we cal
choose j, €J satistying ‘ '

(24) If he Xnsy ond h(io) = iy, d0), then vl (h).

- It remains to verify that (2.3) and (2.4) imply that the pair o, j
fq].fﬂl (2_.2.); in otherwords, letting ¢ be any elex)xlehtpg X, % Whicl? Satis‘;?’ig,;
§(Go) = 7{4, Jo); we have to show that piny(g). By (2.1) and (2.3), there
iy an fEX.fQI‘ which fi = g, ny(fix) =1 if 4 el —I, and % 5 4, ‘and P
d'oes not dlxr{de 1 fi,*) i i¢fy and 4 % i,. For such an- fy (i) and (2.45
give pli(f) (since £, s(io) =.g(4o) = F{iy, jy)); hence by (i) and (0); pinelfs,»)
for soine.i. The ohly possibility iy 4 = id.e. phug(y). J

The argument for statement ' ;
with the inductive proof of our
Selecting 4y, j, to satisty (2.2)
feX, g G.X,[,f, h F.X*,j
(28) () () =n(f¥p 4f f(ia, Jo) = F(io, Jo); and w(f)

" (2) milg) = nlg)fp :

otherwise ..

theorem for the given case 1 < T < &,.
we define, for each ¢ eI, j eJ and for every

T - =1(f) otherwise.
V?f t=1 and g(j,)= Fléoy Jo); while wi(g) = m(g)

(2.2) is now complete and we continue

iom®
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(8) mj(h) = my(R)fp if j = jo and h(ig) = F(dos Go); while mth) = my(h)
otherwise. s -

An easy é.ppheation of fact (a) shows that the system X, ;, o', s
mj (i e I, ] eJ) satisfies condition (i). Moreover, the smallest of the cardinal
numbers 1'(f) is clearly n/p. We may therefore employ the induction
assumption to obtain a system of cardinals bj () (¢ e Xy;) satisfying

(2.6) " 1mg) :‘1{;%’7‘(9(]‘)) and mg(h) = I_g 1,q(R(3)) whenever <p, ¢> ¢ I xJ;

geXpx and he Xy,

The last step, of course, is to put
(2.7) bas(@) = pdhs(®) i <Gy §> = iy Gy and @ = Flio, Jo); while by 5(2)

= by, 5(®) otherwise.

It is an immediate consequence of (2.5), (2.6) and (2.7) that the
system by, ;(2) satisfies statement (iii) of our theorem, and the inductive
proof of theorem in the case of finite 1t is now complete.

To draw these tedious deliberations to a close, let us now assume
that we are in the remaining cdse, where (i) and (ii’) are satisfied and i
is an infinite cardinal having the refinement property.-Let f be the unique
member of X for which 7 = n{j). Since & has the refinement property
the formula (i) with f= } has a refinement, and we have a system of
cardinals 3;,; (4 €I, j eJ) for which : ’

(81) ma(lp) = P3p; and mylfe,g) = P3iq whenever @ @ eIxd.
je. ie. . .
Let us define, for <i,j> eIXJ, fe X, geXix, he Xx;
(3.2) M) W(f)=11 F=f; w(f)=mn(f) otherwise.
(2) Wilg) = 1 if g =7s% 1ig) = 1ulg) otherwise.
(8) mj(h) =1 if b= fxs; mi(h) = my(h) otherwise. ,
Using the familiar fact that the product f-g of two. cardinals, at

least one of which is infinite, is equal to the larger of the two we can
demonstrate : o

(8.3) The system ', ni, mj (iel,jed) satisfies (i). Moreover
(1) mlg) = ni(g) u(fs,x) for all g€ Xyu;
(2) my(h) = mj(h)-My(fx,5) for all b eXu ;. =
The central fact used here is that whenever g ¢ X;« and g # fi_,t then
ni(g) > n—otherwise, defining fe X so that f,«=g and fi*= fi» for
k == 1, we should have f # f but ) '

) =ndg)(, P alfun)) <F-
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- Similarly, wy(h) > T if b e X« ; and b # fx;. From these observationg
(3.3.1) and (3.3.2) follow readily. Then the argument to show that w,
%, mj satisfy (i) comes in two cases. Let Je X.If f= fit’s trivial. If f = f,
then letting = 1; ni(fy*) we have i< and so - ‘

n=mweii= PI(fun) ] = (),
. : i€ :
by (38.2.1) and (3.3.1). That n'(f) = .I;m}(fm) is obtained in a similar way,
e
To complete the proof of Theorem 1.6, we observe that (by (3.2)
and (3.3)) the existence of a system, bi,(®), satisfying (2.6) with the

new ', i, mj is ensured by the half of the theorem already proved.
Putting Lo

Di5(®) = 34,505 5(@) (% € Xy 5)
it i3 a trivial matter to derive (iii) from (2.6), (8.1) and (3.3.1 & 2).
2. Binary structures. Our principal intéréé.t is in. the so-called binary

‘structures, i.e. those of the form (B, & where S has fank two. Although
-our first investigations were directed -to the case where § is reflexive,

it now appears that no extra efforts are required to establish the basic

results for a certain clags of connected structures which properly includes
the class of all connected binary structures with a reflexive relation,
viz. for the class Q introduced in Definition 2.1 below,

This section contains the definition and basie. properties of special
notions which we will apply in this paper only to binary structures. The
next section gives the proof of the fundamental lemma regarding direct
decompositions for structures in the class @, while the following sections
develop the consequences of the lemma. ' : S

Applications of the regults beyond the domain of binary structures
will be discussed in some detail in § 9. As’in [3], many interesting appli-
¢ations can be obtained in a trivial way ‘through the. observation: that
if A= (A, Ridier, and if either B iy one of the relations Ry, or it can
be obtained from the R; by means of certain admissible operations, then
DF (%) C DF(<4, RY). Thus if there can be congtructed by such means
a binary relation R satistying some weak conditions then our fundamental
lemma gives some significant properties of the decomposition functions
of . (The admissible Gperations on relations are, of course, simply the
operations C for which always

DF(<A’ Rl’ ey R"'>) c DF(<=A-‘, G(Rla ey Rn)>7

for example, the operations of ‘concatenatiqﬁ, intersection, permutation,
and universal and existential projection are admissible.)
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DrrFrrITioN 2.1. We define four classes of binary struetures:
(1) R= {{B, 8): § is reflexive over B}.
(2) R°= {<B, 8>: 8 is connected and reflexive over B}.
"(8) U= {KB, 8>: §="B}.
(4) Q= {¢B, 8>: 8/§ and §|S are connected over B}
One can easily verify that UC R°C Q.
DEFINITION 2.2. Given an arbitrary binary structure 8= (B, §),
we define the “quasi-ordering” relations and the “quasi-identity’” re-
lation (%) of B:

% <1y <=V, e B(zSx—28y),
<Y <> V. e B(282—>y82),
TLY =<y &< Y,

sy <=y &y < o;

if it becomes hecessary to distinguish B from some other structures then
we write ~® in place of =~. We put
8K (B) = B/~,
and eall it the skeleton of B. We call B thin iff ~ = idz. (Elements of U
might be called “obesse”.) .
Obviously, the skeleton of B is thin; an equivalent condition for B
to be thin is that B == SK(B). o
" LEMMA 2.3. Let K be any one of the classes R, R, U, Q.
(i) If B= <B, 8) ¢K, then dom 8 = rngS = B. :
(i) B'e K {ff 8K (B) K.
(iii)y If .};%i <K, then BieK for all iel.

(iv) If K= R or U and we have B; e K for all iel, then PBycK
€ .
(V) If = P®B:cK, then SK(B) =« PSIK(By). In faci, for cach f « B
iel i€ .
we have fla®= P fif ~™. A camomical ‘isomirphism is defined
iel

by setting o(f] ~%) = (fof & i e ID.
Proof. (i) is trivial. The only question -arises when K= Q and
#(B) =1, but then it follows from our tacit assumption that S = @.
(ii)~(v) are very easy. The only requirement for the validity of (v)
is the assumption that domS = rng8= B, as in (i).
The procedure for constructing an arbitrary binary structure from

) Cha.ng'[.?] called this the “maximal congruence relation” of B.
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its skeleton is rather obvious and quite similar to cardinal addition, Tt
will be convenient to have coneise -notation for this construction, ‘
DEFINITIQ.N'Z.Z,L Suppose that €= <C, T) is a binary structure and
that Zz ( e 0) is a system of non-empty, pairwise disjoint sets indexed, by €.
(i) .We put C[Z] = (B, 8, where B = | J{Z4: # ¢ C} and & is defined
by requiring zS;’ iff #T2', when 2 eZ, and 2’ € Zy .
(i) By ¢z we understand the unique homomorphism from
onto € which satisties ¢z'(%) = Z, for all v ¢ C. G[Z.]
LeMmA 2.5. Let B be an arbltrary binary structure, let € be g thén
structure and let Z; (v € 0) be o system. of sets as in Definition 2.4.
(i) kerpz = ~"% and €= 83(C[2]).
(i) If €= 8K(B), and Z; = & for each element & ¢ C, them C[Z]= B
Proof. Trivial, . . )
L’EMMA 2.6. Assume that € and D are thin stmctures, and that Zux « 0)
and Z.” {y s'D) are systems of sets as in Dcfonition 2.4, Then ClZ) = Dr2714f
there is an isomorphism p: € >~ D such'that #(Zy) = #(Zp) for every » € O,
Proof. Let :I)I= (AR §3= D[Z']. Assume that y: 9 =~ B. Then
forz?ertf, y(a/~") = y(a)/~°. Le., by 2.5(i) and 2.4, for we C,y(Zy)
= Zotzy Tor some g(2)eD. Clearly, ¢: €~D and #(Z,) =
= #(Zgy) for all we (- 7 % oz

The other direction is even more obvious.

’Thfa.next anq. final lemma formulates the basic properties of de-
composition functions (Definition 1.3) which will be needed in the next

section. 2.7 (i~vi) are taken from [3], while 2.7 (vii- i
fooon. 27 (vl o , (vii-ix) can be derived

LeMMA 2.7, =
ihat f « DF(B). ﬁél""e =G 80
(_i) f(f(wz ?/), z) = f(x, 2) =f(m;f(?/5 z})
(H) flo, &) = a.
(iif) fu?? =fuy ff for = foy.

V) o=y iff fur=fuy and o = f2.
(v) 8w and ySv Jointly imply F(@, )8 f(u,v)
(vi) f?,,wa,,y and f."},wafy‘-joMily imply z8y.

(vil) z~tu. and Y= jointly imply F@, y)~f(u, ).

(viit) fuwwfuy iIff fomssfyy. :

(X) e~y Uf furnfuy and fin~tly.
3. The fundamental lemmé.‘ Here it is.

Lenwa 3.1. Assume that B — B, S8
= >eQ. W
and for all f, g <DF(B), fuguy mpnfny. -

that w, v, w, @, y, 2 € B, and

¢-have then, for all x,y e B
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Our proof of-this proposition will be completed directly following
the proof of Lemms 3.3. We remark that although the next two lemmas
are convenient steps in the proof of Lemma 3.1 they are also easy
corollaries of 3.1. .

LzvwA 3.2. Assume that B=<(B,8)>eQ, that z,y,2,ueB and
that f, g e DF(B).

(i) If «Sfuy and x8fuz then xS8fug(y, 2).

(ii) If 8fuy and 8fuz then x8fug(y, 2).

Proof. It suffices to prove (i), since B ¢ Q implies (B, $ eQ and
this structure has the same decompositions as B. Suppose that zSfuy
and #8fuz. If y = 2 then y — g(y, 2) and the desired conclusion follows,
Otherwise, we apply the connectedness of %8 and obtain a finite sequence
Y= Yoy Yuy o1 Yn =2 With yi8|8y;y, for each s<n (this is what the
connectedness amounts to, since giS is symmetrie, a8|Sb iff b8|Sa).
Hence there are w0, ..., Wa—1 € B for which w:Sy; and w;8¥:41, for each
i < n. We may ensure that #.8fuy; for each i < n, by replacing if necessary
y: by f(z,y:) for 1 < i <n and w; by f(z, ws) for 04 < n. We thus
obtain

(1) 00, wy, ...;wn_l; Yoy Y1y ...', Y3 @, % € B with @ 8fuy (i<m) and wiSyi,
wilYi+1 (2 < m). :

Moreover we have y =y, and z = Ya.

Lemmsa 3.2 will therefore follow if we are able to prove that (1)
implies #8fug(Yo, ¥n). We now prove this by induction on » > 0. For
n =1, we first note that f,@Sy: (4 = 0,1) by Lemma 2.7 and thereforé

Fu8g(o, 91) (by 2.7 (ii), (v))—i.e.
(2) fwfvsfvﬁfug(?/u: Y1)

AS f2 140> Y1) = (Yo, %) = fuyo, the formula @8fuy, may also be
read as

) Fam8fpfug Yoy ¥1) -

Combining (2) and (3) we obtain the desired conclusion, #8fug (Yo, ¥}
by 2.7 (vi).

To complete the proof we now assume that, in (1), #>1 and
that the corresponding statement with # replaced by n—1 impliés
28fug (Yo, Yn—1). Two applications of this induction assumption give
us that :

(€ 28fug(Yo; Yn—1) and  @Sfug(Y1;9n) -

Setting ¥y = ¢(Yo, Yn-1); Fr= (%, Yn) and W= g(wy, Wn-1), We easily
show that the system @,; 7,, 7:; %, % satisfies (1). Since §(Fo; T1) = 9(Yas ¥n);

where = g(Yo, ¥1) -
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the case m = 1 just handled gives the desired conclusion: @ Sfug(y,, yy)
This concludes the proof of Lemma 3.2.

Lemwra 3.3, Assume that B = (B, 8) € Q, that v, w,x,y ¢ B and that
fy 9 ¢ DF(B). If fownfoy then also fugu® ~foguwy.

Proof. Suppose that fuw~f,y. We will show that this implies

(1) fofu® <1fogwy - (see Definition 2.2) .

The argument for (1) contains the crux of the proof; indeed the
remaining argument—which is omitted—ean be summarized in a few
words: Replacing § by § in the proof of (1) we obtain a proof that fofu
<r fofw¥; thus fofw < fugwy. The symmetry of assumptions on z and Yy
allows us to conclude that this.formula remains valid upon exchanging z
and y. We then infer that f,gu®~foguwy by Definition 2.2.

To begin the proof of (1), we apply 3.2 (i) to the formula fowrfoy,
and easily infer that fow <ifug(y, #), i.e. we have

(2) c Joa® 1 foday
Next we shall prove the following staternent.
(3) Let a,,bveB‘ such that aS"j;S’b. If Jfola® <1 fogay then To o < fygby
But ‘first notice that (1) follows- by a frivial inductive argument
fr.om (2), (3) and our assumption that S|§ is connected over B. So everything
hinges on the proof of (3).
In order to-prove (3), we now assume’
(o;)’ aS"[Sb, Joa® <2fogay and for a cei'ta,in element z ¢ B, 28f,gp;

and we ].mve to get that 28f,gy. Using («) and 2.3 (1), we choose ¢, d, ¢ ¢ B,
and define two other elements %oy %i, to satisfy the following

® pS_q, c8b, a8z, eSy and w,= g(d, ¢), uy = g(e, c).

From (B) ‘and 2.7 i(v), we then have

(1) 8 gat, u8gpw  and n 8 gy .
Now ‘we put
(8) ‘ Z=F(z,u,), %= g(Z, ug) , % =g, 2);
and perform somie caleulations. We have
() 28gs, by (3), (), (v), 2.7(v) and 2.7(i, ii), i.e. the

fact that gz = f(fope, guo);
by (3); (v), () and 2.7 (v) and because
- 9a%=g(gs, ¢ur) and gow = g(gu, go);
by (), (e), 2.7 (v);

(1)  2,8¢a2 and 28 g,

(52) 7 f:éOwaAqlamy' .

iom®
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by (s5) and (), i.e. the assumption. that
fuga® <1 fv9a¥;
by (a), (s1); 2.7 (¥);
by (es), (4), 3.2 (1) and because gey = g(gay , go);
by (8), (¥)y (s0)y 2.7 (¥);
by («), (=s)y 2.7 (V)3
by (es), (e)y 3.2(ii) and the fact that
Z = g(2%, 2) .
Finally we note that by (3), f-Z= 2z and hence (e) already expresses
the desired conclusion, 28f,g»y. This concludes the proof of (3), (1) and
Lemma 3.3. -
Proof of Lemma 3.1. Let BeQ, 2,y B and f, g« DF(B). We
have fzfzy ~fzy, in fact the two sides are equal. Therefore by Lemma 3.3
Jagafzly ~=fzgay, e '

() fo% vagay:

(=) fs208fogsi,
() fsroSfugoy,
(zs) 2890y,

(&) feriBfomy
(=) f-28Ffs00Y,

(1) fel9=fzy) mfolfagay) ‘
On the other, hand, «fifxy.mw @fiw, and, therefore:by. Lemma 3.3
@) FUgafsy) mf2gs0 ~ 0 ~felfag2y) -

Now the desired conclusion, gzfzy~fz¢zy, is clearly an immediate
consequence of (1), (2) and Lemma 2.7 (ix), and so the proof is complete.

The following corollary is weaker than the fundamental lemma,
i.e. some structures satisfy the corollary while failing to have the property
expressed in Lemma 3.1. Nevertheless, it is the appropriate tool in oné
proof of a central theorem in the next section. :

CoROLLARY 3.4. Suppose that B € Q and that
@ ' BCxDL P B

Let w be any element of © such that wTu. Then € = C(uf ~% e U;
and we have .
(2) (€' xD) = };%%

for a certain system of structures B;C By. ‘ ‘

Proof. The statement about &(u/ ~%) is trivially equivalent to the
assertion % T u. )

Let feDF(ExD) be the decomposition function such that
flle, @y, (s &'Y) = ¢, d'» For iel, let G;= ker(pr;-p), the kernel of
the map € xD—B;. For i eI, let ¢° be the decomposition function of
€ xD correlated with the decomposition

idoxp = Gix( ” Gj) .
jeI—{i}
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Thus, '_i]"'(m‘, 9) = ¢ () Where by = p(w); and by = g (y); for allj e I— gy
Now it should be evident that (2) is equivalent to the followin
statement ' ¢

()" If'yo=Ces, di> € OxD and e for all i ¢ 1, and if y = <c, dy is
the unique element of OxD such that (¥ = o(y:)i for all"ie I:
then ¢~ u. : : : ’

To prové this we take #= (u, d) and‘hote first th
. at, by 2.
#~fzy: (all 4 eI) and so, by 2.7 (ix,) ) By 28,

@) Grongifeys  (all iel).

" Next we have giy;= gly and hence, by 3.3. g'7 i
1€ I, which when added to (4) gives DY 55 gelll N‘gmfm?/ or

(8) Giomgifay  (all del).

Using 2.3 (v) again we find that i i . i P
%6, a8 desired. #% (5) mplies @~fay and this means

4. Refinement theorems. One should observe at once t !
st?n.lblan_ce that L.emma 3.1 bears to the necessary and sugflieeiziiseecflii
;htmn for the S‘i']I‘IOF refinement property expressed in Theorem 1.4. The
emma.appea.rs— In its context to be the best conceivable substitute for
the strict xeﬁnemen{; property. According to it two elements Faguy ‘and
g;f:ﬁe csatn ntot be. distinguished by means of the fundamental relation
fwo suehriﬁeﬁzﬁf? general, there will be no further connection between,
bmarﬂ;hsetf;r:;: uj:vo ‘tmlrleoremsj vbelowl improve the results of [3] concerning
o S. e get, in particular, the known result that the striet
ment property is possessed by every structure <B, §> in which § is

a oonn'eete(.i (reflexive) partial ordering relation over 1’3 The proof
Immediate, by 3.1 and Definition 2.2. ‘ proo e
THEOREM 4.1. If B «

refinement property.

THEOREM 4.2. Suppo

hgs the intermediate rff{?n::nzif:»‘:tp?o;g;yqf “Bond v = tw. Lhen (8,4)
andilf%;nilsazlllz :ﬁ#& Theorefm 7.3] says thatif B is reflexive and connected
iinph’es Iy Symmetric element of B with respect to 8, i.e. aSulw
o inter fhms f’r 3 e;h(fB,u) hag - the Intermediate refinement property.
e i obz:; [ :prem 4.2 note that if uSu and z~u then 2.u s »,
to g rva ion that, by.2.3 (v) direct decompositions of B lead
ecompositions of the thin structure SK.(8B), it is quite easy to

get Lemma 3.1 back from Theorem
eni 4.1, {
expresses the full strength of the lemma:l‘ s e e that Theorem 4.1

Q is a thin structure, then B possesses the sirict

icm®

Cardinal multiplication of structures.with a reflexive relation 77

We- proceed immediately. ‘to & characterization of structures pos-
gessing the ordinary refinement property. (The previous Qiséussion of
the refinement property for cardinal numbers—at the end of § 1—now
becomes relevant.) The characterization is the following:

THEOREM 4.4, Suppose that B e Q. Define 1t 1o be the smallest cardindlity
of an =s-coset of B. Then for B to have the refinemeni property it is neces-
sary and sufficient that T have the refinement property and that either (1) 1 is
finite; or (ii) 1= #(u/~s) for exacly one s-coset, uf .

Proof. For the sufficiency, assume that the condition is satisfied
and let there be given two standard decompositions of B.

(1) PU=B = };SBj, where ‘lIexﬁB/Fz and Bj= B|Gy for all tel
iel je B

and jed. o
From (1) with the aid of Lemma 2.3 (v) we obtain decompositions
of the skeleton of B which lead to two standard decompositions

@) ".1; W o SK(B) = P B, where W= SK(B)[Fi == SK(W), Bj=
1€ je . E

= 55K(%B)/6} == SK(%By)- ,

Here of course F is the kernel of the map 83 (B)—>83(Ar) implicit

in Lemma. 2.3 (v), and analogously for @;. As a consequence of Theorem 4.1

applied to the thin structure 8J(B), the formula (2) has a canonical
refinement

(8) Upo PDp;and By ];3)2,4 for all pel and qed, where D
jeJ i€ "

= SK(BFG).
Tt is useful to reformulate this in the notation of § 1 for direct products
of equivalence relations. Composing the canonical epimorphism B —83(B)
with the projections from S¥(B) onto its quotient structures we find

{4) Wi == QS!F{, EB; = %/é], D;:,;r = %/Ei,j where F; = .Fi/msB, E}’j = G]]R‘}m

and Hy;= Fi|Gil~".

The formulas (2) and (3) evidently become .
(3) &%= [I Hij Fp= n Hy,; and Gy = ” Higfor every pel, ged .

0,7 jed iel

The basic idea for proving sufficiency in Theorem 4.4 is to expand
the thin structures Dj ;-appearing in (3), by the construction of Def. 2.4,
to obtain new structures D;; = D}, Z2>”] which constitute a refinement
of (1). Essentially this means finding a system of cardinal numbers by, ;(x)
= #(Z%"), x e D},;, subject to certain restrictions. For this we are going
to use Theorem 1.6. In the following argument we work directly with the
structures B/H;; = Di;. ' :
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For the application of Theorem 1.6, let us define X;; = B/H; (¢, j>
eIxJ) and X = }; X.;. By (5) the functions feX are in. one-one
K B

correspondence with the ~®-cosets of B: for corresponding elements
feX and u < Bj~® we have f(i,j) = «/H,; whenever » c¢u and <, 9>
eI xJ. To the function fe X we now attach the number n(f) = #(u)
which is the cardinality of the corresponding ~®- coset. The assumption
in Theorem 1.6 regarding the numbers n(f) is clearly satisfied, in fact
it is equivalent to the statement about 7t in Theorem 4.4 which we are
agsuming to be valid. Next, let p e I and, in the notation of Definition 1.5,
let geXp«. By (B), there is a unique element 7 ¢ B/F, such that g(j)
=4y[H,,; whenever y¢7 and jeJ; in the canonical isomorphism ((2)
and (4)) between B/F, and SK(Uy), 7 corresponds to an ~M- coget of Ap
which consists of all the elements y/Fp, y e7. Let np(g) be the cardinal
number of this coset. Define, in a similar manner, my(h) for & e Xy qed.

Let us now verify condition (i) of Theorem 1.6 for the numbers
intrgduced above. Let f be an arbitrary function belonging to X and let
@[~ (z € B) be the corresponding ~-coset. Under the isomorphisms (1)
the element = maps, on the one hand, to the function {@,x: 1 € I) where
%+ = «/F¢, and on the other hand, to (ws;: jeJ) where Tx g = 3|Gy.
‘Whence bq;y Lemma 2.3 (v) the set a:/;u’B ig carried on the one hand onto
P (@.+/~"), and on the other hand onto p (@x,5/~"). Consequently,
we can infer that

L@t~ = 0(@n®) = P o(ann").

Now it follows from our definitions that the cardinal numbers in
t.l(1;)a.b0j1e foz";ﬂui& are, reading from left to right, none other than n( fi,*)y
n(f) and my(f« ;) respectively—henc i a
dion (1) of oon n? o Y- e the formula simply expresses con-

Fx})m Theorem 1.6 we obtain a system of cardinal numbers b, i(w)
u € B|Hy,; satisfying the following for all pel and ged: ,}

(6) IfT=a/Fpedy and 7= Y/Gy e By (%, ¢ B) then
#(5/“%) = e Dy, 1(a) Hy, 1) )
je

Y = P budy/Hey).

. The proof of sufficiency is now to be concluded hy using these numbers.
b;,j(u) to construct the desired refinement for (1). YVe put

Dis = (B/H,,;)[2")

icm®
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defined as in Definition 2.4, where the disjointed system of sets A
selected so that we have

#(Z8P) =bys(u) for every weB/H;;.
We claim

(1) Upt PDp,y and Byt PDyq for pel, qed;
jeJ iel

and the proof is quite simple—based wpon (1)~(6) above and Lemmas 2.5
and 2.6—but let us say a few words about it.
One can show very easily that if we define By »= , }3 B/H, ; then
€,

P Dy, ;= Bps[Z7M)]
jeJ

where
7%= p o
jeJ

for every ge B,+. By (2), (4), (5) there is a canonical isomorphism
@: SK(Wp) o2 By, + which maps &f &7 onto <z/Hp,s: j €I, where & = a[Fy.
Now it follows from (6) and the definitions that #(t) = *#(Z%") for every
te Ay/~"?. Consequently, it follows by Lemma 2.6 and Lemma 2.5 (i)
that Up = By «[Z®]. The other half of (7) is proved similarly.

The following examples establish that the condition stated in
Theorem 4.4 is necessary if the structure B is to have refinement property.

Exampie 4.5. If the cardinal T defined in Theorem 4.4 does nob
hsave the refinement property then it is infinite and we have say n = ; E fu
= Pg; with no refinement. Let F: (i e I) and @ (jeJ) be structures

jes
belonging to the class U (Definition 2.1.3), having cardinalities fi, g;

respectively. Let B’ be a substructure of B obtained by throwing away

all but one of the elements in some ~-coset having n elements. Easy

considerations based upon Lemma 2.6 show that B = B’ ><1E 1; Fi2 B x
€.

X P ®; and there is no refinement.
jeJ

ExAvrLE 4.6. Assume that the cardinal T defined in Theorem 4.4
is infinite and there are two elements w,v ¢ B such that #(u/~)=1
= #(v/~) and uz v. Deleting all the elements of u/~ except u we arrive
at a substructure B, C B. Throwing away all the elements of u/~ v v/~
other than «, v we obtain another substructure B,. Let 0 be any structure
of the class U having cardinality 7. Now we have B = By xR =~ B, x%t
and there is no refinement. -

COROLLARY 4.7. Let B = (B, 8> be a finite structure. If 8§ and S8
are connected over B or, less generally, S is conmected and reflexive over B,
then B has the refinement property.
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“ Proof. By Theorem 4.4.

The significance of our fundamental lemma (3.1) is perhaps most
forcefully emphasized by the corollary of Theorem 4.4 asgerting that ever :
connected reflexive binary structure (member of R®) with g finite ~ clagss’
has the refinement property. Another way of obtaining this resul will
be sketched below. It illustrates a method which we shall uge again in § 9
to derive some applications for our results beyond the domain of binar
structures. This method has not been fully formalized in the 1iterafnurey
although it was used implicitly by Chang [2] and independently abou{;
the same time, by McKenzie [9; § 3]..It requires some preliminz’mries of
& quite general character—terminated by Theorem 4.13—aifter which we
shall return to the case at hand.

) In the following definition we assume that K and K, CK are non-
void classes of relational structures of a fixed but arbitm;y similarity
type, each of which is closed under the operations of forming direct
factors and divect products of finitely many structures. Let 1 denote
any oue element structure (with universal relations) similar to the strue-
tures in K. We have, of course, 1¢K,. Let K, denote the class of all

AeK such that every direct factor of U which belo is i
morphic to 1. o E mes to K Is so-

DEFIN:ITION 4.8. We say that K, is a characteristic subclass of 'K if
and only if the following conditions are satisfied:

(i) ASSume.that ° = 5 U for some indexed system 9A; (i eI) and

that A ¢ K. Then ;¢ K, for all ie7 implic imi i
) X S AeK,; 4
Wi e Ky for all i e I.then U K], o @i and, silarly, 1

(i) Whenever U < K, there are two structures ko) € Ky and #eo(2A) € Ky
such, tha,t, A o {cU(QI) X ko(A); and moreover the fermulas U = %, x%y,
91,,61(0,’ U« K; imply that 9, o k(%) and A o ky().. The structures,
(), Teo(2) will be called respectively, the K, and K sections of A v

COROLI;;&RY 4.9. Suppose that K, i T C
. o 48 characteristic in K. If A ¢ K and
‘Hgi{;% then s e K for all i eI and we have f We B an

Feo( ) = D ho()y (W) 2 P RG(A)
€ . iel
Proof. Trivial by Definition 4.8,

The concept of characteristic s corta
_concep ’ subclass is certainly a natural one
For motivation we remark that if K containg exclusively finite structures

h I t hat y K Tt f i hi types
t ‘en it Just means tha the Semlgloup conSIStmg O; 18011101[) 1sm yp

str peration” induced by binary cardinal multi-
Dplication (cf. § 5), decompoges into the direct product of the semigroups

Ky, K; with the Projection maps induced by ko, k5, In the more general
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case our definition requires mote than this.” Note that if K, CK is
characteristic then for every % e K, U has the refinement property if
and only if k() and ky(¥A) have the refinement property.
. Some useful examples of characteristic classes further motivate the
definition. (For each example below it is either well known or easily
proved that all structures belonging to K, have the refinement property.)
ExamprE 4.10. Let K be the subclass of R° consisting of all % with
a finite ~v-coset. The class K, = U; of all finite members of U (Defi-
nition 2.1.3) is a characteristic subelass of K. This is essentially well
known (see [2]) and, of course, follows from Theorem 4.4; the proof is
a small fragment of the argument for Theorem 1.6. The reader is invited
to discover the intrinsic characterization of the complementary class K;
and the funetions %, k. o :
ExawpLe 4.11. The class K of all finite ternary structures W = <4, R},
in which R is a binary operation over %, has as a characteristic subclags
the class K, of all finite groups. (The proof i§ to be found in [9; § 2]. This
formulation of thé result, however, is not found there.)

- Exampie 4.12. Let K be an arbitrary class of finite structures
{having the same similarity type) closed under the formation of facters
and finite products. As in [2], we say that a structure'Y e K is prime in K
if the formula AB x E(B, € « K) always implies that either A|B or A|E.
We say. that U iz cancelleble in K if A xB = A xC(B, € < K) implies
that B =~ €. Let L be any class of structures (including 1) which are
prime and cancellable in K. It was essentially shown in [2] that the class
generated by L, under binary cardinal multiplication and isomorphism,
is a characteristic subclass of K. ‘ - -

The introduction of the notion of a characteristic subelass is justified
Dy the following elementary result, which isolates a crucial step in several
existing proofs of the refinement property. » ' e

THEOREM 4.13. Let A e K and assume that K, C K is- charicteristic
in K. Suppose that : i

@ . Y= P%W= P %,
el jer
and also- that - there emist structures ©; e K, (i € I) and §se K, (j eJ) and

structures s, 7, By, 5 ({5 7> € I xJ) satisfying the following conditions whenever
pel, ged

(i) ‘ €y xUp %15 By, 13
(iii) Fog X By = 1; Wig;
(iv) Cp XUp,q = Fg XBp,g-.

Fundamenta Mathematicae, T. LXX 6
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Suppose finally that Ty(%) has the refinement property. Under these as-
sumptions (i) has a ref.nemont, :

Proof. We first apply Corollary 4.9 to (iv) and obtain ko(Wp. o)
. 22 ko(Bp,q) 22 Dy, say (bacause A F) =1 if FeK, and 1 is cancellable)
Then we apply the same reasoning to (ii), (iif) and compute

(1) For ol pel, ged we have
ké(%)%jlj%,f and  ko(Bg) = P Dy
€ tel

Next, we apply Corollary 4.9 to (i) and obtain
2) ’ BoU) == P Eo(Wi) == P ko(By) .
B . iel jeJ

] Dince %y(A) has the refinement property, there exists a sydtem of
structures ‘€;; such that . ‘

(3) Forall pel, qed we have
ko(Up) = P Ty, ;  and ko(Bg) =2 P .
jes ier

Finally, we put G;;= €;;xDy; and verify immediately, with the
help of (1), (3) and Definition 4.8 (ii), that the ®;; constitute a refinement
of (i). This concludes the proof. :

The deduction of the refinement property of a structure ¥ by the
method .of characteristic classes—i.e., by Theorem 4.13—relies in the
present instance on the following theorem, which here plays a role quite
ane_ulogous to [2; Theorem 1.3] and [9; Lemma 3.2]. The new proof of the
.reﬁnement property, for all structures in R® which have a finite A~ coset
1s constructed without any difficulty by juxtaposing this theorem Wiﬂ::
Theorem 4.13 and Example 4.10 and we leave it to the reader to do this.

.THEOREM 4.14. Suppose that A= (4, B> €Q and that uwe A is a re-
Slewive element (i.e. uRu), Assume also that

(i) U PUAE PB;.
iel jeJ

?’hm ther.e eafisls @ system of structures G, §y, Ui s, By ( for all i eI
and j ed) satisfying the Jollowing conditions whencver pel, ged

(i) P(€r x W) = 71; By, 13

(ii) : ¢ (FxB) = P Wsq;
iel

(iv) #(Cp XUy, g) = Fa XBp,q;

and moreover

) G/~ and  FU(uf Y.

icm®
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Proof. This is a strong result but the hard work of the proof was
done in § 3. In fact, Theorem 4.14 is an easy consequence of Corollary 3.4.
Admittedly, the suggestive notation employed in (ii), (iii) and (iv) is not
quite accurate but it should be clear what is meant. Let h be the element
of P; which corresponds to % ¢ 4 under (some) isomorphism (i). Then hs

" is a reflexive element of 9; whenever 4 e I and similarly ¢(h); is a reflexive

element of B;. We put
Cp= P Wihif ~™),
i=p

Go= P Bylp(h)/~"),
I#q

and 4.14(v) follows readily by 2.3(v).

Now there is only one possibility for %y, 4, Byp,q. Namely, let X, , be
the subset of A, consisting of all elements # such that if f is the member
of PU; with f; = ks for 4 = p and fp = x, then ¢(f);~p(h); for all j = q.
‘We define 2,,, to be the substructure of Ap —Wp(Xyp, o). Similarly, let Y, o
be the set of all y € By s.6. ¢ Y(g)i ~™hy for all ¢  p, where g;= g(h);
for j # q and g,=y. We define By, = Be(¥p,q)-

In conclusion of the proof we only remark that 4.14 (iv) follows
eagily from the above definitions and the basic properties of =, and
that 4.14 (ii), (iii) are obtained directly by appealing to Corollary 3.4.

To complete the work of this section we establish a theorem which
will be useful subsequently.

LeMmA 4.15. If, in Theorem 4.14, a certain structure Uy is thin then
all of the structure Wy, ; are thin. Similarly, if for some q eJ, By s thin then
all of the structures Bi, are thin.

Proof. Assume that %, is thin and let ¢ eJ. By 2.3 (v) and the
definition of §,, the = relation of §, XBy,, is simply the restriction of
the ~ relation on P B,,; to its substructure. Hence by 4.14 (ii), (iv) the

jeJ

same holds true for €, XUy, C Ep xWy. Le., if 4 € Ay, then Hyp X (y ~9)
C By x (y] ~™). Since U, is thin we get that y/ ~¥* = {y} and it certainly
follows that UAj,, is thin.

THEOREM 4.16. Suppose that i, B; e R® (i,j = 0,1) and that
(1) Wo X Wy =2 By X By -

If Ay and B, are thin then (i) has a refinement.

Proof. Assume that the suppositions of this theorem are verified
and, in particular, %, and B, are thin. Let us choose any isomorphism ¢
for (i) and an element w e A, xA;. The requirements of Theorem 4.14,
with I = J = 2, are met in this case and we therefore have the structures
Gi, Fyy W 4, Biys (4,5 = 0,1) satisfying Theorem 4.14 (ii), (iii) and (iv),

6*
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and of course &, §; U by Theorem 4.14(v). Moreover, because A,
and B, are thin it follows, by Lemma 4.15 and by the defmltlons in the
proot of Theorem 4.14, that

(1) G o=§ =21 and the structures Ho,o, QIM, Bo,o and Bi,o are thin.
Let us make the definition

(@) Gor=Uou and Cij= By for <&, > #<0,1);

and verify that the structures €, , constitute a refinement of (i).
Taking the skeletons of the isomorphie structures € xp,o and

Fo X Bo,o (Theorem 4.14 (iv)) we deduce by (1) and (2.3 (v) that U,

o Bo,p. In view of (1), the formulas 4.14 (iv) thus yield

:(3‘) Ao, 0 ¢ Bo,0y C XWp,1 2 S80,1, W0 =2 Fo XBa,o and WAy, B By, 1.

Now, with (1), (2) and (3), thé formulas 414 (i, iii) for p = ¢ =1 yield
Ay 2 G0 X Cy,y and By 2 €1 XCy,1. To complete the proof what remains
is to infer that Uy o2 Co,0 X Co,x and 230 o (ﬁ) 0 XCy0. This follows quite
of both sides and notmg that by ( ) and (3 ) we hsuve 8K(Bo,1) == 910,1
and 85 (Uy,0) = Bio-

5. The algebra of finite reflexive relatwns. We restrict ourselves for
a time to finite structures and at the same time discard the hiypothesis
of connectedness. Let R; denote the class -of finite structures B = <(B, §)
with a relation § that is binary and reﬂexwe over B, and R} denote the
class of connected structures among them. We wish to define, and briefly
to discuss, the algebra of isomorphism types associated with Rj.

There are various ways to define this algebra but the end result is
the same. Here we shall just assume that an object 7()—called the
isomorphism type of A—has been correlated with every structure % e Ry,
in such a way that the isomorphism types of two structures % and B are
identical if, and only if, ¥ and B are isomorphic. The set of all the types
will be denoted R;. We provide it with two binary operations, called

cardinal sum and product of types, by requiring that for arbitrary
A, BeRy

T(A)+F7(B)=7(U+B) and 7(A)-7(B) = 7(AXB); ol

and thus arrive at an algebraic system ;= (R, +, ->, which should
be called the algebra of finité reflexive types.

(N.B.: By abstracting this way one arrives at many interesting
algebras correlated with classes of structures. Usually, however, the set
of types, K, will be rather a proper class—too big to be a set—and the
-operations induced on K will Be not all of finite rank; indeed, eardinal

e ©
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multiplication has been defined mdst genefally as an operation without
any definite rank. Loosely speaking, the only necessary requirements are
that K be closed under all operations in question and that these operations
preserve the relation of 1somorph1sm between structures. The concepts
and problems discussed in this paper are largely motivated by the hope
of nnderstanding these very general algebras. The difficulties involved
in defining the algebras of isomorphism types within particular axiomatic
systems of set theory are not a serious obstacle and need not concern us here.)

The object of this section is to describe the algebra (R,, +, > in
somewhat more classical and familiar terms.

We begin by observing that the set of additively indecomposable
elements of R; is identical with RS, the set of connected types. Clearly,
a-B is connected iff « and B are connected One important connected
type is the unit type 1, the type of any one element’ structure. ‘

For -, the useful notlon of indecomposable element is a different one.
We say that atype a is directly indecomposable (or simply, indecomposable)
if ¢ #1 and a=f-y implies =1 or y = 1—in otherwords, if a is the
jsomorphism type of a directly indecomposable structure. :

Now because we deal with finite types, or types of finite structures,

every type a is a finite sum of connected types, and in turn every con-
nected type other than 1 is a finite product of directly indecomposable
connected types. Liet &, &1y .oy &n, ... (0 < @) be a list without repétitions
of all the directly indecomposable connected types. Liet Z[«] denote the
polynomial ring with integer coefficients constructed from an infinite
list of indeterminates #,, &y, ..., &a, ... (W < w). Let Z*[#] denote the
subalgebra of Z[z] composed of non-zero polynomials with positive
coefficients. It follows then, since R; is generated by the & (together
with 1) and, obviously, all of the equations which hold for + and -
a commutative ring with unit are valid for the sum and product of types,
that there is a unique homomorphism from Z*{x] onto Ry which re-
places x; by & and maps the constant polynomial 1 to the unit type.
For P(x)« ZT[a], let P(£) ¢ Ry denote its image.

To complete this train of thought we note that both the expressmn
of an arbitrary type as the sum of connected types, and the expression
of a connected type (s£1) as the product of indecomposable types &k,
are unique up to the order of the factors; the first is well known and the
second iy of course a consequence of Corollary 4.7. Thus it follows that
the polynomial representing a given type is unique. And we have the
following

TarOREM 5.1. The algebm of finite reflemive types, Ry, is zsomorphw
to the polynomial semi-ring Z™[x).

This theorem provides a new proof for some special corollaries of
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a celebrated theorem of L. Lovész [8]. ‘We mention among them the
following proposition, which will be strengthened in § 8.

COoROLIARY 5.2. If U, B, Ce Ry and AXB = AXE then B =~ C.

We mention also the example discovered by Hashimoto and Na-
kayama [5] of a finite reflexive structure not having the refinement
property. All such examples owe their existence to the fact that in some
cases the product of two polynomials with negative coefficients has only
positive coefficients.. Z[2] is. a unique factorization domain, of course,
‘but the refinement; and unique fagtorization properties are not universally.
valid in Z¥[z].

The correspondence between finite reflexive structures and poly-
nomials will play a small but: crucial part in § 8. Therefore, for later re-
ference, we now make a definition which is justified by the proof of
Theorem 5.1. : :

DEFINITION 5.3. X, %,, ..., ¥a, ... (# < ) are indecomposable struc-
tures belonging to Rj, and to every indecomposable structure U e R}
there corresponds exactly one k¥ <  such that % = ¥;. For each P ¢ Z*[#]
we let P(X)—or P(X,, ..., Xs) if P depends only upon %, ..., #;—be the
structure which P denotes when we replace every symbol zx by Xx,1 by 1
(a one element structure) and then interpret -+ and - as cardinal sum
and product. Finally, if %A eR;, then we let Py denote the unique
polynomial P e Z*[#] for which % =~ P(X).

6. Discussion. This discussion is not essential for later sections, but
may be instructive. The objective is to see how far the idea of polynomial
representation can be extended to infinite reflexive structures, using
the earlier results. Maximum generality is not attempted, although
a further study might prove rewarding. '

A first approximation to the most general concept of polynomial
we shall use is the notion of formal power series in the symbols (in-
determinates) zn, n < w, with cardinal number coefficients. These may be
thought of as expressions of the form

(6.1) P=Ypa?,
@

where p, are arbitrary non-zero cardinal numbers, and Al ranges over
some non-void set of finite monomial combinations of the symbols @y.
(A more precise alternative is to identify P with its coefficient function p.)
They form an algebra, C*[x], under operations + and -, defined just
as for ordinary power series. (Strictly speaking, this is not an algebra
in the usual sense bacause the universe is a proper class.)

C*x] is evidently isomorphic to the algebra of isomorphism types
of reflexive structures, all of whose connected components are finite:
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In the framework of Definition 5.3, the momomials M® = #® represent
the finite connected structures M@(X); the power series P in (6.1) rep-
resents, therefore, a structure P(¥) having exactly p, connected com-
ponents isomorphic to M9(x).

Obviously, it is very useful to know that a structure can be expressed
as a polynomial, or power series, combination of other, indecomposable
structurés, especially so if the expression is unique, as is the case above.
Equally obviously; the: theory of such expression meets serious obstacles
when we attempt to extend it to-structures, mmeh more general than
those above, or to bring infinite cardinal multiplication—and therefore
monomial terms of infinite length or having infinite exponents—into
the picture. For example: for each 7,1 <n < w let 3n= (1, R;> be
the “cyclie” structure in which kR,l iff k=1 or k = l+1(n). Clearly,
each 3, is an isomorphic copy of one of the structures Xx listed in De-
finition 5.3. One verifies that

1%’3»%2?{’31;%2““&3 s

where B is a certain connected structure which fails to be isomorphie
to any product of directly indecomposable structures. So we see that
neither uniqueness nor existence of a representing polynomial can be
expected in the general case, nor is the one-one correspondence between
the monomial constituents of the polynomial and the connected com-
ponents of the structure preserved. '

(Remark 6.2. The unpleasant features of the above example can
be avoided in various ways. Let, for instance, L, be the class of all thin,
directly indecomposable members of R’ in which the fundamental re-
lation connects every two elements by a path of length m or less. Liet Ky
be the class generated by L, under arbitrary cardinal sum and product.
Products of connected structures of K, are connected and thin; and it
follows easily from Theorem 4.1 that every structure in K, can be
expressed essentially uniquely in the form

(6.3) U D' P Wiy,
iel deSi

where U;; € Ly, and the n; are non-zero. The precise meaning of “uniqueness”
used here is explicated in Remark 6.5 below.) i

We now formulate a theorem which -implies that, in the above
example, the system of factors (3.) at least is uniqile to within iso-
morphism. ‘

TEEOREM 6.4, Suppose that Wy (i e I) and B (j €J) are thin, directly
indecomposable members of R° such that (i) . }IJ Wi ]3 B;. Then there

: : i

€ €,
exists a one-one map ¢ of I onto J such that Ws o By for every i el
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. fiProof‘.‘L(Skétoh)‘The theorem follows immediately' by Theorem: 4.1
i -the product (i) is connected, since it iy thin in any case. L
" In the general case, wo work with an isomorphism y: % o~ B where A
and B are connected components of the two products (i). One sees that
9 =Wy xAY, for each pel, where A, is a connécted component of
¢ p¥;.. This  gives a system of factor relations over U, F; and F; say,
#p R : ‘ ‘ o
such that, . .. R
() e i =By x By = (}Fg © (for.all pel);
o . . i€ B L .

and. moreover - W/Fy, == ?Ip.‘ Working similarly with 8- and- t_ra;nslating
back through y; we have also Gy, G7 over % such that
2). - fly=6,xG=6G (for all geJ);
and We, ~ 8, 7 -
Now U has the strict refinement property (SRI), by Theorem 4.1,
50 we can argue as follows: For fixed p eI, % id4 for otherwise Ap
would have only one element—by (2), pick ¢ = g(p) so that Fj _¢_ Gy
by (SBP), Gg= (Go|Fy)x(GFy) and it follows since Q[/G“q: is in-
decomposable, that FpC'Gy. The same reagoning finds p’ e I such that
G, CFy, and it evidently follows that Fp = :G{,(,,). The rest iy obvious:
; Remark 6.5. The above developments may now be unified, and
somewhat " clarified, by introducing the general notion of polynomial
which was earlier alluded to. For this, we take the indeterminates to be
& sequence of symbols-#,, bi-uniquely corresponding to all the ordinal
numbers a. A monomial is now to be construed as an arbitrary function q},
defined over any subset of the class of ordinals, and taking non-zero

cardinal numbers- as values. Of course it is more suggestive to think .
of ¢ as a “formal expression” k

(6.6) =[],

a€l

in Whiqh 8 denotes the domain of . A cardinal series is defined to he an
expression of the form

(67) . L P= 2 p;m(w) ,
@

Whgr&bhg Pp are non-zero cardinal numbers, and where 2@ ranges over
some n01.1-void subset of this class of monomials. (It would be more precise
to identify P with its coefficient function p, but of cowrse” this is not
necessary.) '
Operaﬁions of forming the product of any system, and the sum of
nqnvcnd x_sy-stem, of cardinal series can be defined simply by extending
the usual definitions for power. series. In fact, we identify -the.symibols z.,

any
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with the proper series, and then there'is just one way to define these
operations so” that generalized associative, commutative and distributive
laws are valid, and so that (6.6) and (6.7) serve to represent the series P
as a sum-prodict of the #,. - ’
Attaching these -operations to the class of eardinal series, we obtain
an algebra O*. It is natural to call this the free algebra for cardinal oper-
ations, generated by.the symbols z,. It is evident that. the gist of Re-
mark 6.2 is just the fact that the algebra of types, If,,,, is isomoarphie to C*.
Finally, Theorem 6.4 and the example preceding it have led us to
the following result. Let L be the class of all thin, directly indecomposable,
reflexive connected structures, and let K be the class of (thin) structures
generated by cardinal operation applied to L. Let <X.) be a list ofstrue-
tures in L, indexed by the ordinals, such that each structure in L appears
isomorphically just Onbe in the list. Then the map z,~+ X, extends to
represent each structure 9 <K in the form N =~ P(X) where P e(C*
The cardinal operations in K are determined by the operations in C*.
Thus the- crueial question of when two cardinal series P and @ represent
jsomorphic structures—we say P and Q are “equivalent”—can now be
interpreted as asking for. the relations which define the algebra of. iso-
morphism types, K, as a homomorphic image of C*. The answer, in the
current case, is: )
Two cardinal series P = Z Ppa® and Q = > qa are equivalent if,

and only if, the same mo'nomial; appear in them and for each: monowital 4@
which appears, p,a® and q,u@ are eguivalent.” Furthermore, two terms
me® and na® are equivalent if, and only if, m-c(p) = n-c(p), where c(p)
is the least cardinality of a mamimum set of isomorphic connected components
in the structure P X7 ,

(The proot i; by an easy modification of the argument for Theorem 6.4.
Some hope exists for arranging the sequence {Xa> 80 that the function ¢(g)
becomes calculable. We also expect that Lemma 3.1 might be used to
obtain analogous results about the algebra of reflexive types generated
by all indecomposable connected types. However, we shall let these
matters rest here.)

Remark 6.6. Our proof of Theorem 6.4 seems to suggest that the
connected components in a product of connected, reflexive - structures
deserve further study. Accordingly, it is natural to introduce a new
operation, the conmected product, to be applied to indexed fra,mﬂies‘off
connected reflexive strictures having a distinguished element, say
Wy = (Ai, Ry, Oy where O;eAq for every iel. In fact, we would put

IO’% = (0, T, 0%, where (0, T is defined as that connected componént
iel .
of P<A;, R:;> which contains the element O = {0 1 eI
i€l . "
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0 .

The two operations P and P are closely related; for instance, when
the full product is connected, they coincide. Their relationship is analogous
in at least one respect to that between the full and the weak direct product

0 0
of groups: we have P W= UAp X fﬂlz for each p eI. Thus Lermma 3.1
iel i#D

0
should prove useful in investigating the properties of P; and, in faect,
the question arises which of the results of this paper can be formulated

0
and proved for P. However; “apart from noting.that Theorem 6.4 hag

0
a valid version with P replaced by P (the same proof works), we have
not studied these problems. ‘

7. Absorbing a finite factor. We prepare for the next section by
proving, independently of the earlier work, a result of considerable intrinsie
interest which concerns the finite factors of denumerable structures.
By “denumerable” is meant finite or countably infinite. Apart from this
limitation on the cardinality—an essential limitation, as shown by the
example of W. Hanf, Example 8.7 below—the theorem of this section
is valid for completely arbitrary relational structures. As regards the
corollary to the theorem we mention that it golves a problem stated in
Chang’s thesis, and also that similar conclusions have been obtained in
the literature under a variety of assumptions. These related results are
discussed in [1; § 5].

THEOREM 7.1. Let U be any denumerable relational structure. Let B be
a finite structure. Assume that Wn (0 < o) is & sequence of structures satis-
Jying: A= B XYy and Upn 22 B X WUpys for each n< o. From these as-
sumptions it follows that A >~ B XA, and furthermore, W =~ Wy, for each n.

CoROLLARY 7.2. If U == B X € XU, where A is countable and B finite,
then W= B xA = Cx4.

Proof of the theorem. It surely suffices to show that U =~ B xUA
under the assumptions of the theorem, since we can then apply this
result to Uy in place of U, obtaining W, o B x WA, = U, and then inductively
obtaining p =< A in a like manner.

Let then 6, A == B xWy, and Opyq: Yy 2 B X4 for each = < w,

where 2 is countable and B finite. We correlate with every element a e 4
two sequences: ‘

1) &(@) = by, by, . B and  n(a) = (agy Oyy > € P Ay,
defined by the formulas: i
(2) <oy ad = 0(a);  (Brisy Gnisd = Opyala), forall m < o.

By writing that “the sequences x and y eventually agree” we mean,

* ©
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of course, that for some m < o, @, = Y for all # > m. Now the following

statement is fairly obvious:

(3) Let a ed and be®B. If b and &(a) eventually agree, then there is )
a unique clement o ¢ A satisfying: §(a’) = b, and n(a’) eventually
agrees with x(a).

The key to the construction of an isomorphism ¢ between U and
B x¥ is a simple combinatorial fact, Lemma 7.3 below. The lemma
obviously provides us with a function f such that:

4) f: w->w—{0} (one-to-one and onto) and for every a e A, the sequences
g(a) and &(a) o f eventually agree.

Given any function f satisfying (4), we ‘make reference to (3) and
define @(a) = <by, @'>, where §(a)= <bo, by, ...> and «' is the unique
element of A for which &(a’) = (bp, by, ...> and n(a’) agrees eventually
with 5(a). One easily shows, using (1~4), that this funection ¢ is a hijection
from A onto B x A, and that it preserves the finitary relations preserv-ed
by all the functions O; ie. ¢: A==z B XA We leave these concluding
details to the reader, and go on to the auxiliary lemma.

Temma 7.3. Let B be a finite set and let £ C “B. Assuming & is coun-
table, there ewists a bijective mapping f: w-»aw—{0} such that the sequences b’
and b of agree eventually whenever b e k.

Proof. Let 4@, bY, ..., ™, ... (n < @) be elements of °B including
all elements of «. We define L, to be an infinite subset of w such thab
b is a constant function on L,. Such a set exists since B is finite. Next,
let I, be an infinite set on which b is constant, with I, C L. Continuing
in this fashion (or, more rigorously, making & certain application of t:,he
axiom of choice which is usually omitted in informal pro(g)f). we arrive
at a system of infinite subsets of w, (Lndneo Such that b™ is constant
on Ly, and Ly C Ly, whenever n < m < o. ) ] )

With this system of sets, we can clearly correlate a gtrictly increasing
sequence of integers, i< iy <iy< .., such that 4= 0 and iy e Ly
whenever ¢ < p.

Finally, we just define:

Flin) = g for all < w;  fli) =1 if i €o—{in nea}.

The function f thus defined will have the desired prqperties, in fact
b2(j) = b(q)(f(j)) for all g < o and j > ig. So the proof is complete.

8. Cancellation. Once again, we consider exelusiv.ely binary reflexive
structures, i.e. those of the class R. This section is ?Jddressed to tl(lge
cancellation problem for such structures: Asgume that (1) AxB = ﬂItx s
where %, B, € ¢ R. Under what additional hypotheses on the structures
9%, B and € can we conclude that B = €1


GUEST


e ©
99 ‘ i R. Mc¢Kenzie : Im

“We are able' to give much more complete results on this. problem

than those known at the time of Chang’s survey [1; §7]. Aceording to:
Corollary- 5.2, % can be cancelled in (i) if both 9 and B are finite. More,

generally, we ‘shall prove that any one of the .following hypotheses is
sufficient for the cancellation of U: (1) A is finite' and connected (no
restriction on. B and € except, of course, that they belong to R); (2) U is
connected, thin and directly indecomposable; (3) U is finite, B is denumer-
able, and B is the sum of finitely many connected components. Our

entire discussion is founded I‘II)OII“ Lemma 3.1 which will be applied, how-

ever, indirectly, through various results formulated in preceding sections.
‘Given a clags K of structures, we denote by K° the class of all con-
I;ected structures in K, by K; the QIass of all finite structures in K, by K,
the clags of all denumerable (finite or at most countable) structures in K.
Thus are formed five subclasses of R, viz. Ry, R,, R°, R} and R;. We shall
use the fact that all of these classes are closed under binary cardinal
multiplication and under the taking of direct factors. If for every B, € ¢ K,
NAXB =~ YAKXE implies B == €, then we say Ais cancellable over the class K.
The clags ‘consisting of all structures which (belong to R and) are
éancellable over the class R is likewise closed under binary cardinal multi-
plication and under the taking of direct factors (obviously).
~ Lmmma 8.1. Let A « R°® and K C R®. If U is cancellable over K, then U iy
cancellable over the class K’ which consists of all cardinal sums of structures
belongng to K. ’
© Proof. Assume that ¥ is' cancellable over K. Let then %B,C <K',
gay B = 21231 and €= );c:, with B:, €5 e K for all iel, jeJ. The
1€ 7€,

connected components (maximal connected substructures) of A xB are
A x By, % e I. The connected components of A xE are A xE;, j «J. Thus,
if g UXB = AXE then ¢ must carry the one system of connected
components onto-the other, and we have a one-one map ¢ from I onto J
such that p(AxBi) = AxE,, for each iel. Therefore, since A can be
cancelled in K, it follows from these assumptions that By = €, (4 €1),
and this clearly gives B == €. '

LeMmA 8.2. Let We Ry, let B, CeR and assume that AW xB == A xC.
This formula has a refinement if, and only if, B =~ C.

l?roof. One direction is obvious. For the other, assume we have
a refinement: A o Coy xCyy, B o2 €y xCy, A= CuxEy, € = Ty xCyy.
EBy Corollary 5.2, we have Gy = €, (cancelling G, from the products
isomorphic to U). Thus B = €, xC; == €y xC, == €.

LemmA 8.3. (See Definition 2.2) L 7 08
ot o it Shon o8 Haot ) Let e Ry and B e R. If every a-cosel

UXB == SK(AY xB .
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.Proof. Straightforward, by Lemmas 2.3 (v), 2.5, 2.6. .
) THEOREM 8.4. BEvery siructure belonging io the class R} is cancellable
over the class R.

Proof. Assume that U ¢ R7. According to Lemma 8.1 it is enoug
to show that % is cancellable over R°. Thus we assume that :

(1) AxB=AxE, where B, CcR’;

and attempt to infer that B ~ €. }

Tn case B has a finite ~-coset then the same is true of the connected
structure A xB (by 2.3 (v), since A is finite), and we can employ
Theorem 4.4 to deduce that (1) has a refinement. From this, it follows
by Lemma 8.2 that B =~ C. ‘

In the contrary case, (1) implies that neither B nor ¢ has any finite
~-coset, and we apply Lemma 8.3 to obtain

2) SK(UA) x B =2 8K(A) xC.

Now, §3(2) is connected and thin, whence we deduce by Theorem 4.16
that (2) has a refinement. Inthis case, again, the argument is concluded
by quoting Lemma 8.2. :

TapoREM B.5. Assume that Ae R and that %A is thin and directt
indecomposable. Then U is cancellable over the class R. -

Proof. Quite easy using Lemma 8.1 and Theorem 4.16.

Let us note that every structure <4, R, in which R is a linear
ordering of A, is connected, thin and directly indecornposable and hence
cancellable over R, by Theorem 8.5. This result appeared in Chang’s
thesis. Some examples will now be given to motivate our next (and final)
theorem, and also to convey an idea of where the boundaries lie which
constrain further positive results. )

ExAMPLE 8.6. If % absorbs B—i.e. % x B o A—then AxB =« A x1
and 9 cannot be cancelled unless B =2 1. This is & common phenomenon:
Tor instance take 9 = B, or let A= B equal & denumerable atomless
boolean algebra (construed as & partly ordered set, and therefore a8
a member of R). ’ :

ExAMPLE 8.7. In [4] W. Hanf exhibited a non-denumerable boolean
algebra 9B such that B =~ U xAxB and B o U xB, where % is a two-
element boolean algebra. Chang notieed, in his doctoral dissertation,
that it follows that (1-+%) xB o2 (1+%) X (A xB) and here the finite
structure 1-+9 cannot be cancelled. In this example, B and %A xB are
connected and also thin.

Bxamprm 8.8. Let U be any member of R, finite, connected and
non-isomorphic to 1. Then we have (1-+%) xB o2 (1+%) xC, where
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B=0wl+o W and C=o-1+o-UA+o- W Of course BZCE. This
example differs from the last in that B and € are now denumerable, but
not connected. Essentially, of course, this is just a single example of
non-cancellation in the algebra of formal power series with cardinal
coefficients, C*[x], which was defined in § 6; and there are many others.

In fact, we can easily concoct similar examples to show that a finite
structure & € R is cancellable over R iff it has the form ¥ = % -% where U is
connected and % is a positive integer. (& % == (k-1) XA, A is cancellable
by Theorem 8.4 and it is a known and trivial fact that %-1 is cancellable
[1; § 7], whenee %-9 is cancellable.)

THROREM 8.9. Assume that U e Ry and that B is the cardinal sum of
a finite system of structures belonging to Re. Then A xB == A x € implics
B = . .

This is our last theorem and the proof is more involved than the
. others in this section. The hypothesis on B splits into two parts: that
it be denumerable; and that it have only a finite number of connected
components; the two preceding examples show that neither of these
hypotheses can be dropped.

‘We need three more lemmas.

Lomma 8.10. Suppose that X"|3 for every n < o, and that X e RS
and 3 eR,. Then 3 =~ X x3.

Proof. Let say 3 = ¥"*' x 3, for n < ». From the relation X" x
X3n 22 X" x 3,14, according to Theorem 8.4, we can cancel X" to
obtain 3n = X X3n41. Then the desired conclusion follows by Theo-
rem 7.1.

Lemwa 8.11. Suppose that § « R} and X, 3 ¢ R. Then 3 absorbs X
(le. 322 Xx3) if and only if § x3 absorbs X.

Proof. By Theorem 8.4. :

Lemwma 8.12. Suppose that K is Sinite set of direcily indecomposable
members of Ry. Assume that 3 e RS and that 3 absorbs mo member of K.
Then there ewist two structures M and D such that 3 =2 M XD, where M s
a fnite product of structures belonging to K, and D is “K-free’—i.c. has
no member of K as a direct factor.

Furthermore, M and D are unigue up to isomorphism provided that either

(1) 3 contains a finite Rs - coset; or

(ii) every structure belonging to K is thin.

Proof. Of course we allow that M be the product of the empty
system of structures, i.e. be isomorphic to 1. The exisience of M and D
follows in a quite obvious manner from Lemma 810,

Now assume that

(1) 3 MxD 22 M, xD,
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are two such decompositions, and that either (i) or (ii) is true. Then (1) has
a refinement (by Theorem 4.4 in case (i) holds; or by Theorem 4.16 in
case (ii) holds, since 9 and M will then be thin); say M o Jg X3,
D 810 ><3117 'Sml = 300 X310’ Dy 301 XBH. From these formulag we
infer that, because the finite connected struetures M and 9, have the
refinement, property -(Corollary 4.7), the structures 3, and 3, are iso-
morphic to products of structures from K; and then we obtain 3, =~ 1
o= 3y, since they divide the K-free structures D,, D. Obviously, it {ollows
that )

Mo Bpo My, and D JuoeD,.

Proof of theorem 89. Let R} denote the class of all structures
3 ¢ R, which have -only finitely many connected componenti. If XeRy
and 3 ¢ R, let t(X, 3) be the integer ¢ = m--n, where m = *(X) and
is the pumber of connected components of 3.

1f our theorem faily then there will be a ‘“minimal’” counterexample.
Tt is enough, therefore, to derive a contradiction from the following as-
sumption: . . :

(1) (a) We have A e Ry, B, € e R, and B £ €, but AxB = A XC. (Note
that G e RS, follows from the remaining assumptions.)

(b) Whenever U; ¢ Ry, By, €, ¢ Ry and (3, B,) < (A, B) then Ay x

x By == Wy xC; implies B, =~ C,.

Now we proceed to work under the assumption (1) and to acemﬂate
additional properties of %, B and € leading to & final contradiction. The
following simple argument will be used several times. Let (Q) be an
(isomorphism invariant) property of connected structures (of the_class R)
such that whenever ¥ is finite and §, 3 « R, then 3 has (Q) iff Fx3
has (Q). We claim: either every commecied component of B and of € has
the propert or none of them have (Q).

pTopseé/ t(h?s),’ notice tha{; the connected components of %A xB are the
products A’ x B’ where 9’ and B’ are connected components of ¥ apd B,
respectively. Thus we easily see that if the italicized statement is 1.101:
true then (because of the assumption about (Q), and our .assmnptlon
that %A xB == A x ) both B and € have components satistying (Q) and
components satistying —(Q). In fact, we could then w‘rite B = B+ B,
and €= G,-+®, where all components of By, (Io.safmsfy ('Q) and all
components of B,, €, satisfy —(Q). Breaking up the isomorphie gtructures
A xB and A xE in a gimilar way would then lead to the formulas.ﬁt ><.23¢
2~ A x; (i =0, 1), since, for example, the assumption about Q) mlPl.le]i
that 9% x B, is the sum of all the connected components of A ><.23 Whlf
have the property (Q). These formulas imply that Be=z & (1= 0,%),
by (1b) (sirice B, and B, have fewer connected components.‘ﬂ}an does B).
However, this gives B o= By+ B, = §+ €, = €, contradicting (1a).
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"~ By Lemmé. 8.11 we can take for (Q), in- the above argument, the
property of absorbing a given finite connected structure. We thug obtain

(2) LetF e Rj. If one of the conmected components of B or & absorbs ¥ then
all of the components of B and C absorb F. .

With a little more work we infer

(3)  Ruther (i) cvery conmected component of B and € has a finile ~ - cosets
or (i) U ds thin. : :

For the property (Q) of having a finite ~ -coset is clearly of the fype ‘

for which the above considerations apply. And. in case no connected
components of B or € have finite ~ -cosets (i.e. B and & have no such
cosets) then we infer from Lemma 8.3 that 8J6() x B o~ SK(A x€; we
then infer from this formula and assumptions {1a), (1b) that U and S5 (%)
are of equal cardinality. This implies of course U is thin (since 1t iy finite),

At this point we bring in the machinery supplied by Definition 5.3.
We have 2[ = P(X), a finite polynomial combination of indecomposable,
connected structures. Let a; , ..., 44, be the indeterminates which actually
oceur in. the polynomial P(k = 0 is possible). Define )

K= (X, .., Xy}

80 that K consists (up to isomorphism) of the indecomposable connected
structures which divide the connected components of A (and every con-
nected component of 9 is a finite product of structures from K). We claim

(4)  No connected component of B or € absorbs my structure belonging to K.

Suppose, for instance, that one component absorbs X;. Then (by
(2) above) all components do, and we have B e Xi, xB, €= X, %G,
From this it clearly follows that, if we let P, be the polynomial obtained
by replacing the exponents o, occurring in P = Py by the unit congtant 1
and reeollecting terms (in otherwords, evaluating P at z;, = 1), then the
form.ula AxB = AxE becomes Py(X) XB = P,(%) xC. However, P,(X) is
obtamgd from % by factoring some powers of X; out of the connected
parts; it definitely has a smaller cardinality than that of 9. Thus we have
a contradiction to the assumed minimality of the counterexample A
B, € (1b). Thus (4) is established. ,

Let.; us observe that the direct summands and factors of a thin strueture
(be}ongmg to R) are thin. Consequently, if 9 iz thin then the clags K
defined a.bove consists entirely of thin structures.

Putting together (3); (4) and Lemma 8.12 we now find that every
connected component 3 of B or € can be uniquely represented - as
3= M xD, where M is a finite product of K structures and D iy K-free.
We call © the K-free part of 3. Then if M’ is any one of the connected
components ‘of U, it follows from the same facty jsha,f (the connected
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component of ¥ X B, or A xXE respeetively) M’ x 3 has a similarly unique
representation—and of course MM’ xJ = (M’ x M) xD is sueh a represen-
tation. In particular, 3 and M’ x.3 have isomorphic K-free parts.

(8) All of the K-free parts of (connected components of) B and G are
isomorphic to one another.

For the proof of (5), let D, be the K-free part of some component
of B; define: 3 has the property (Q) iff 3 == M xD, where M is a finite
product of K-structures; and argue exactly as in the paragraph preceding
statement (2), making use of the last paragraph above. (It is not claimed
that this property (Q) satisfies the full condition used before; but rather
that it satisfies the condition in the cases required for the argument.)

Finally, let © be the common K-free part whose existence is ensured
by (5). We factor ® out of all components of B and € simultaneously
and obtain (via the distributive law, used throughout these pages):

B PxD and C=IMxD,

where M, and P, are finite structures whose connected components are

products of structures belonging to K, and where D ¢ R;, and D is K-free.

(Here is really the only crucial use of the assumption that B and € have ,
finitely many connected components: to ensure that M, and M, are

finite.) To these formulas we can add

(U D) XD =< (Ax M) XD,

by (1a). Moreover we claim that D can be cancelled from this last formula.
In fact, it is a consequence of (3) that either ® has a finite ~ -coset or
every structure of K is thin. Thence it follows from Lemma 8.12 that ©
is cancellable over the class of all finite products of structures of K. Finally,
our claim is a consequence of Lemma 8.1,

To conclude, we cancel © in the last formula to obtain A xPt,
= A xM,;. Then by Corollary 5.2 we have I, =~ M, yielding B =~ €.
This contradicts (1a) and shows, at last, that assumption (1) is untenable.
Therefore the proof of Theorem 8.9 is now complete.

9. Concluding observations. The preceding sections give much support
to the view that Lemma 3.1 is the fundamental result in the theory of
cardinal multiplication of reflexive binary structures. However, this
theory still presents some very basic problems which are probably inae-
cessible to the methods developed here. Among themi we mention that,
although all of the results of this paper have been known for some years
for boolean algebras, it remains unknown whether given any integer n > 2,
the formula % =~ A" implies A =~ A*, for denumerable boolean algebras A.
This problem is also unsolved for the whole class of denumerable, reflexive,
binary structures; and apparently even among arbitrary denumerable

Fundamenta Mathematicae, T. LXX ki
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structures no counter-example to the implication has been found. It i
known, however, that for » > 2 there iy a non-denumerable boolean
algebra 2 which satisfies % oz %" and % g% A [4; Theorem 5]. A few of
the many open problems related to our work were mentioned in Re-
marks 6.5 and 6.6.

‘We now want to show how the ideas presented in this paper can be
applied to relational structures of an arbitrary similarity type. There
are basically two methods available for obtaining such applications,
athough many combinations and variations are possible.

" he first method is to attempt the proof of theorems analogous to
Lemma 3.1 for other types of structures, or attempt to weaken the
hypothesis in Lemma 3.1. By simply modifying the arguments of § 3
in the most obvious way, for example, one arrives at a nice gencralization
of Lemma 3.1—a result which may be guessed from ity special case in
the next theorem. Let § be any ternary relation over a non-void set B.
Define 8, to be the binary relation over B such thatz S,y iff ey, 21[ <@, 2, 21>
eS8 &<y, 2,2 e8] Define Sy to be the binary relation over B such
that 85y (where o= <&y, %>,y = Yy, ¥;>) iff Te[z, @y, 0> e &
<, Yoy Y17 € 81

THEOREM 9.1. Suppose that 8 is a ternary relation over B, that f and g
are decomposition functions of the structure (B, 8), and that z,y < B.
Suppose further that S, is connected over B and that S; is connected over 2B.
Then the two elements fzguy = o and gufsy = b are equivalent in the following
sense: whenever 2y, 2, ¢ B we have {a, 2y, 2, € 8 iff <b, zg,2,> € 8.

The second method applies to structures with a definable binary
relation. We Degin with the following definition, a slight change from
[3; Definition 7.1]: Given % = <A, Bier, we let A(A) be the set of all
finitary relations, R, over 4 such that every decomposition function
of A is a decomposition function for the structure (A, Ry Thuy A(A)
includes all of the relations Ry, and moreover is closed under many -of
the natural set-theoretic operations on relations, such as intersection,
directed union, concatenation, permutation and quantification, for
instance. (Hence one can often deduce immediately that a relation R
which has been defined in terms of the fundamental relations R belongs
to 4(U), simply by inspecting the form of the definition.) With the above
definition the following theorems, as in [3], are easy corollaries of the
corresponding eaxlier results. They are listed in roughly increaging order
of applicability.

TEEOREM 9.2. (By Theorem 4.1) Suppose that there emists in 4()
o binary relation R such that the structure A, R) is thin and belongs to Q.
Then W has the strict refimement property.

THEOREM 9.3. (By Theorem 4.2) Suppose that u e A, and that there
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exists in A(U) a binary relation B such that the structure A = (4 ,RByeQ
and =" = {u}. Then the pair (A, w) has the intermediate refinement
property.

THEOREM 9.4. (By Definition 4.8 and Theorems 4.13, 4.14) Assume
that K is a class of similar structures, that K, is a characteristic subclass
of K and that every member of Ky has the refinement property. Suppose then
that U e K, and that there exist w ¢ A and B e A(N) such that the structure
W = (A, B> belongs to Q and we have W(u/~¥)eK,. Under these as-
sumptions it follows that A has the refinement property.

Finally, we should like to give three illustrative applications of the
above theorems. The first result is new. Consider algebraic systems
A= {4, +) with 4 a binary operation defined on 4. In the framework
of this paper we naturally interpret this to mean that -- is a special kink
of ternary relation; but the usual notation for operations can be employed.
Assuming that A has exactly one element w such that w-+z = z-+u for all
xe A, then it follows that (U, u) has the intermediate refinement property.
{Thus if this element « also satisfies w+u = u then 9 has the refinement
property; cf. § 1, Strong refinement properties.) This assertion is immediate
Dby Theorem 9.3 when we define Ry to mean z-+y = y-+ax.

The second application is a new proof of an important classical
result'eoncerning binary algebras which first appeared in [7]. (We refer
to a special case of Theorem 4.8 of that monograph. It is not clear to us
whether the full theorem can be given a new proof by our methods.)
Let K be the class of all finite algebraic systems W = {4, +», + binary.
Take for K, the subclass where 2 is a group in the usual sense. From
Eixample 4.11, K, is a characteristic subclass of K. The result of Jénsson
and Tarski asserts that if o ¢ K has a zero element u—ie. uw+x= v+
+u=ua for all e A—then Y has the refinement property. To infer
this with the help of Theorem 9.4 let % be the zero element of U and
define B by the condition zRy iff

Velot (y42) = y+(@+72) & (z+0)+y = (e+y)+a] &
& Hzlr =2+y].

Now it follows from the form of this definition that R e 4(%). From
the obvious fact that 2 Ru and z Ra for all # € A it follows that &' = <4, B)
belongs to the class Q. We also easily see that the substructure 9 (u/ ~%)
is identical with what was called in the Jénsson—~Tarski monograph the
‘“‘center” of 9; it is an abelian group. The desired result thus reduces to
its special case, which fulfilly the remaining requirement of Theorem 9.4;
viz. that all finite groups have the refinement property.
(Let us note that the above proof, when fully written out, would
contain also the basic facts about direct decompositions of finite groups,
E
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and the elementary arguments from [9; § 2] which use these facts, ag
well as the considerations in this paper leading up to Theorem 9.4.)

Our final application exhibits a combination of the two basie ap-
proaches. Tarski has raised the question of whether the refinement
property, or the strict refinement property, is possessed by every binary
algebra A = (4, 4> which satislies #+ @ = @ for all #; or more broadly
what additional agsumptions on such an algebra will ensure the validit;i
of one of the refinement properties? Our result, which supplements some
partial results in [3], is the following: Suppose that vz = @ for all 2 ¢ A.
Suppose also that there ewists in A an clement w such that w--u = x4y
Jor all e A, and an element v swuch that w4 (v--y) == (¥~-v)-+y for all
@,y e A. Then U has the refinement property; in fact, (N, v) possesses the
intermediate refinement property. (Corollary: Every idempotent semi-
group having a commuting element possesses the strict refinement
property.) .

To prove that (2, o) has the IRP under the given assumptions
sull;%ose that f, g e DF(A). We define a binary relation and a ternary,
relation:

@,y> ek iff He(r=z2+y=y-Fz);
@y, el it y4(w+2) = (y+a)Fz.

Cleaxly we have R, S8 eA(¥), so it follows that f, g« DF((4, R, 8)).
E is obviously reflexive, and connected over 4 because, for i’nst’ance
{ufw, m?, u+z,uy ¢ B for every element ® « A. Thus by Lemma 3.{
every pair of elements, fag.y = @ and ¢sfsy = b, are quasi-identical in
the structure {4, R); in particular we have aRb and bRa. Likewise
we have (v, 2,¥>, {#,2, ) ¢ § Whenever 2,y ¢ 4, and it readily‘follow;
that 8, and 8 are connected as requiréd by Theorem 9.1. Thus every
pair of elements ¢ and b as above are also equivalent in the sense of
Fﬂheorem 9.1. We can use these two facts to derive the desired conclugion.
ie. that fygoy = v implies g,f,y = v. In fact, assume that f,g,y = o a,né
let b= gufyy. The equivalence of » and b in the sense of Theorem 9.1
means thf»t &+ (b+2) = (w+b)+2 for all @,z ¢ A. Since vRb and bRy
we can pick 2z, 2, 80 that v = ¢+b and b= v-+2,. Then |

v = #+b =%+ (b+b) = (%+b)+b,
ie. v=wv-b. Similarly, we get b= v+b(=wv), completing the proof.

o ;,LAddbed in pﬂroof. A paper ey.ltitle& Uber das starke P-ro(iwkt von endlichen
N u'phm’ y W(.jDorﬂfar .a-nd W. Imrich, is to appear soon in the journal Sitzungs-
erichte der Osterreichischen Akademie der Wissenschaften Mathem.=naturw.

Kiasse, II. In it, the authors give a totally diff
s erent
member of the class R; has the refinement gropert;‘?n pract of fhe fact that every
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Recently the author discovered a proof that every idempotent semigroup which
has a finite equivalence class nnder the relation

sRy <= Vu, v[u+2+v = u+y+v)

possesses the refinement property. The essential point of the proof is a demonstration
‘that the finite “rectangular” semigroups from a characteristic subclass of the mentioned
class of semigroups. This proof will appear in a future publication.
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