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On o:-categorical theories of fields
by
Angus Macintyre (Aberdeen, Scotland)

0. Introduction. In this paper we prove that the only w,-categorical
first-order theories of-infinite fields arve the theories of algebraically
closed fields.

We adopt the usual formalization of the elementary theory of fields,
in terms of an applied first-order predicate logic with equality, individual
constants 0 and 1, and binary operation-symbols + and -. All these
symbols get the usual interpretation. By congidering any of the usual
axioms for fields, we see easily that the class of fields'is an EC class. We
will be dealing more generally with EC, classes of fields.

For n a prime, or 0, let ACF, be the class of algebraically closed
fields of characteristic #. It is well-known that ACF, is an EC, class.
A basic property of AOF., due to Steinitz [19], is: If « is an uncountable
- cardinal, and L, and L, are members of ACF, of -cardinality x, then
Ly = L,.

From this one concludes by Vaught’s Test that any two members
of ACF, are elementarily equivalent, i.e. satisfy exactly the same sen-
tences of the language of field-theory. Let Th(ACF,) be the set of all
sentences of field-theory that hold in an arbitrary member of ACF,.
Then Steinitz’s result may be formulated in model-theoretic terms as:
Th(ACFE,) is x-categorical, for each uncountable ».

It is known, from Morley’s proof of the T.o§ Conjecture [14] that,
for countable first-order logics, the w,-categoricity of a theory 7' implies
the x-categoricity of 7' for each uncountable x.

With this background we investigated the possibility of extending
the above result of Steinitz to other classes of fields. We have proved
the following, ‘which is the principal result of our paper:

TemoreM. If X is an BO, class of fields such that Th(X) is c;-cale-
gorical, and 3 has no finite members, them ¥ is one of the dlasses ACK,.

The above theorem is a corollary of a theorem about totally transcen-
dental theories of fields. This theorem says that the only totally transcen-
dental complete theories of infinite fields are the theories Th(ACFEn).
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2 A. Macintyre

Though this is-a stronger model-theoretic result than the theorem stated
above, it has apparently mo more algebraic interest than its corollary.
Tet us consider briefly the EC, classes of fields which are best
understood at the present time. ‘
A. Real-closed fields. One normally discusses the class of real-closed
fields as a class of ordered fields, and in this formulation the class of
real-cloged fields is an ECQ, class. But in a real-closed field the order > is
definable in terms of the field structure thus:
o>y <= () (s=y+EA2#0).
Thus the class of real-closed fields is an EC, class.

B. Algebraically complete fields with valualion. Ax and Kochen ([4],
[51, [6]) and Ersov [11] have given complete sets of axioms for various
classes of fields with valuation. Ax [2] and Ersov [9] have shown that in
certain of these clagses we can define the valuation-rings in terms of the
field structure. It follows that we can interpret in terms of the field
structure all statements about the residue-class field and all statements
about the ordered value-group. In this way many classes of Henselian
valued fields can be construed as EC, classes of fields.

Pseudo-finite fields. Ax [3] has classitied all complete theories of
pseudo-finite fields. More generally, he has discussed S-pseudo-finite fields,
where § is a set of primes. There is an overlap with Ersov’s paper [10],
where absolutely algebraic fields of prime characteristic are discussed, for
the latter fields are §-pseudo-finite for suitable §.

Separably closed fields. Ersov [10] has classified all complete theories
of separably closed fields. This of course includes the case of algebraically
closed fields.

If X is an ECy class of fields of any of the above types, and X is not
one of the classes ACF,, then very little is known about the isomorphism
types of members of X. '

For real-closed fields there is the result of Erdés, Gillman and Hen-
driksen [8] that if a > 0 then any two 7, real-closed fields of cardinality s,
are isomorphie, but this is vacuous unless 8, = Y 2. In model-theoretic

terms this result identifies the saturated uncg;;ﬂ:able real-cloged fields,
agsuming the generalized continuum hypothesis. See, for example, [15].
Without using the generalized continuum hypothesis, one can prove the
existence of special [15] real-closed fields of certain cardinalities, and
using [15] deduce some isomorphism theorems.

The situation is completely analogous for algebraically complete
fields with valuation, and rather similar for pseudo-finite fields. The
papers [4], [5], [6], [11] identify many saturated fields with valuation.
Ax’s paper [3] identifies the saturated uncountable pseudo-finite fields.
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Using & condition of Bhrenfeucht [7], and results of Morley [14),
one can show that for any uncountable cardinal » there exist non-iso-
morphic real-closed fields of cardinality x. This is because we can define
a linear order in each real-closed field, and the Ehrenfeucht condition
prohibits this for w, -categorical theories. The situation is similar for
many classes of algebraically complete fields with valuation, since we
can often interpret the theory of the ordered value-group in terms of
the basic field-structure.

For the complete theories of pseudo-finite fields, and the complete
theories of separably closed, but not algebraically closed, fields, we will
point out, in the course of the proof of the main theorem, why these
theories are not w,-categorical.

A consequence of the main theorem is that the ACF, are the only
EC, clagses of infinite ficlds allowing elimination of quantifiers. Of course,
the theory of real-cloged fields allows elimination of quantifiers, but only
when > is taken as o primitive notion. See [18]. The situation is analogous
for certain valued fields. See [6].

In this paper we presuppose acquaintance with our paper [13] on
the corresponding problems for abelian groups. We refer to that paper
for explanation of notation and basic ideas.

The main idea taken from [13] is that of definable filtration. This
idea is applied twice, fivstly to the multiplicative group of a field, and
secondly to the additive group of a field of finite characteristic.

A model-theoretic result which we did not wse in [13], but which
iy very useful now, is Fhrenfeucht’s condition [7].

Ag well as facts on abelian groups already utilized in [13], we use
gome results on field-extensions, to be found in [1], [12).

1. Outline of proof. We indicate the main steps of the proof.

(a) We prove that if K is a field with T%h(K) totally transcendental,
and K, is a finite algebraic extension of K, then Th(XK;) is totally
transcendental. ’

(b) We prove that it Th(X) is totally transcendental then K* (the
multiplicative group of non-zero elements of IC) is the direct sum of
a divisible group and a finite group. The proof uses a filtration on K*.

(e) Using Ehrenfeucht’s condition we refine (b) to prove that if IT is
infinite and Th(X) is totally transcendental then K* is divisible.

(d) From (a) and (c¢) wo conclude that if K is infinite and Th(K) ‘is
totally transcendental then (K,)* is divisible for each finite algebrm.c
extension K, of K. We then prove, by Galois theory, that if (.Kl.)* is
divigible for every finite extension K; of a field K of chamc‘nex‘usmc. 0,
then X is algebraically closed. We conclude that if K it an infinite field
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of characteristic 0, and Th(K) is totally transcendental; then K ig alge-
braically closed.

(e) The characteristic p case is more involved. In this case we define
a filtration of the additive group of K, using the endomorphism ai>xp — g,
Using results from [13], we then show that if Th(K) is totally transcen-
dental then either

(i) for each finite extension X, of K, K, has no cyclic extension of
dimension p, or

(if) for each finite extension K, of K, K, has exactly one cyclic ex-
tension of dimension p.

In case (i), using (a) and (c) and some Galois theory, we show that
K is algebraically closed. ,

The case (ii) includes the {p}-pseudo-finite fields of Ax. A special
argument is used to prove that if K iy infinite and satisfies (if) ther
Th(K) is not totally transcendental.

2. Model-theoretic preliminaries. For -the various facts agsumed in
this paper, one should consult Section 1 of [13], where there are references
to the literature.

We will be working with first-order predicate logics .2, with con-
nectives ] and A, quantifiers @ and V, identity symbol =, finitary
relation-symbols and operation-symbols, and variables v,, Vyy oney Ony e

The basic semantic notions are assumed known. Tt 46 isan .2-gtructure,
[46] will be the underlying set of .

_ If ¢ is an ordinal, we form a logic £(a) by adding to .2 distinet new
individual constants ¢, for 5 < a. If 6 is an L-structure and s e |A0/%,
then (b, s) is the obvious £{a)-strueture where 8(n) corresponds to ¢,
for each 5 < a.

It Z'is an £-theory and « is a cardinal, X is »- categorical if any two
models of X of cardinality » are isomorphie.

Suppose .£2 ig countable, and X is an £-theory. Then J is totally -

transcendental if, for every model 46 of X and every s e |b|” T%((AG, s))
has at most w complete extensions in L(w+1).

Morley [14] proved that if X isan ;- categorical theory in a count-
able logic .2, then X ig totally transcendental.

For proving that a theory is not totally transcendental, Ehrenfeucht’s
Condition is very useful. Suppose G is an L£-structure, X C ||, and
@ (%5 ry ¥a) an L-formula, whose free variables occur in the list Ly eeey Vno
¢ is said to be connected over X (relative to ) if, for all distinet elements
%o; +; n of X, there is a permutation = of {0,1,...,n} such that
aeyy ove 5 Tamyy Satisties P(Vg; -y ¥2) in M. Then Theorem (Bhrenfeucht’s
Condition): Suppose .2 ig countable, AGisan L-structure, X is an infinite
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subset of |G|, and @(vy, ..., v4) is an L-formula. Suppose both ¢ and T
are connected over X. Then Th(.46) is not totally transcendental.,
For a proof, see [14]. '

3. Let .2 be the logic for field-theory, as described in the introduction.
We construe fields as .£-structures. If K is a field, Th(K) is the set of
all £-sentences that hold in K.

We come now to the first, and most tedious, step of the proof.
‘We have to prove that if I and K, are fields, with Th(K) totally transeen-
dental, and K, a finite algebraic extension of K, then Th(K,) is totally
transcendental.

The basic idea is simple. Let m be the dimension of K, over K.
Let @y, ..., ¥m—1 e & basis for I, over K, where, without loss of generality,
z, = 1. Bach element of K, is uniquely of the form Ayt,—+ ... + Am-1@m
where Ay, ...y An-1 ¢ K. We define a map n: K, K™ by w(de@+ ... +
+Am-1Zm-1) = {Agy -y Am—1>. = i8 1-1 and onto. Under z, addition and
multiplication on K; induce operations @ and O on K™, as follows:

u@v = w7~ (u)+2-(v)) ,
and
Qv = w(w=(u) -w(v))

for all u,ve K™

Clearly <Agy very An—1> @ {fhoy ovey fom—1y = <Ao—‘1—/dco, ---,_lm_1+#m-1>- To
give a corresponding definition for ©, we first define elements wyz
(04,5, k<< m—1) of K by:

m—1
Dy y = 2 Tigk Dk -
E=0
Then <Agy vy Am12© {fhgy oy 1) = {Fy; -1e5 Om—1), Where

O = 21 A pyTign
0=, f<m—1

for 0 <% < m—1.

In this way we can interpret every sentence about elements of K as
a gsentence about m-tuples of elements of K. _ .

‘We now give this a more precise metamathematical formulation.
We preserve the. notation of the preceding pa-nrzyg'raph. Let ¢ b‘e-z,‘so.n:_\;a
fixed ‘map of the set of all ordered triples <i,7, %), ‘Where 0 Sty {) o
< m—1, 1-1 onto the set {0,1,..., m*—1}. We are going to define, 3;
induection, maps m, ..., Tm-1 from the set of terms of .L(w+1) to the se
of terms of ,Q(w—l—v)z--|-:1.).
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First we extend the X-notation to terms of .2(a) for any a. Suppose
Yoy ey Var1 are terms of L2(a). We define :

szyo and éij=(277/%)-!-7’%1-

<0 <n+1 i<n
We need also a Z-notation over pairs of subscripts. Thus, let
v::(0 < 4, 5 < n) be terms of .2 (a). We define i 28 1 -
v (0 <4,j < n) (@) 0<%1<n Vid osénogy'gn Vig

Now we define m,, ..., #m-1 a8 follows:
(1) mx(0) =0 for 0 <CE < m—1;

(il) m(1) =1, ax(l) =0 for 1 <k <m—1;

i)
(iil) 7x(n) = Vomir for 0 <k < m—1 and # < w;
(iv) wa(en) = Cmssnmen for 0 <k < m—1 and 7 < w;
(V) #a{Cw) = Corr for 0 <k << m—1;
(vi) ma(yo+ye) = mu(ys) +aa(ys) for 0 <k < m—1;
H) mysoped = 2 lowa(vs) my(ye)) - eucige -
(vH) melyrope) = D (maly) my(ya)) -6
o<i<m—1
o<<i<m~—1

We are using the constants cx¢ssxy to correspond to the field
elements 7. The map y><{my(y), «voy Zm-1(y)> should be thought of as
a formal counterpart of the map = described earlier.

Next we define a map ¢ ->¢ from formulas of .2(w-1), to formulag
of L(w+m-+1), by the following induction:

(i) if @ is y;=19,, where y, and 1y, are terms, then ¢ is
(570(7’1) = nn(?z))A'--A(Wmﬁ(%) = ﬂm—l(?’z”?

(ii) if ¢ is respectively “lg;, p;Aq, then ¢ is respectively P15 Py APa;

(ili) if ¢ is respectively (Hw.)w, (Vva)p, then ¢ is respectively
(Hum) (A0nm+1) o (Eamton—2)P; (VOnm) (Vonmt1) oo (Vonminen) P

If T is a set of formulas of 2(w-1) then we define 7' as {p:peTh

Next we define a map s|>§ from |K,|* to |K|°, by:

(1) it »=1(<,], k>) then §(n) = wy;

(i) if n=m®+n'm %k, where 0 <k <<m-—1, then #' and % are
uniquely determined, and if s(s(n')} = (A, ..., dn—1d, We define § (n) = 4.

Finally, we define a map si~§ from |K,"** to |K|**™*, using con-
ditions (i) and (ii) of the preceding paragraph, and in addition

(i) if 0 <k <m—1 and w(s(w)) = gy iy Am—yy then § (e +7) = L.

The following basic lemma can now be proved by a simple induetion,
and we omit the proof.

Leyma 1. Let K, K, be as above, and let p be a sentence of £(w +1).
If s € |Ko|° v |E|"", and (Ky,5) =g, then (K, 3) |=4.

icm
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LnMMA 2. Suppose K , K, are fields, with K, a finite algebraic extension
of E, of dimension m. Suppose that s, ¢ |K,"| and Th(K,,s,)} has un-
countably many complete emtensions in L(w-1). Then there ewists s ¢ |K|*
such that Th{(K, 8)) has uncountably many complete extensions in L (w—+m).

Proof. We adopt the notation of the diseussion preceding Lemma 1.

Let (Tyyq<s be a well-ordering of the complete extensions of Th((Ky,s,))
in 2(w-1), where 1 is an uncountable cardinal.

Fix 9 < A. Let

{PolCa) s oo PrlCa)}
be a finite subset of T,. Since T, extends Th((K;,s,), it follows that
(15 81) 7= (T00) [@o{B0) A o A@r()]

and therefore there exists § e [K|°™

(1{17 E;) “_“ Q’O(cw)/\(Pl(cw)/\ v A (pl(Gm) .

, extending s,, such that

Therefore, by Lemma 1,
(X, §D l: Po(Cay wvs Oz,v+’m—1)/\¢1(0m, ey Copme1) Aeee AGLCary ooy Cotmet) -

Therefore every finite subset of 4, is consistent with Th(E, §,)), since s,
extends §;. Thus T,, can be embedded in a complete extension of
Th{(E, §,;)) in L(wtm). '

Suppose 7, § < 4 and g % 6. Then there exists such that peT),
and Tl¢ ¢ T5. Thus ¢ ¢ 1, and 71§ € Ts, so I, and T have no common
complete -extension.

‘We conclude that Th((K ,§1)) has at least A complete extensions
in 2(w-+m). Put s = §, and the lemma is proved.

The reason for the next lemma ig that, in order to show that Th(K;)
is totally transcendental, we have to look at arbitrary structures (K1, $1)
where K; = K, and s; ¢ | Ki|".

Levma 3. Suppose K, K, are fields, with K, a finite algebraic ex-
tension of K, of dimension m. Suppose Ki=K, and sie|Ki|®

Then there ewist K", Ki' and i ¢ |K3'|° such that

() K" = K, Ki' = XKy, and K’ is o finite algebraic ewtension of K",
of dimension m;

(i) (E, 81') = (I, 8.

Proof. Select o basig #y, .., fp-1 for Ky over K, with z,= 1.

We augment the logic 2 by adjoining individual constants Doy ore
and a 1-ary predicate-symbol L. Let .2, be the resulting logic. We constl"ue
L, -structures ag 2-structures with distingnished elements corresponding
t0 By, ..., by, and with a distinguished subset corresponding to L. We

y b1,
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are particularly interested in those .2;-structures where the underlying
L.gtructure is a field, the distinguished set forms a subfield, and the
distinguished elements are a basis for the field over the subfield. It is
obvious that this class of £;-structures is an BC,. Our canonical example
of an £2,-structure has K, as its underlying field, |K| corresponding to I,
and @; (0 <7< m—1) corresponding to b; (0 <<é< m—1). We denote
this structure by (Ky, K, %oy vy Bm—1)-
Let 4 be the following set of .2;(w)-sentences:

Th{(E3, 51)) © Th{(E;, K, By oy Tns)) -

We claim 4 is satisfiable. By the Compactness Theorem it suffices to
prove that every finite subset of 4 is satisfiable. In fact we show that
if 4, is a finite subset of Th{(Ki,s;) then there exists sy € |I|” such

that (Hi, s4,) = 4,. From this it follows that every finite subset of 4 iy

satistiable, sinee (K, K, @y, ..., Om—y) = Th{(E:, K, @y, ..oy Bma)) -
8o, let 4, be a finite subset of Th((Kj, s{))_. Select » < o such that
if ¢ occurs in a member of 4, then % <Cr. Write 4, as {g(Co; ..oy Cr)y oo
e @ifCgy wvy C)}. Then (K1, 81) = @o(Cos -oey Cr)A e A@i(Coy vovy €), SO
K1 = (Ewg) ooe (H0r) [@o(Tgy coes Vr)A o A@1{Vgy ooy V)]
.. But K{= K, so
Ky = (H0g) oo (H0r) [@6(T0y eees V) A A@iVgy voey Dr)]

Therefore there exists a function s from {0,..,,7} to |K,| such that
(K1, 8) Ego(Cos oes e A Aoy o, ), T8 (B, 8) |= 4.

Now let s4, be any extension of s to an element of |K,|°, and clearly
(K, 840) = 4.

‘We conclude that 4 is satisfiable. Let J6 be an .2,(w)-structure satis-
fying 4. Then Jt is of the form (N, s;), where N is an .2;-structure and
81’ € |N°]°. Since

N|= T]L((KHKV Doy oeey mM~1))7

we see that the underlying .2-structure of N is a field K = K, and K/
has a subfield K" =K, and K;' is of dimension m over K”. Since ||
= K7}, &' € |E1)", and since 6}=Th(Ki, s1)) we can conclude that
(E1'ys1') = (K1, §}). This proves the lemma.

Lewua 4. Suppose K, K, are fields, with K, a finite algebraic eatension
of K, of dimension m. Suppose Th(K,) is not totally transcendental. Then
there exisis K" = K and 5" « |I"'|" such that Th((E", s")) has uncountably
many complete emtensions in L(w-m).

Proof. Since Th(K,) is not totally transcendental, there exists.

K =K, and s;e Ky such that _’l’h((I{{,si)) hag uncountably many
complete extensions in .2(w+1). By Lemma 3, there exist K, Kj" and
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si' ¢ |Ey|” such that K = I, R{ = K, (K, s/) = (K}, s)) and K is

a finite algebraic extension of K", of dimension o, Thus Th(( v, )

= Th((K1, 1)), so Th{(Ki',si) has uncountably many complete ex-
tensions in L(w+1). Now we apply Lemma 2 to the data K", Ky, s!'.
We conclude that there exists s” ¢ [K”|° such that Th{(E", 8")) has,un-
countably many complete extensions in L{w-+m). This proves the lemma.

The next lemma is probably well-known (cf. [14], proof of 5.7).

Lmyma 5. Suppose £ is an arbitrary countable logie, 2 an L-theory
and 1<Cm << o, Then X s totelly transcendental if and only if for e'uery,
model Mo of X and every s ¢ |A6|*, Th (0, s)) has at most o complete ex-
tensions in L2 (w--m).

Proof. Sufficiency i clear, since distinet complete extensions of
Th((#6, 8)) in L2 (w--1) extend to distinet complete extensions of T (A, 5))
in £2(w-4m).

Necessity is proved by indunetion on m.

The result is trivial for m = 1. Suppose we have the result for m < k.
Now suppose A6 is a model of 5, s ¢ |46|°, and Th((, 5)) has uncountably
many complete extensionsin 2 (w-~%-1). Since 5 is totally transcendental,
our induetion hypothesis tells us that Th ({6, )] has at most o complete
extensions in .C(w+%). It follows that there exists Zi, a complete ex-
tension of T ((J6, ¢)) in 2(w--k), such that Z, has uncountably many
complete extensions in .2(w--%k-+1). Let A, be a model of 2\, and for
n < w-+k let ¢ be the element of |y corresponding to ¢,. Let G, be
the .2-structure got from o6, by forgetting the structure corresponding
to the constants ¢, Then |dGy|= |A,|. Since X, extends Th((AG, 8)) it is
clear that Moy =: 0. We define s, e |46y by:

8y(n) = Coyn  for O<n<k,
and

So(ki—-m) == Ty for wnx=0.

Since 2y is complete, and has uncountably many complete extensions
in L(w-k-1), it follows that Th (A, 8,)) has uncountably many corm-
plete extengions in 2(ew-}-1), contradicting the assumption that  is totally
transeendental. We conclude that Th((A,s)) has at most o complete
extensiony in 2 (w-|m). :

This eompletes the inductive step and the proof. :

Corornary. Suppose L2 is countable, X is a totally tramscendental
Lthoory, n< o, and X is an ewtension of X im L(n). Then Xy s totally
transcendental.

Proof. Assume the hypotheses. Let 2; = £(n). If £} hag uncountably
many complete extensions in JS(w--1), then 2 has uncountably many
complete extensions in L2 (w--n--1), contradicting Lemma, 5.
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The following lemma, the goal of this section is of basic importance
for us because it enables us to use Galois theory on our problem.

Lumma 6. Suppose K, K, are fields, with K, a finite algebraic extension
of K. Then if Th(K) is totally tronscendental, Th(XK,) is totally transcendental.

Proof. Let m be the dimension of K, over K. Suppose Th(K,) is
not totally transcendental. Then, by Lemma 4, there. exists K" = K
and s ¢ |K”'|” such that Th((K”, ")) has uncountably many complete
extensions in 2 (w-+m). Then, by Lemma 5, Th(K) is not totally transcen-
dental. This proves the lemma.

Remark. The following is an example of fields K and K, with K,
a finite algebraic extension of K, Th(K,) totally transcendental and

Th(EK) not totally transcendental. Take K as the field of real numbers

and K; as the field of complex numbers. See [14] for proofs that Th(K,)
is totally transcendental and Th(K) is not totally transcendental. By
Theorem 1 of this paper, and the celebrated theorem of Artin-Schreier
that the only fields of finite codimension in their algebraic closure are
real-closed or algebraically closed, the above is the only possible example
(up to elementary equivalence).

4. The second step of the proof uses the notion of definable filtration,
as in [13]. Our only modification of the treatment in [13] is that we use
multiplicative notation rather than additive notation.

If K is a field, let K* be the group of non-zero elements of K under
multiplication. Then K* is abelian. If # is a positive integer, let (K*)"
be the subgroup of K* consisting of nth powers of elements of K*. (Since
we have no further use for the cartesian product notation no confusion
should arise.) Clearly, when » divides m, (E*)™ C (E*™. Thus <(K*)"Sn<a
is 'a definable filtration of K. Let (E*)*= [\ (K*)". Suppose K is

n<o

wy-saturated. Then K* is w,-saturated, and, by 3.3 of [13], (K*)™ is divisible,
and so (E*)” is a direct summand of K*. Select a subgroup H of K*
such that K* = (K*)*@®H. Then (K*)* ~ H = {1}. Now suppose Th(IK)
is totally transcendental. By Lemma 3 of [18], there exists an integer
ny such that H ~ (%™ = H ~ (E*)" for n > ny. It follows that

HA (B = H~ (B = {1} .

Therefore for every z in H, g™ = 1, 80 H is a group of m,!th roots of
unity, and so is finite, since K is a field.

We have proved that if K is an w;-saturated field and Th(E) is
totally transcendental then K* is of the form DDH where D is divisible
and H is finite. Since any field is elementarily equivalent to an o -saturated
tield, we may apply Lemma 2 of [13] to conclude:

©
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Lemma 7. Suppose K is « field and Th(K) is totally transcendental.
Then K* is of the form D@®H, where D is divisible and H is finite.

We now use the Ehrenfeucht Condition to get a refinement of
Lemma 7. _

Levma 8. Suppose K is a field with Th(K) totally tramscendental,
Suppose K* = D@H where D is divisible and H is finite. Then H — {13
or D= {1}. ‘

Proof. Assume the hypotheses of the lemma, and assume H -« {1}
and D # {1}. Then D is infinite, so K is infinite.

Sinee H is o finite sabgroup of K*, H is cyclic [12]. Suppose H has
elements, and is gencrated by £. Then # > 1 and 2= 1 for all % in .
Since D i divisible, I C (K*)" Since K* = D@H and o= 1 for all »
in H, wo conclude that (K*)* C D, so (K*)" = D. Thus K* — (E*\"@H.
Therefore if 4 ¢ J*, thero exists & with 0 < & < n—1 such that y2® & (BH)™.
On the other hand ¢ ¢ ()"

Now we define an n-ary relation B on |K| by: (x,, ey Tp1> € R if
and only if either '

2 —
L A R P ST (E*)"
or :
N S A S mn_lé”""l =0.
Suppose @y, ...y ¥n..q ave distinet elements of K. We look at two cases.
Case 1. By, oy Tnyy ¢ K. Then @y-+@,f-4 o 42y ™ £ 0 s0
Wyt 0y E A @ £ e K
Therefore there exists & with 0 <%k < #—1 such that
k —1
£ @yt @il A o F Boen £ € (K.
Therefore
k Jord -1, k-1
Bl Ay & i T ST T Y RS SRR R Y NPT A N € 6 B
Therefore
Sl Ty Ty veny Pupmty By eony Tpmpr ) € B
Therefore there exists o permutation a of {0, ..., n—1} such that
gy y vy Py € I8
Tase 2. <nyy vy ity g € B We have two subceases.
Subease. 1, wyl @l -b o oty e (™ Then

By DA o Wl A0 and C (B8l e FBaa V) £ 0.
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Also, since ¢ (K*)",
Lo@ot ol + o 2amal"T) ¢ (K"
Now 1 A1
E'($o+m1€+ +mln41£n_ ) = mn—l"l‘woé-"!‘ R e .
Therefore
Tnat ol + e +nal" £ 0 and  Buoab @l b o FEanal™ T ¢ (K"

Therefore
<mﬂ.-—1’ Loy eey wﬂ“ﬁ> ¢R .

Therefore there exists a permutation = of {0,...,n~1} such that
<mn(0); ey wn(n,—-l)> ?‘R
Subecase 2. @y f+ ... + 2, "= 0. Now Dyy orey Xy are distines,
and { #1, s0 B
Lo+l # B+ wl .
Therefore
R R N S S Y Y |

Now, if @&l + 20+ ... +2,_18"7" ¢ (K", then
{yy Doy Ly ey L1y ¢ 1.

On the other hand, if @ -+l +8,0%4 oo 20 el e (KK*)", then
{1y Wy Fay vy Tn1) € B, and the argument of Subcase 1 proves that
Bn—1y B1y Loy Tay vy Tno) ¢ B. In both cases there exists a permutation n
of {0,...,2—1} such that

<$,1(o), ey xn(n—l)> ¢ E.

It is clear that R is first-order definable using the eonstants ¢*
(0 <Ek<m—1). We define a function s from {0,...,n—1} to |E| by:

s(h)=¢* for O<h<n—1.

Then, by the corollary to Lemma 5, Th (K, 5)) is totally transcen-
dental.

Let (g, ..., tpq) be a formula of L(n) defining the relation R in
the structure (K, s). It is clear how to write down such a formula.

By what we have proved above about R it is clear that ¢ and g
are connected over |K|. But (K| is infinite, since D 3 {1}. Now Bhren-
feucht’s Condition implies that Th (I, 5)) is not totally transcendental.
This gives a contradiction. '

It follows that either D = {1} or H={1}.

CoroLLARY. Let K be o field and suppose Th(K) is totally transcen-
dental. Then either K is finite or K* is divisible,

On y-categorical theories of fields 13

Proof. By Lemma 7, IC* is of the form D@H, where D is divisible
and H finite. By Lemma 8, cither D = {1} or H — {1}. Thus K* is either
finite or divisible. Clearly if K* is finite K is finite,

5. We can now proceed rapidly to a solution of our problem in the
characteristic 0 case.

We use two well-known facts from Kummer theory. For # an integer,
let Z(n) be the cyclic group of order .

Fact 1. Suppose K is a field, p a prime, and K, a splitting field
over X of a7 —1. Then the Galois group of K, over K is a subgroup of
Z(p—1), and so is cyclic. ’

Fact 2. Suppose I is a tield, p a prime not equal to the characteristic
of K, and K contains p distinet pth roots of unity. Let K, be a Galois
extension of IC with Galois group Z(p). Then there exist &, a such that
E;=K(&), & = a, a e X and « has no pth root in K.

For a proof of these facts, see [12].

Limmya 9. Suppose I is o field of characleristic O such that, for every finite
algebraic extension K, of I, (IC)* is divisible. Then K is algebm'ically closed.

Proof. We prove first that, for each prime P, K has p distinet pth
roots of unity. Suppose not, and let r be the least prime such that K does
not have  distinet rth roots of unity. Clearly » > 2. Let K, be a splitting
field for a"—1 over K. Then K, # K. Let G be the Galois group of K,
over If. Then by Fact 1 G is eyelic and of order <r—1. Let ¢ be a prime
dividing the oxder of ¢. Then ¢ < 7. By the converse of Lagrange’s Theo-
rem, G has o subgroup G, isomorphic to Z(g). Let K, be the fixed field
of G;. Then the Galois group of I, over K, is Z(g) by the Fundamental -
Theorem of Galois Theory [12]. Since ¢ < r, K has ¢ distinct gth roots
of unity, so K, has ¢ distinet ¢th roots of unity. Therefore by Fact 2,
there exists &, a such that K, = Ky(¢), £ = q, e K,; and « has no gth
root in K,. Therefore o e I{¥, and K% is not divisible. But X, is a finite
algebraic extension of K, so K% is divisible by hypothesis. This gives
a contradiction. We conclude that, for each prime p, K has p distinet pth
roots of unity.

Now suppose I is not algebraically closed. Then there exists a finite
normal extengion I, of I, with X, » I Let G be the Galois group of K,
over J, Liet p De o prime dividing the order of @ Then by the converse
to Lagrange’s Theorem ¢ bas & subgroup @ isomorphic to Z(p). Let K_
be the fixed field of ¢4, Then Ky is a eyclic extension of K, with Galois
group Z(p). But K, containg p distinet pth roots of unity. Then by Fact 2
there exist &, a such that I, = Ky&), & = a, ae K, and a.has no pt’h
root in IC,. Therefore I} is not divisible, although K, is a finite a,lgebraa.c
extension of K. Thiy contradiets our assumption. We conclude that X is
algebraically closed.
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TraRoREM 1 (Characteristic 0 case). Suppose K is.a field of charac-
teristic 0. Then Th(K) is totally transcendental if and only if K is alge-
braically closed.

Proof. Sufficiency is proved in [14].

Suppose K is a field of characteristic 0 and Th(K) is totally transcen-
dental. Then K is infinite. By Lemma 6, T% () is totally transcendental,
for each finite extension K, of K. Applying the Corollary to Lemma 8,
we conclude that (K,)* is divisible for every finite extension K,
of K. By Lemma 9, K iy algebraically closed. Thiy proves the the-
orem. :

6. Before getting into the characteristic p case, we pause to show
that some important theories of fields are not totally tramscendental.
The proofs use the Corollary to Lemma 8, but not Lemma 6, and so are
significantly simpler than the proof of Theorem 1.

Separably closed fields. Let K be a field which is separably closed
but not algebraically closed. Then K is of characteristic p for some
prime p. Also, K is not perfect, so K is infinite and K* # (K*)”. Thus
K* is not divisible, so Th(XK) is not totally transcendental.

Quasi-finite fields. Let K be a quasi-finite field, i.e. a perfect field
with exactly one extension of each degree. (Actually, all we use is that K
has an extension of degree 2.) We will assume that the characteristic
of K is not 2. .

Let K; be an extension of K of degree 2. Then obviously (or by
Fact 2) there exist £, a such that Ky, = K (&), &=gq, a e K, and o has
no square root in K. Thus K* # (K*)% so K* is not divisible.

Therefore if K i3 infinite T%(K) is not totally transcendental.

Remark. The case when the characteristic of K is 2 will have to
wait till we prove the general case of Theorem 1.

7. For the characteristic p case of Theorem 1, the argument resembles
that for the characteristic 0 case, but with some extra details. We use
the Kummer theory as before, but also the Artin-Schreier theory. In
particular we need:

Fact 3. Suppose X is u field of prime characteristic p, and suppose I(;
is a Galois extension of K with Galois group Z(p). Then there exist &, a
such that K, = K(&), & —&=a, a e K, and there is no g in IC such
that g7 — 8 = a.

Lenwa 10. Suppose K is an infinite field of prime characteristic p,
such that Th(K) is totally transcendental. Then for each y in K there ewists
an @ in K such that or —x = y.

On e,-categorical theories of fields 15

The proof of Lemma 10 takes some time, and we postpone it. Right
now we show how to complete the proof of Theorem 1, modulo Lemma 10.
We need an analogue of Lemma 9.

Lewma 11. Suppose K is a field of prime characteristic p such that for
every finite algebraic exiension K, of K we have:

(i) (K,)* is divisible;

(il) For each y in K, there exists an % in K, such a? —z = y.

Then K is algebraically closed. i

Proof. We prove first that for each prime q = p K has g distinet'gth
roots of unity. Suppose not, and let » be the least prime #p such that K
has fewer than r rth roots of unity. Let K, be a splitting field for &"—1
over K. Then K, = K. Let @ be the Galois group of K, over K. Then by
Fact 1 G is cyclic and of order <r—1. Let ¢ be a prime dividing the order
of @. Then g < 7. By the converse of Lagrange’s Theorem, G' has & sub-
group @, isomorphic to Z(g). Let K, be the fixed field of G;. Then the
Galois group of K, over K, is Z(g) by the Fundamental Theorem of
Galois Theory.

Suppose first g = p. Then by Fact 3 there exist &, a such that
K, = Ky&), &—¢&= a, o ¢ K,, and there isno f in K, such that fFP—B=a.
But this contradicts assumption (ii). Therefore g # p.

Thus ¢ % p and ¢ < r. By the minimality of r, K has g distinct gth
roots of unity. Therefore by Fact 2 there exist £, a such that K; = Kg(f):‘
& =a, ae K, and a has no gth root in K,. Thus (EZ)* # (K,)", so (Ky)
is not divisible, contradicting assumption (i).

" We conclude that for each prime ¢ = p K has ¢ distinet gth roots

- of unity.

Now suppose K is not algebraically closed. Then, by the same
argument as in the proof of Lemma 9, there exist a prime ¢, and fm}te
extensions K, K, of K, such that K, is a Galois extension of K, with

alois group Z(g).
¢ Sugposs q “—(»q;) Then by Fact 8 there exist £, a such that K1_= Ko(&),
£ —& = g, a ¢ K,, and there is no g in K, such that p*— B = o. This contra-
dicts assumption (ii). )

Suppose ¢  p. Then K has g distinet gth roots of unity. Then by
Fact 2 there exist &, ¢ such that H; = Ky(£), &=a ack, a.n&'a h?s
no ¢th root in K,. Thus (K,)* is not divisible, contradieting assumption ().

We conclude that K is algebraically closed. )

TaeorEM 1 (Characteristic p case). Suppose K is a field of prime
characteristic p. Then Th(K) is totally transcendenial if and only if K is
findte or algebraically closed.

Proof. Sufficiency for algebraically closed K is proved in [14], and
is trivial for finite K. -
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Necessity. Suppose K is infinite and Th(K) is totally transcendental.
Then by Lemmsa 6 Th(K,) is totally transcendental for each finite ex-
tension X, of K. By the Corollary to Lemma 8, (K,)* is divisible for each
tinite extension K, of K. Furthermore, by Lemma 10, for each y in K,
there is an » in K, such that ##— s = y. By Lemma 11, X ig algebraically
closed. This completes the proof.

We put together the parts of Theorem 1 to get:

THEOREM 1. Suppoese K is a field. Then Th(K) is totally transcendental
if and only if K is finite or algebraically closed.

8. We have now to prove Lemma 10. We use the technique of
definable filtrations from [13]. In the present application we work with
additive notation.

In this section all fields are of prime characteristic p. Let F, be the
finite field of p. elements. Any field of characteristic p can be construed
as a vector-space over Fp. If V is any vector-space over F,, we write
dimV for the dimension of V.

If X is a field of characteristic p, let Abs(E) be the field of absolute
numbers of K, ie. the algebraic closure in K of F,.

We define Add(K) as the underlying additive group of K. We will
define a filtration of K consisting of subgroups of Add(K).

We define a map 7: Add(K)—-Add(K) by:

T(#) =2P—x for » in AAd(K).
Faet 4. 7 is a homomorphism with kernel 7.
For a proof, see [12].
We define subgroups H,, (m < w), of Add(K) by:
Hy= Add(K)
Huppr=1[Hy) for m>0.

Clearly H, C H,, whence by induction Hp.i C Hy, for all m, S0
{Hmpm<o i8 o filtration of K. Tt is clear that each H, is definable, so
(Humymea 18 a definable filtration. We note also that if H,y, = Hy, for
some m then H, = H, for all n = m.

There are three possibilities.

(A) Hy=Hy=Hy= .. = Hy= ... ‘
(B) There exists a % > 0 such that Hy# Hy # . £ Hppg = Hyqo= ...
(C) For. all My n With m £ n, Hy, 5= H,.

‘We now analyse these possibilities, and show that it Th(K) is totally
transcendental then (B) and (0) cannot oeccur.

Case C. Suppose Th(K) is to‘oally‘_transcendenml and Case C holds.

©

icm
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Then we have the strictly descending chain
H,DOH,D..D0H,DHpiD...

of subgroups of Add(K). We construe all subgroups of Add (K) as vector-
spaces over Fy. Define He as (| H,. Then H,, is a subspace of Add(K).

n=0
Choose a subspace 4 complementary to H, in Add(K). Then Add(K)
= Ho®4. Since Th(K) is totally transcendental it follows by the corol-
lary to Lemma 3 of [13] that there exists # such that

Huynd=Hynd forall mza.

Then Hyp n A= Huw ~ 4= {0}. It follows that Add(K)= H,D4, since
Hy, C Hy.

‘We claim that Hy = H,. Suppose not. Then theré exists an element x
which is in H, but not in He. Since Add(K) = He@4, there exist y, §
such that 4 € Heo, d €4, and 4= y+ 6. Then y € Hy, 50 ©—%y ¢ Hy. But
a—y=0ed. Bince HynAd={0}, z—y =0, 80 =9 ¢ Hy, contrary to
assumption. Therefore Hy = Hy. '

Therefore Hy, = Hy, for m > n. But this contradicts our assumption
that Hy = Hy if m £ n.

Thus, if Th(K) is totally tmnscenden’n@l, Case C cannot occur.

Case B. Suppose Th(K) is totally transcendental and Case B holds.
Then there exists & such that

Hy# Hy # ... # Hppg = Hyyp = ...
First some notation. For #>1 we define maps t,: Add(K) >
Add(K) by:

() = () for all ;

Tm4a(®) = T(vn(®)) for all z, and all m>1.

Then clearly z, is a homomorphism of Add(K) to Add(K), and
T[Hy] = Hy. )

For each integer N > 1 let F,» be the finite field of cardinality p¥.
We know that Fp, C K, but we cannot determine Fp»¥ n K immediately,
when N > 1.

Consider the equation (over Fy): wgi(x) = 0.

This equation has degree p*+i. It is a simple consequence of the
basic theory of finite fields [12] that the equation has p*+* roots in ..Z‘prk-(-l’
ie. that 74q(z) splits into linear factors over F . Moreover, if Fyw
contains a root of the above equation, that root is a member of Fpy N Fpeta.

It follows that

{z| xe K Atpea(®) = 0} CEn kaﬂ.

‘We define the field K, by Ky= K n Fwn. Then K, is a finite
subfield of K.

2
Fundamenta Mathematicae, T. LXXI =
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K, is of course closed under 7. We congider the quotient vector-gpace
(over Fyp) Kfr[K,]. We claim that dimpK,/r[K,]= 1.

Firstly, since X, is a finite field it has a unique cyclic extension of
degree p.

Next we have the following important fact, established in [1],
Ppp. 203-4.

Fact 5. Suppose F' is any field of characteristic p, and 7: F' T is
given by v(z) = ##—». Then the number of cyclic extensions of F of
degree p is equal to dim,F/z[F].

From Fact 5 and the preceding paragraph we conclude that
Aim, Kofr[K] = L.

Now we claim dim,K[r[K] = 1.

Firstly, since H, # H,, K s 7[K] so dim,K/t[K] > 1.

Next, let A be an arbitrary member of K. Then 7341(4) € Hppy = Hpyo
= 7p4o[H,]. Therefore there exists y in K such that vpi(d) = vrsa(y).
Therefore T+1(A) = Tp41(t(y)). Therefore rk+1(l—r(y)) =0 Therefore
A—7(y) is a root of the equation 7z41(2) = 0.

Therefore A—7(y) € K n Fpa= K,. Since dim,Kyr[K]=1, we
can select a such that a € Ky, a ¢ 7[K,], and for all « in K, there exists
with 0 < » < p—1 such that u—r-a e 7[K,]. Therefore there exists r with
0 <7< p—1 such that l—z(y)—r-aev[K,. Therefore A—7-ae7[K].
Since A was arbitrary it follows that dim,K[r[K]<1, Therefore
_ dimy Kj7[K] = 1. In addition, a ¢ z[K], for otherwise K = 7[K].

By Fact 5, K has a unique cyclic extension of degree p. Furthermore
we know that this extension is generated by a root of the equation 7 () = «,
where ae K, and a ¢ r[K,].

From the penultimate paragraph we see that, as vector-spaces
over Iy, K = 1[K]®<a), where {a) is the 1-dimensional space generated
by « Observing that +[Abs(K)] C Abs(K), that v—[Abs(K)] C Abs(K),
and that o ¢ Abs(K), we conclude that ‘

ADbs(K) = t[Abs(K)]®<e) .

So far in this analysis we have not used the agsumption that Th(K)
is totally transcendental, but now we de. We will assume also that K is
infinite.

By Lemma 6 and the Corollary to Lemma 8, (K,)* is divisible for
every finite algebraic extension K, of K. It follows easily that (Abs(Kl))*
is divisible for every finite algebraic extension K, of K. Since the only
finite divisible group is the trivial one-element group, it follows that
Abs(K) is infinite unless (Abs(K))* = {1}.

Suppose (Abs(K)* = {1}. Then Abs(K)=TF, and p = 2. Let { be
a root of the equation '

4241 =0,
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Then K ({) is an extension of K of degree 2, and F, C K ({). Let K, = K ().
Then F, C Abs(K,). We claim Abs(K,;) = F,. Suppose u ¢ Abs(K,), and
let f (¢ Fyfz]) be the minimum polynomial of # over F,. Since u ¢ K({)
there exist a, b in K such that u = a-+bl. If b= 0, u € K, s0 % ¢ Abs(K)
= F,. So suppose b # 0. Consider the element g of K [x] defined by g(x)
= f(a-+bx). Since f is not the zero polynomial, and K is infinite, one
verifies easily that ¢ is not the zero polynomial over K. By observing
that f(z) = g(b~'z—b""a), one proves easily that ¢ is irreducible over K.
But ¢(¢) = 0, and {24-{+1 = 0. It follows that for some constant ¢ in K,
with ¢ # 0, g(z) =c¢-(2*+a+1), ie. fla+bx) = ¢ (x2+2+1). It follows
that f(z) = ¢+ o+ % for some ¢, ¢; in F,. Therefore

¢t ey(a+bw) 4+ (at b))t = c-(0*+2+1) .
Therefore
Gyt ¢ o+ e, b+ a? - 2a* = ex*+cxt-¢.
Therefore
ctcatat=c,
ab=c¢,
b=,
Therefore b® = ¢,b, and since b # 0,
b=c¢eF,.

In fact, ¢, must be 1. Therefore b = 1 and ¢ = 1. Therefore ¢+ a-+a? = 1.
If ¢=0,1+a-+a*=0, and a e K, although the equation #2+x+1=0
has no root in K. Therefore ¢y= 1, 50 a-+a?= 0, 50 a e F';. Since a, b ¢ Fy,
a--bt e Fot) = F,, s0 weF,. We have proved that Abs(K,) = F,. But
(F)* is not divisible. Therefore (Abs(Kl))* is not divisible, contrary to
what was proved earlier. This rules out the case where (Abs (K))* = {1}.
We conclude that Abs(XK) is infinite. .

We now construe Abs(EK) as an algebra over K,. Since Abs(K) is
infinite and K, is finite, the dimension of Abs(X) over K, is infinite.
We select elements by, (1 < ) of Abs(X) which form alinearly independent
set over K,. Define $ ¢ |K|” by

C s(0)=a,
snt+1)="b, for n=0.

We are going to show that Th((K,s)) has 2% complete extensions

in 2(w-+1). This will establish that Th(K) is not totally transcendental.

Suppose Ky = Fpe. If N is such that X, C K » Fpy, we define Ty as

the trace function from K ~ Fy to K,. Now K ~ Fyv is a cyclic extension
9%
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of K,, and it is well-known [1], [12] that the map » |- 2*° generates the
Galois group. 'We now apply the additive analogue of Hilbert’s “Satz 907
. [121, p. 77, to get immediately the following important fact:

Fact 6. If yeK ATy then Tn(y)=0 if and only if ¥y = u?"—u
for some % in K ~ Fpv. '
Now we define a map 6: Add(K)—>Add(XK) by:

8(a) = a?*—x.

Then ¢ is an endomorphism of Add(X), and 6[Add(K)] is a subgroup
of Add(XK).

We claim that a¢6[Add(K)]. Since a¢7[K], a # 0. Since J[K,]
= 8[Fye] = {0}, we see that the equation #*— = o has no root in K.
If y is any root of the above equation, and 4 € Fpe, it is easily seen that
y-+ A4 is also a root of the equation. It follows easily that the polynomial
7 — g — a is ivreducible over K,, and K,(y) is an extension of K, of degree p*.
Therefore Ko(y) = Fpest. Therefore if aed[Add(K)], LTy CK, so
Puer C K. But Fyer is the unique extension of Fy of degree p, and since
a ¢ 7[Fye] it follows by Fact 5 that o ev[Fpol. Since a ¢v[K], Fre & K.
Therefore « ¢ 6[Add(K)]. .

Suppose ¢ ¢ [Fy|”. We define a set Cond(o) of conditions, involving
the unknown 2, as follows:
Cond (o) consists of the conditions by -#— o(n) -« € 6[AAd(K)], for n < .

If m < o, we define Condn(o) as the set of conditions

bp-t—oc(n)-aed[Add(K)] for n<m.

We claim that the set Cond,, (o) is satisfiable in K, i.e. that there
exists an element 2, of K such that

byme—o(n) o e d[AAA(K)] for an<m.

Since by, ..., bm € Abs(K), it follows that Kby, ..., bm) is finite.
Select N such that Kby, ..., bn) C K ~ Fyy. Suppose we can find 2,4
in K ~ Fpv such that Ty(bn@me— o(n)-a) = 0 for # < m. Then by Fact 6
there exist ¥y (7 < m) in K n Fyy such that bpzm,—o(n) a= (?/,L,,,)pc~
—Yno Tor < m. Bubt then bu2m.—o(n) aed[AdA(K)] for = < m.
Then @, satisties Condyu (o). '

Therefore we want to solve the system of equations

Ty(az—c(n)-a) =0 (n<m)in K~ Fpy.
This is equivalent to sblving

Tx(bue) = Ty(o(n)-a) (0 <m) in K ~ Ty
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Now, K ~Fuv is a separable extension of K, and b, ..., bn are
linearly independent over K,. It follows directly from [1], p. 89 that
the system T(bn#) = Tn{c(n) a) (n < m) has a solution &, in K ~ Fyy.

We conclude that Cond (o) is satisfiable in K. Since m was arbitrary,
every finite subsystem of Cond (o) is satisfiable in XK.

Now, corresponding to Cond(s), we define a set (o) of sentences
of L(w-1) thus: C(c) consists of all senteneces

(Ho,) (’l’ga +A(n) ey = vo+Cny1- Cm)

for n < w, where A(n) is a term defining the element o(n) of F5. [Think
of the elements of C(c) as .the “informal” sentences

(@) (#5 — vy = Cngr-Co— (M) o) 5

and recall that for the se|K|® we defined earlier, s(0)= a, and
s(n+1) = byl.

By what we proved above, ¢(o) v Th((K s s)) ig finitely satisfiable,
and so satisfiable. Select a complete extension ¢(o¢) of ¢(o) v Th ((K s s))
in L({w+41).

Suppose oy, 0y € [Fpl® and o # 0. We claim that &{(oy) # t{os).
Suppose oy(m) # op(m). It will suffice to show that there is no & in K
such that bpo—oi(m)a e S[AAA(K)] and bmoz— oym)a e S[Add(K)]. If
there exists such an , it follows by subtraction that

{oa(m) — o3 (1m)) @ € SLAAA(E)] .

Now ay(m)—oy(m) £ 0, so if (oofm)—oy(m))e e S[AAA(K)] then
« € S[AQd(K)]. But we proved earlier that a ¢ 8[Add(K)]. Thus there is
no ¢ in K such that bpo—o(m)-aed[AAA(K)]} and bpw—oy(m) c e
€ 8[Add (K)]. Therefore Condy (o) and Condm(oy) have no common selution
in K. It follows that ¢(oy) v e(os) v Th ((K s s)) is not satisfiable, so
¢(ay) # T(0y). ’

‘We conclude that _’Z’h((K s s)) has at least 2% complete extensions
in £2(w-+1), since the map o1+¢(0) is 1-1 on |Fyp[", and |Fp|” has cardi-
nality 2. It follows that Th(XK) is not totally transcendental.

‘We have proved that if Case B holds and X is infinite then Th(K)
is not totally transcendental.

Under the agsumption that K is infinite and Th(K) is totally trarnscel‘l-
dental, we have shown that neither Case B nor Case ¢ can occur. F[‘hlS
leaves only Case A, when K = 7[K]. But if K = 7[K] then for each ¥ in K
there exists an # in K such that #2— x = y. Thus if K i3 infinite and Th(X)
is totally transcendental then for each y in K there exists an # in K such
that #?—2 — y. But this is Lemma 10, at last. Theorem 1 is proved.


GUEST


22 ' A. Macintyre

Remark. Because of the lengthy analysis involved in Case B, it is
worthwhile giving an example of an infinite field K such that:

(i) For. every finite algebraic extension K; of K, (Ky)* is divisible;

(ii) For every finite algebraic extension K, of K, Case B holds,
ie. there exists k > 0 such that

Kl # T[Kﬂ ;ﬁ # Tk+1[K1] = T}H_g[Ifl] =

Let p be a prime, and let K be the closure of ¥, under algebraic
extensions of degree prime to p. In terms of the so-called supernatural
numbers ([3], [12]), K is the unique extension of ¥, of degree s, where

$ = n qn(q)
¢ prime

and n(g) = oo if ¢+ p, and n(p) =1. In the terminology of Ax [3],
K is {p}-pseudo-finite. (See Ax’s Proposition 9.)

Since K has a cyclic extension of degree p, K # <[K] by Fact 3.
We claim 7[K] = 7,[K]. K has a unique extension of degree p, generated
by a root of the equation #?—z—1 = 0. By Fact 5, for every « in K there
is an r in F, such that u—7r etv[K]. Therefore 7(u)—17(r) e to[K]. But
7(r) = 0. Therefore 7(u)e7[K]. Since w was arbitrary, z[K] C z,[K],
whence t[K] = 7,[K].

Therefore Case B holds for K. A similar argument will prove that
Case B holds for each finite extension X, of K.

Now we prove that K* is divisible. Olearly it suffices to prove that,

for each prime ¢, K* = (K*)”. Since K is perfect the result is clear for ¢ = p. . -

Suppose ¢ is a prime s£p, and that ¢ divides p¥ —1 for some N which
is relatively prime to p. For such N, F,x C K, so K contains a primitive
(p¥—1)th root of unity. Since ¢ divides p¥—1, K contains a primitive
gth root of unity, so K contains ¢ distinet gth roots of unity. Suppose
now K* + (K*)". Then for some ¢ in K*, o ¢ (K*)% The polynomial 2°— a
is irreducible over K, since K has ¢ distinet gth roots of unity. There-
fore K has an extension of degree ¢. But K has no extension of degree g.
Therefore I* = (K*)? if ¢ divides p” —1 for some N which is relatively
prime to p.

Finally suppose that ¢ is a prime sp, and for all N which are
relatively prime to p, g does not divide p¥ —1. Then ¢ is relatively prime
to p¥—1, whenever N is relatively prime to p. Now suppose « e K*.
Then a e (Fy¥)* for some N which is relatively prime to p. Then a?"-1 = 1.
Since ¢ isvrelatively prime to p¥ = 1 there exist integers m,n such that
mg+n:(p” —1)=1. Then a= o' = am+n-0"-1 = g™ = (¢™)%  There-
fore a ¢ (K*). Since a was arbitrary, E* = (K*). :
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This concludes our proof that K* is divisible. A similar argument
shows that (K;)* is divisible for all finite extensions K, of K.
Thus K has all the required properties.

9, w,-categoricity. We now get, as a corollary of Theorem 1, the
principal result of our paper.

THEOREM 2. If 5 is an BCy class Qf fields such that Th(X) is w,-cate-
gorical, and X has no finite members, then X is one of the classes ACFy,.

Proof. Assume the hypothesis. Let K be a member of X. Then
Th(K) is w,-categorical, so by [14], 3.8, Th(K) is totally transcendental.
K is infinite. We conclude by Theorem 1 that K is algebraically closed.
Thus all members of 5 are algebraically closed. By w,-categoricity all
members of J have the same characteristic, so ¥ C ACF, for some 7.
Since any two members of ACF, are elementarily equivalent [16], we
conclude that ¥ = ACE,.

10. Elimination of quantifiers. Tarski [17] proved that the theory
of algebraically closed fields of specified characteristic admits elimination
of quantifiers. We will prove a converse of this result. :

DeprNiTIoN. Let X be an L-theory. Then X admits elimination of
quantifiers if and only if the following condition holds: if @(vy, ..., ¥a) i8
an £2-formula with all its free variables in the list vy, ..., v, then there
exists a quantifierf-ree formula (v, ..., ) such that

Sl (V00) oo () (@ (005 oovy Da) (Vo5 oors ¥n)) -

(Here «» is material equivalence, definable from ~] and A.)

It is easily seen that if X admits elimination of quantifiers then X' is
model-complete.

We want to know which theories of fields admit elimination of
quantifiers. We emphasize that we are talking about elimination of
quantifiers in the basic logic for fields. Tt is well-known [17] that the theory
of real-closed fields admits elimination of quantifiers when we use the
auxiliary predicate > for order. The situation is analogous for valued
fields [6]. - -

Suppose K is a field such that T4 (X) admits elimination of‘ quantifiers.
Then for each n > 1 there is a predicate pa(@o, s #y) which is a Boolean
combination of polynomial equations with integral coefﬁeiel%ts sucl.l that
for each K, = K, and @, ., & i Ky, Paltip, .., @) bolds in Ky if and
only if there is a y in K; such that Bot 1y Y + B Y2 e T Ty = 0.
The obvious example is when K is algebraically closed, and Pr(@yy evy %n)
i8 (5 # 0) > "1(@y, = @y = ... = Tn = 0).
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Levwma 12. Suppose K is a field such that Th(K) admits elimination
of quantifiers.” Then Th(K) is «;-categorical.

Proof. Assume the hypothesis. Suppose K; and K, are models of
Th(X) of cardinality w;. Then K; and K, have the same characteristic.
Clearly K, and K, both have transcendence degree w, over their respective
ground fields. Let L, L, be respectively the ground fields of K,, K,.
Let {bia: A< oo} and {bss: 1< o} be respectively transcendence bases
for K, over I, and K, over L,. Let Jy= ZIy(bioy ..y bray ot A< ),
and Jy = Ly(baoy .y boay .t A < o). Then K is algebraic over J; and K, is
algebraic over J,. Also by the Steinitz theory there exists an isomorphism
o:d;==2dJ,. We claim o extends to an isomorphism ¢: K, o~ K,.

¢ extends to an isomorphism o*: Ji[#] =~ J[2] such that o*(z) = «.
‘We claim that for each f in J;[z] f has a root in K, if and only if o*(f)
has a root in K,. Suppose f i8 @+ @+ ... +oy 2", where &, @, ...,
#p eJ;. Then f has a root in K, if and only if there exists ¥ in I, such
that @+ oy -+ ... +2y*= 0. Now we use the predicate .P, introduced
earlier. f has a root in K, if and only if Pu(w,, %, ..., ¥») holds in XK,.
But P, is quantifier-free, so Pu(wy, 2y, ..., %2) holds in K, if and only if
Pulo (@), o(@), ..., o(ws)) holds in K,. But Palo(a), 0(#1), ..., ()} holds
in K, if and only if there exists Z in K, such that o(z)+o (@) -Z+ ...+
+o(zx) 2" = 0, i.e. if and only if o*(f) has a root in K,. This proves the
claim that f has a root in K, if and only if o*(f) has a root in K.

Sinee for ¢ =1, 2 K; is algebraic over J;, Lemma 1 on p. 255 of [3]
(with an obvious modlﬁcamon) implies that o extends to the required o:
K, =~ K,.

Since K, and XK, were arbitrary models of Th(K) of cardinality w,,
we conclude that Th(K) is o,-categorical.

TuEOREM 3. Suppose K is an infinite field such that Th(K) admits
elimination of quantifiers. Then K is algebraically closed.

Proof. Assume the hypothesis. Then Th(K) is w,-categorical, and
50 by Theorem 2 K is algebraically elosed.

Theorem 3 is the promised converse to Tarski’s result.

11. Concluding remarks. It would Dbe interesting to classify w,-cate-
gorical theories of division rings. By the methods of this paper one can
show that if K is a division ring with Th(K) totally transcendental then
the centre of K is either finite or algebraically closed, but this is all we
know at the moment.

More generally one would like categoricity results for wider classes
of rings. A specimen result i that if K is an algebraically closed field
and Mn(K) is the ring of nxn matrices over K then Th(Ma(K)) is
o -categorical. Here also our knowledge is fragmentary.
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