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Proximity approach to extension problems
by
M. S. Gagrat and S. A. Naimpally (Kanpur, India)

1. Introduction. Let X and ¥ be dense subspaces of topologieal
spaces oX and a¥ respectively. An important class of problems in Topol-
ogy deals with necessary andfor sufficient conditions under which a con-
tinuous function f: X Y has a continuous extension f: aX >a¥ (or Y).
Among several known results in this class, the following result, due to
Taimanov [12], has many applications:

(1.1) A necessary and sufficient condition that a continuous fumction
f: X>Y, where X is dense in a T.-space aX and ¥ compact Hausdorff,
has a continuous extension f: aX ¥ is that for every pair of disjoint closed
sets Fy, ¥, of Y,

Cloxf Y Fy) A Cloxf '(F) = @

Lodato [7] has shown that a generalized proximity é, (called LO-proz-
imity in this paper) can be introduced in oX as follows: AG,B iff
A=~ B~ %@ (we use the bar to denote closure when no confusion is
possible). Tt is well known that in the case of a compact Hausdorif space,
8y, as defined above, is a unique compatible Efremovié proximity (called
BF-prozimity in this paper) (see Efremovié [3]). Taimanov’s Theorem
can now be interpreted as follows: If « X and Y are assigned the LO-prox-
imity 8, and the BEF-proximity &, respectively, then f has a continuous
extension if and only if f is proximally continuous. It is interesting to
note that whereas X has the subspace LO-proximity induced by 6, on oX,
Y has an EF-proximity.

This investigation began with an attempt to prove Taimanov’s
Theorem by the use of bunches and clusters (see Lodato [7] and Leader [6]).
However, we found a general theorem which includes several results,
including Taimanov’s result mentioned above, as special cases.

The 2nd Section gives preliminary results needed to prove our
theorems. For a survey of EF-proximity spaces see for example [10].
An uptodate account of LO-proximity is written by Mozzochi [9].
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Section 3 contains our fundamental results on extensions of fune-
tions. In Section 4 we use our results to get, for LO-proximity spaces,
a satisfactory generalization of the well-known Smirnov compactification
theorem for EF - proximity spaces. We helieve that no such generalization
has so far appeared in the literature. .

In Section 5 we prove a general result on extensions of continuous
functions. This generalization of Taimanov’s result yields the extengion
results of McDowell [8], Blefko [2] and Engelking [4]. In the final section
we show that our results also include an Extension Theorem due to Pono-
marev [11] concerning Wallman compactifications of T,-spaces.

2. Preliminaries. The purpose of this section is merely to recall the
known results concerning LO-proximity spaces and the reader familiar
with them need read only (2.9) through (2.13), which are new results.

{2.1) DmFINITION. A binary relation 6 on the power set of X is a
LO-proximsty iff

(i) 4B implies Bd 4,
(i) (4w B)s0 iff 46C or BSC,

(i) 468 implies 4 # @, B +# @,

(iv) 4 ~ B @ implies 4JB,

(v) 46B and b6C for each be B implies 46C.

[We frequently write & for {z}.]

The pair (X, ¢) is called a LO-space. If, in addition, & satisfies,

(vi) #éy implies » =y,
then § is said to be separated. Xt § satisfies (i) through (iv) and

) A5 B implies there exist & and F such that A5(X—m), Bi(X—F)
and HoF,
then ¢ is called an EF-proximity. The pair (X, 4) is called an BEF-space.
" Every EF-space is a LO-space but the converse does not hold.
Every LO-proximity 6 on X induces a topology z(8) on X as follows:
G ez(0) iff for each we@, w3(X—@). A topology = on X such that
7= 7(d) is said to be compatible with 5. A topologieal space (X, 7)is said to
be B, (weakly regular or symmetric) iff either of the following equivalent
conditions is satisfied:

(a) e @ er implies o~ C @&

(b) @ ey~ implies y € o~
If 6 is a (separated) LO-proximity, then z(6) is R, (respectively T4);
conversely, every R,-(T;-) space (X »7) has a compatible (respectively
separated) LO-proximity 6, defined by;

(2.2) A6, B iff A~ ~nB™ 40,
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As for EF -proximity, it is well known that a topological space is com-

" pletely regular (Tychonoff) if and only if it has a compatible (respective-

ly separated) EF-proximity. In particular, every completely regular space
X has a compatible functionally distinguishable proximity 87 defined by:

(2'.3) Adp B tff there is a continuous function f: X -[0,1] such
that f(4) =0, f(B)=1.

It is worthwhile to note that §, as defined by (2.2) is a compatible
separated EF -proximity on X if and only if X is T,. We also note that &,
is the unique compatible EF-proximity on a compact Hausdorff space.

The following result, which derives easily from the definitions, is
frequently needed:

(2.4) In ¢ LO-space (X,6), A6B iff A=6B".

(2.5) DEFINITION. Let (X, é,) and (¥, 6,) be LO-spaces. Then a fun-
ction f: X =Y is prowimally continuous iff A6, B implies f(4)38,f(B).

The following result is known: ’

(2.6) BEwery promimally continuous fumction is continuous. The con-
verse holds if either 6;= 8, (LO-proximity) or 6, = oy (BF-prozimity).

Bunches and clusters correspond to ultrafilters and play roles in
proximity spaces analogous to the rdle of ultrafilters in topological spaces.

(2.7) DEFINITIONS. A non-empty family o of subsets of a LO-space
(X, 6) is called a bunch (Lodato [7]) iff:

(a) 4, B e o implies A4B,

(b) (AuB)ec iff Aeoor Beo,

(¢) Aec iff A” eo.
¢ is a cluster (Leader [6]) if it satisfies (a), (b) and

(¢/) A6B for every Beoc implies A eo.

The following results in a LO-space X (unless otherwise stated)
are either immediate consequences of the above definitions or are known
results that are needed in the sequel.

(2.8) (1) BEwvery cluster is a bunch but not conversely.

(ii) Bwery bunch is contained in a maximal bunch.

(iii) If £ is an ultrafilter in X, then

b(E)={4dCX: A" £},
is a bunch generated by L.
(iv) For each ¢ X,
oz ={ACX: Adw},

is a cluster called the point cluster.

@
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(v) If o is @ bunch and {x} € o, then o is the point cluster oy.
(vi) A family o of subsets of an BF -space X is a cluster iff there exists
an ulirafilter £ in X such that

o=0c(L)={A4CX: ASL for every L L}.

Ii is called the cluster gemerated by L.

(vii) If o is a bunch, A ec and AC B, then Beo.

We say that a bunch ¢ in a LO-gpace X converges to © ¢ X iff the
neighbourhood filter N°; of # is a subelass of ¢. Clearly a cluster ¢ in an
EF-space converges to « iff o = 0. Leader [6] has shown that an BF-space
is compact iff every cluster in it is a point cluster. The fo]lowing analogue
holds for LO-spaces.

(2.9) LeMMA. A separated LO-space X is compact if and only if every
bunch b (L) generated by a closed ultmﬁlteaf £in X (see (2.8) (iii)) is @ point
cluster.

Proof. Let £ be a closed ultrafilter in X. Then b(L) = oy, for some
2y ¢ X implies {w,} e b(L). This shows that ,¢.L for every Lef (since
each L is closed) and so {#,} ef, since £ iy maximal. Conversely, if X is
compact and L is a closed ultrafilter, then £ has a cluster point ». Since £
is maximal, {#} eLCb(L) and so b(L)= o, ((2.8) (V).

The following result is a generalization of Lemma (5.7) of [10].

(2.10) LmmwmA. Let F be a ring of subsets of X (e.g. closed subsets of X
or z-seis of a Tychonoff space X). Suppose § C & is such that (i) @ ¢ 7,
(i) For A,Bin F(AwB)eT iff AeT or Be? and (iii) 4 eF, ACBeSF
implies B eF. Then given an Ao, there exists a prime F-filter L such
that A, € £ CT. (Recall that £ is prime means that for elemenis A, B of 7,
(4 v B) et implies A £ or B ¢L.) If F is the power set of X, then L is an
ultrafilter.

(2.11) Lzmma. In an EF-space o family of subsets is a cluster if and
only if it is a mazimal bunch.

Proof. We need prove only that if o is a maximal bunch then it is
a cluster. By (2.10) there is an ultrafilter £ C ¢. Clearly o C o(£) = {A: 46T
for every L « £} which is a cluster in X (see (2.8) (vi)). Since o is maximal,
og=o(L). )

(2.12) LEMMA. In an EF-space X, every bunch is contained in a unique
cluster.

Proof. If b is a bunch in X, then by (2.8) (ii) and (2.11), b is con-
tained in a cluster. To show uniqueness, suppose on the contrary that b is
contained in two different clusters o), 0,. Then there are sets .A;e oy
(z__ 1,2,) such that A4, 6A By (2.1) (v') there eXlst E;CX such that

(X By (i=1,2) and H, 6 B, Smce Ay 3 (X—Ey), (X—Fh) ¢ o
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(t=1,2) and hence (X—F;) ¢b. This implies that B;eb and hence
E,0F,, a contradiction.

Let 9z, Fv be rings of subsets of topological spaces X, ¥ respectlvely,
and let f: X—Y be a funetion such that for each X ey, F(B) eTx%.
It is easy to prove that if & is a prime Fx- -filter, then

(2.13) FHF) = (B eSy: UB) 5},

is a prime Jy-filter in ¥ (cf. Gillman and Jerison [5], p. 59).
Finally, we prove a slightly stronger version of (2. 8) (vi).
(2.14) LimmmA. Let X be a Tychonoff space and let X have the function-

ally distinguishable proximity 6 = 6p (2.3). If € is a prime z-filter in X,
then o(L) = {A CX: ASL for every L et} is a clusier in X.

Proof. Clearly if Z; and Z, are 2-sets in X, then %, 8 Z, iff ZinZ,=@
(see Gillman and Jerison [5], p. 17). The only non-trivial part is to show
that if A, d,eo(f), then 4,64, If 4,8 4,, they are functionally
distinguishable and hence 4;CZ; (4=1, 2) and %, ~ Z, = @. Then there
are Z; such that Z,CX—Z;(i=1,2) and Z; v Z; = X. Since Z; ¢ a(L)
and Zi 82, Zi¢f (i=1,2). This implies that X =Ziu Z¢f,
a contradiction.

3. Fundamental results, In this section we prove the basic results
concerning extensions of mappings.

(8.1) DrFmNITION. Let (X, 8) be a LO-space and Zx the family of
all bunches in X. Let £ C Zx. A set B C X is said to absorb AC Ziff B e g
for every o e .

The proof of the following two lemmas is similar to that in Lodato [7]
and is omitted.

(3.2) LEmra, For £C 2C Xk,
Cl(#) = {o € Z: F absorbs 4 implies E e o},

defines a Kuratowsks closure operator on X.

(The resulting topology on X is called the absorption or A-topology.)

(8.3) LEMMA. The A-iopology on X is

(i) T, if and only if 01,0, € %, oy 7 0y implies 0, 0y and 0, ¢ oy;

(i) T, if either A€o, or Beoy (0y,0,¢X) for all subseis A, B of X '
such that A v B = X, then o, = 0,.

(3.4) TuroREM. Let (X, d) be a LO-space and let ¢ = px: X —>Zx
be a function defined by ¢(z) = oz, the point cluster (2.8 (iv)). Then ¢ is

5%
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continuous and closed and ¢(X) is dense in Zx. If 6 is separated, then X
s homeomorphic to ¢ (X). '

Proof. That ¢ is continuous and closed follows from the fact z64
itt A€oy L. 3 e A7 iff 05 ¢ Ol{p(4)). If 8 is separated then = 7 y implies
oz # oy and @ is one-to-one. Thus ¢ is a homeomorphism from X to ¢(X).
Finally Clp(X) = {0 e Zx: X ¢ o} = Zx. '

(8.5) CororrArY. If (i) @ (X) C T C XZx, (ii) A 0B implies there ewists

a oeXZ such that A, B e o and (iii) the A-iopology on Z is Ty, then ¢ is
a prowimal isomorphism between X and ¢(X), the latier having the subspace
LO-proximity of 8 on X. | :

icm

Proof. The proximal isomorphism follows from the fact that under

the conditions stated, 4 6B iff Cle(A4) ~ Clp(B) # 0.
We now prove our main regult.

(3.6) TmmorEM. Let (X, d,), (¥, dy) be LO-spaces and f: X->Y be
progimally continuous. Then there ewists an associated fumction

[ Zx>2y,

defined by fx(0) ={BC X: f{E")eoc}. The map f5 is continuous with

respect to the A-topologies on Xx, Xy amd fx(og) = oy for each xe¢X.
Proof. We first show that if o € Zx, then fx(c) e Z¥, by verifying
(2.7) (a), (b), (0). :

. (21) If _.{1,?6]";(0‘), then f47), FfB”)eo. This implies that
FT(A7) 8, f(B7) and since f is proximally continuous, 4”8, B~. By (2.4)
we have A46,B. .

() (A © B) efs(o) iff f(AwB) leo ift FHAT) L f(B)eo iff
A Ef;‘(O') or B Efg(ﬂ').

(e) Obviously A4 ¢fs(o) itf A~ efx(c). ,

To show that fr is continuous we must show that if o Ol (+£) for
#£C Xx, then fx(o) e 01( 's(#)). If this is not the case, then there iy & set

ECY which absorbs fx(s) but does not belong to fx(c). This implies -

t}:_lat F{E") absorbs # but is not in ¢ ie. o ¢ Cl(#), a contradiction.
Finally, if o ¢ X,

- folo2) = {ACY: fYA™) e 05}
= {AC X: pof A7)
—{ACTY: pef(d)}
={ACY: flz) ed™}

= Of(g)

©
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If in the above theorem &, §, are separated, then ¢z, py (as defined
in Theorem (3.4)) are homeomorphisms. By Theorem (3.6), we have the
following diagram: -

. fz(PX = lPYf .
Identifying X with ¢(X) and ¥ with ¢(¥) we have:
(3.7) FUNDAMENTAL EXTENSION THEOREM. Let (X, d,) and (X, 0;)

be separated LO-spaces. Then every proximally continuous function f: X »¥
has a continuous extension fz: Xx—Zy.

(8.8) TuEOREM. Let X be a dense separated LO - subspace of a TO-space
(eX, 8,) [0, need mot be separated). Then the fumction 9= yox: oX +Zx
defined by ' ]

p(@)=o*={ECX: 56, H},

for each x e aX is continuous. If » < X, then p(x) = oy the point duster,
i.6. ’lp]X: Px.

Proof. We first verify that ¢ is a buneh in X. Since X is dense
in aX, Xeo®” and o® #@. (a) Xf 4, Beo? then 26,4 and #6,B and
consequently (by (2.1) (i), (v)), 46, B. (b) (4 v B)eo® iff (A v B)d»
iff 48,2 or Bé,x ((2.1) (ii)) iff A e c®or Beo® (c) A eoiff wd Aiffwecd”
iff A7 e 0™

Tn order to show that v is continuons, we must prove that if e B~
where B C aX, thén y(x)eCllp(E). If (@) ¢ Ol(y(E)), then there is
a set A CX which absorbs ¢(E) and A ¢yp(z) = o% This implies that
E CA™ and ¢ 4~, a contradiction. Hence v is continuous. The last
part is obvious. )

(3.9) COROLLARY. If in Theorem (3.8), «X is Ty, then v is & homeo-
morphism of oX into Zx. )

Proof. If #,, «, are two distinct points of aX, then there are disjoint
neighbourhoods Ny, NV, of @,, @, respectively. Clearly X ~ Ny e o™—o=and
X A N, € 0%2— g™, i.e. 0% # o%. This shows that ¢ ig 1-1. To prove that p is
a homeomorphism it is sufficient to show that v is closed. Suppose @ C aX
and z ¢ G”. Since oX is Ty, there are disjoint neighbourhoods Ne, Ngof &
and » respectively. Since X is dense in oX, (N¢ ~ X) absorbs p(&) bub
does not belong to o= Hence y(x) = o® ¢ Cl{p(&), i-e, p is closed.


GUEST


70 M. 8. Gagrat and 8. A, Naimpally

Leader [6] has shown that the Smirnov compactification L of
a separated EF-space (X, 8) iy the family of all clusters in X with the
A-topology. Also to each ¢ e 2y there corresponds a unique cluster o
in X (see (2.12)) containing o. !

(3.10). TumorEM. If (X,d) is a separated EF-space, then the map
6= 0x: Zx XL given by 6(c) = oy is continuous. Moreover, 0(0z) = 0.

Proof. To show that § is continuous, we must prove that if o ¢ Cl(«)
#C Zx, then 0(c) ¢ Cl(6(4)). If, on the contrary, 8(c) ¢ C1(0(st)), then
since &L is compact Ty, there are non-near neighbourhoods Uy, U, of 0(0)
6(#£) respectively. Clearly U, ~ X absorbs 4 but does not befong to a’
i.e., o ¢ C1(+#), a contradiction. That 6(cs) = 05 is obvious. ’

If X is compact T, then X = X (identifying # with o) and the
map § in the above theorem is onto X. Hence we have,

(8.11) CoroLLARY. If X 4s compact T, with the EF -prowimity &,, the
map 0= bx: Zx—>X given by 0(c) = @, (where o comverges to Ty) 8 ’cow
TINUOUS. .

The method of proof in Theorem (3.10)
following stronger result is true.

(3.12) TEEOREM. Let (X, &) be a T3 LO-space and let 5 be o subset
of Zx such that each o X converges to a (unique) x, ¢ X. Then the mop
0="0x: X=X given by 0(0) = &, 1S continuous.

Leaderjs result quoted before Theorem (3.10) together with Lemma
(2.11) provides a motivation for the following generalization.

'(3.13) THEOI?EM. Let (X, 8) be a separated LO-space and X* be the
am ﬂy of all mawimal bunches in X with the A-topology. Then X* is a com-
pact T,-space containing o dense homeomorphic copy of X.

) Pro?f. From (3.3) (i) and (3.4), X is homeoﬁaorphic to ¢(X), which
s d.ense in t.he T;-space. X*. We need to prove that X* is compact and
it is sufficient to show that if {4* ae A} [where A¥= {oceX*:
A, eA o;, A, closefl %n X}] has the finite intersection property (f.i.p.), then
ug s # @. (This is due to the fact that the family {4%: 4, closed in X}

actually shows that the

;s]zl a ;)?;se :E01]'1 closed sets in Zx in the A-topology.) Since {4%: a e A} has

e fip., the corresponding family & = {4.: ae A} of clog

of X has the property: ¢ A O» closed. subsets
(3.14) every finite subfamily of F is a subclass of some o e X*.
Let ® be the family of all collections § of closed subsets of X such that
i) FCeg,

and

icm
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By Zorn’s Lemma @ has a maximal element 6. It can be verified
that b(J6) = {BC X: B~ e} is a bunch in X. By (2.8) (ii), b() is
contained in o, e X*. Clearly oy 4% and X* is compact.

a€d

4. Applications to LO-spaces. In [7] Lodato’s motivation for intro-
ducing a LO-space (X,8) was a part of the well-known theorem of
Smirnov: Every separated BEF-space (X,d) is proximally isomorphie
to a dense subspace of a compact T, space X with the EF-proximity dy.
Lodato enquired whether there exists a set of axioms for the binary
relation 8 on the power set of X such that ¢ satisfies these conditions iff
there exists a topological space Y in which X can be embedded
so that

(41) A6B in X iff A~ ~nB” #@ in T.

Granting that such an embedding exists, it is easy to verify that &
must be a LO-proximity (2.1). Lodato’s generalization [7] is as follows:

(4.2) LopaTo’s THEOREM. Given a set X and a binary relation 6 on
the-power set of X, the following are equivalent:

(a) There exists a Ty-space Y in which X is embedded so that (4.1) holds;

() (X, 8) is a separated LO-space possessing a family B of bunches
such that (i) A 0B implies there is @ o € B such that A, B e o and (ii) 0y, 62 ¢ B
and either A e o, or B € o, for all A, B such that A © B = X, then oy = 0,.

The above theorem follows from (3.3) (i), (3.5), and the fact that
ASB iff Cl{p(4)) ~ Cl{p(B)) # 9. This result of Lodato is a partial
generalization of the complete theorem of Smirnov, which is as follows:

(4.3) SMrNoV’S THEOREM. Let (X, 5) be a separated EF -space.

Then (i) there ewists a compact Ty-space X containing a dense homeo-
morphic copy of X, (ii) A6 B iff A= ~AB™ %0 in L, and (i) if f: (X,6)

(¥, 8,) is prowimally continuous, then f has a continuous ewtension f:
LY. Further, (iv) any L satisfying (i) and (ii) 4s unique up to a proximal
isomorphism and can be described as the space of all clusters in X with the
A-topology.

Clearly (4.2) generalizes only (4.3) (). Our results in the previous
section contain generalizations of (4.3) (i), (ii), (iii) as follows: (3.13) of
(4.3) (i), (8.5) of (4.3) (ii) and (3.7) of (4.3) (iii). No doubt the extension
spaces are not the same for all these. However, if we require that (X, d)
satisfies (4.2) (b) (i) (which is already contained in the hypothesis of (3.5)),
we get the following analogue of Theorem (4.3) due to Smirnov:

(4.4) TrmorEM. Let (X, 0) be a separated LO-space such that if A8B,
then there is a bumch in X containing both A and B. Then (i) there exists
a compact Ti-space L (the space of all mawimal bunches in X with the
A-topology) containing a dense homeomorphic copy of X; (ii) A0B iff
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Olp(4) n Clp(B) = @ dn X; (i) of f: (X,0)~(X,8) is provimally
continuous (where Y is a separated LO-space), then f has a continuous
extension ]T £L—=>2y.

If Y is separated EF, then a method of proof used in (3.10) shows
that the map from Xy to Y which assigns to each o € Zy, a maximal bunch
o' ¢ ¥ (see (2.8) (ii)) is continuous. And so in (iii) above one may consider f ag
a continuous function from LY. Since in an EF-space X (i) every
maximal bunch is a cluster (2.11) and (ii) 4 6B implies there is a cluster
in X which contains both A and B, we see that Theorem. (4.4) generalizes
(4.3) (i), (ii), (iii). No doubt we have lost the uniqueness, which we cannot
expect without requiring that X should be T}, but in that case L becomes
an EF-space.

5. An extension of Taimanov’s Theorem. In Taimanov’s Theorem (1.1)
the range space Y is compact 7. In this section we take Y to be a sepa-
rated BF-space and obfain a generalization which will be used in the
sequel to get other extension results as well. First we note that if X is
a T,-dense subspace of a LO-space (aX,d,) and if Y is dense in the
separated LO-space (X*, §,), a necessary condition for a econtinuous
function f: X +¥ to have a continuous extension f: aX —T* is that f be
proximally continuous (2.6). The important part of Taimanov’s Theorem
is that this condition is also sufficient. It follows that in all extension

theorems, we need only prove the sufficiency of the condition of proximal
continuity.

(5.1) GENBRALIZATION OF TAIMANOV'S THEOREM. Let X be a T, -dense
subspace of an By-space X and let X be assigned the LO - subspace-proximity
induced by &, on aX. Let (Y, 8) be a separated EF-space and Y be its Smirnov
compactification. Then a continuous function f: X Y has a continuous
extension f: oX Y if and only if f is prowimally continuous.

Prooff. Wf; need only to prove sufficiency and this results from
the following diagram, where the numbers refer to results proved earlier.

YaX Is Oy

aX Iy N L
N @1

(3.10)
idy ox Py
\//(3.4) ], (8.4)

A Y

Clearly f= Orfryex: X Y is a continuous extension of I
There are two ways in which we may specialize Theorem (5.1). First,
we may ask for the conditions under which f is a funetion from oX to Y.

An easy answer is that when Y is compact T, ¥ is homeomorphic to Y
and we get Taimanov’s Theorem (1.1)

icm
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. Becondly, we may ask for the largest subspace of aX to which f has
a continuous extension if the range of the extension is ¥. McDowell [8]
solved this problem as follows: Suppose, in addition to the conditions in
Theorem (5.1), functionally separated sets in X have disjoint eclosures
in aX (recall that subsets 4, B of X are functionally separated iff there
is a continuous funetion f: X —[0,1] such that f(4)=0, f(B)=1).
If f: XY is continuous, then it is easily checked that f is proximally
continuous: if ¢ 6 D in ¥, then ¢ and D are functionally separated in Y.
Since f is continuous, f~(C), f (D) are functionally separated in X and
hence f"l(C') 8 f (D). By Theorem (5.1), f has a continuous extension
f— oX —-Y. We now find ]_‘"1( Y). Clearly 3“(99) =y e Y iff f5(c®) converges
to y iff the neighbourhood filter N, C fs(o®) iff weNON ClLx f{(Ny)

v ¥
= aX,(say). Thus f YY) = Uy aX, and we get a slightly generalized
ye

vergion of one of McDowell’s results in [8].

(5.2) TEeoREM. Let X be a T-demse subspace of an Ry-space aX;
let functionally separated sels in X have disjoint closures in aX and let ¥
be a Tychonoff space. Then every continuous function f: X ~Y can be ex-
tended to a comtinuous function f: aXy—~Y defined by f(m) =y iff & € aXy.

Moreover, aXy = |JaX, is the largest subspace of oX to which f has
ye¥

@ CONLInUOUS extension.

6. Applications to real-compact spaces. This section deals with extension
theorems involving either real-compact spaces or real-compactifications
of Tychonoft spaces. We also prove that the Hewitt real-compaectification
of X is the space of- all clusters o(f) £ a real z-ultrafilter in X (see
(2.14)) with the A-topology. (Cf. this with the Smirnov compactification
(4.3) and Alo-Shapiro [1]). This space is homeomorphic to the space of
all real z-ultrafilters in X with the Wallman topology.

‘We now show that a result proved by Blefko [2] and Engelking [4]
follows from Theorem (5.1). We recall that a Tychonoff space X is real-
compact iff every real prime z-filter in X converges. (Gillman and Je-
rison [5], p. 120).

(6.1) TEEOREM. Let X be a T, dense subspace of an R,-space aX and
let ¥ be a Tychonoff real-compact space. A continuous function f: X T
has a continuous extension J: aX Y if and only if, for every sequence (Fn)

of closed subsets of ¥, (O% Fy =0 implies ﬂlCluxf TH(Fn) = 0.
n=1 n=

Proof. We prove the necessity in the same way as Blefko or‘En-
gelking. To prove the sufficiency, let oX and Y be assigned respectively
the LO -proximity d, and any compatible EF-proximity 4. By (?f'ﬁ)
f is proximally continuous and by (5.1) f has 2 continuous extension
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f; X Y. In view of Theorem (8.12) it is sufficient to show that for each
# e aX, fx(o%) converges to a certain y,e ¥. We first note that the zero
sets in fs (%) have the countable intersection property; for if they did

not and ﬁ Zn = O for z-sets Zy € fz(o®), then we would have ﬁ Cloxf (%)
n=1 n=1

= 0, which contradicts the fact that & e[ Clxf N (Zu). By (2.10) there

is & prime 2-filter £ contained in fs(o%). "Olljviously £ has the c.ip. and
50 converges to a certain yye Y. :

‘We next give a concrete realization of the Hewitt real-compactifi-
cation of a Tychonoff space X. Let X De assigned the EF-proximity
6 =0 (2.3). Let vX be the family of all clusters generated by real
z-ultrafilbers in X (sce (2.14)) and let it be assigned the A -topology.
Let Y be any real-compact space and let it be assigned any compatible
EF-proximity. By (8.7), every continuous function f: X Y hasg
a continuous extension fz: vX —Zy. In view of Theorem (3.12), in order
to prove that »X is the Hewitt real-compactification of X (Gillman and
Jerison [5], p. 118), it is sufficient to show that for each o evX, fx(o)
converges to ¥, ¢ Y. If o X, then ¢ = o(L) for some real z-ultrafilter £
in X. Clearly f¥(£) C fx(0) and f7(£) is a prime z-filter in' ¥ (2.13). Since ¥
is real-compact, (L) converges to ¥, < ¥ and consequently fx(o) also
converges to y,. Thus we have

(6.2) TarorEM (See Alo and Shapiro [1]). Let X be a Tychonoff space
ond let it be assigned the prowimity Op. The Hewitt real-compactification
of X is the space of all clusters generated by the real-z-ultrafiliers in X, the
space being assigned the A-topology.

The above result throws some light on a result due to Gillman—Jerison
quoted in McDowell [8] and provides an easy proof of it. First we note
that from (i) 6F (3), p. 94 and (ii) 8F, p. 126 of Gillman and Jerison [5]
it follows that: '

(6.3) Lumwma. If X is dense in a real-compact space aX, then every
real prime z-filter in X converges in aX.

Let X and Y be Tychonoff spaces with the EF-proximity dp. If
§: XY is continuous, then, as in the argument preceding Theorem (6.2),
fz(a) (for o evX) is o bunch containing a real prime z-filter in ¥. By
Lemma (6.3), fs(s) converges to a point y, ¢v¥. By (3.12) the map f:
vX »vY which assigns to each oeyX the unique limit of fx(o) in v¥ is
continuous. Thus we have '

(6.4) THROREM. Bvery continuous function f from a Tychonoff space X
to o Tychonoff space Y can be extended to a continuous function f,: vX »v¥.

7. Application to Wallman extensions. Let X and Y be T,-spaces
and let each be assigned the LO-proximity 6,. The Wallman extension
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(compactification) wX of X is the space of all closed ultrafilters with the
Wallman or w-topology, whose closed subsets have the family {4*: 4
closed in X}, where A* = {F ewX: A « 5}, as a base. If is easy to show
that the Wallman extension is homeomorphic to the space of bunches
generated by all closed ultrafilters in X with the 4-topology, and we
agsume this. (Note that if £ is a closed ultrafilter, then b(f) = {EC X:
E~ e} is a bunch.)

In general, if £ is a closed ultrafilter in X and f: X »Y is continuous,
then f¥(£) = {B: E closed in ¥ and f~ Y(B) et} is a prime closed filter.
However, we have

(7.1) LmmMa. Let f: XY be continuous and closed. Then if £ is
a closed ultrafilter in X, FHE) is a closed ultrafilter in X.

Proof. We first note that f(£) = {f(L): LeL} Cf#(fl). This follows
from the fact that f(I) is closed in ¥ (for L closed in X) and f*(f(L))
D Lef. To show that f#(ﬁ) is maximal we must show that if ¥ is closed
in Y and B~ M + @ for every Me f#([i), then F sf#(ﬁ). In particular,
B~ f(L) + 9 for each Lel (since f(L) Cf#(ﬁ)), ie., f{B) ~L #@ for
each L . Bub £ is maximal and so f(B) ¢, i.e., B f(0).

‘We now prove a result due to Ponomarev [11].

(7.2) TaEorREM. Let X and Y be T -spaces and let f: X =Y be continu-
ous and closed. Then f has a continuous extension wf: wX -»wX; further,
if f is onto, then so is wf.

Proof. Let X and Y have the LO-proximity &,. Then f is proximally
continuous (2.6), and so f has a continuous extension fot wX > Xy, (We
are assuming that wX is the set of bunches generated by the closed ultra-
filters). But in view of Lemma (7.1) and the easily verified fact that
72((8(2)) = b(F¥(£)) ewY, f= maps wX to w¥. If f is onto, and if b(C) is
a bunch generated by a closed ultrafilter £’ in ¥, then {fI): I e’}
s a closed filter base in X and is contained in a closed ultrafilter £ in X.
Clearly {f(f (L") I €L} C {f(L): L L} and since f is closed and £’ is
maximal, ¢’ = f(£). Thus f=(b(£)) = b(L') and wf is onto.

Note added in proof. For further rnvestigations on ‘Wallman
extensions see authors’ paper Wallman compactifications and Wallman
realeompactifications, J. Austr. Math. Soc. (in press).
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Cardinal algebras of functions and integration

by
Rolando Chuaqui (Santiago)

Introduction. The purpose of this work is to apply the methods of [1]
to cardinal algebras of functions instead of algebras of sets. I believe that
the results become more elegant in this way and somewhat stronger,
because it is possible to obtain the integral directly.

In the first part it is proved that the non-negative Baire functions
are a cardinal algebra, which is an interesting result in its own right.
Finally, a complete characterization of the Lebesgue integral (and Lebesgue
measure) is obtained in terms of translations.

As in the previous paper, [1], I shall quote the theorems in Targki’s
book [2] by their number and a T.

1. Cardinal algebras of fanctions. I am first going to prove that the
class of non-negative Baire functions is a cardinal algebra. I will adopt
the following notation: Rt is the set of mon-negative real numbers;
A, Vv the lattice operations on the class of functions; BA the class of
functions from B into A.

TrroreM 1.1. Let ¥ CPRY such that

(i) If f, g €I then f+g9, (f—9)vo, fage®,

(i) If for every n < oo, fn ¢ Fy fu < fays and limf, = f< co, then f e F,

(iii) If for every m < co, foeF and fars <fu, then Hmf, e,

Then {F, +, 3> is a finitely closed generalized cardinal algebra where
> fi is defined only if D) fi<< oo
<o <00

Proof. We note that

(1) I 3 fi< oo with fieP, 3 fieF.

i<eo 1<o0
So

2 It 3 fieF, D fineF for all n < oo

i<oco i<oo

(3) ¥ D fieF, gi<fiand gi e F for all 4 < oo, then <2 gied.
i<00 <00
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