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From this corollary we get a complete characterization of the
Lebesgue integral in terms of translations. This result was suggested to
me by Professor Godel. s

COROLLARY 3.9. Let f,g be non-negative finite integrable functions.

Then I(f)= I(g) iff there are non-negative finite integrable functions
Jusfas iy 9o such that fy oz gs for i=1,2, f=fi—f, and g=g,—g,.

Proof. Suppose I(f) = I(g),f, §< oo. We can assume that f, g e 3,
Then f~ ¢. So, there are negligible f’, ¢’ such that f+f' =~ g-+¢'.

It is easy to show, since the set of finite Baire functions is a G.C.A.,
that we can take f', g’ < oo. '

Let h be the characteristic function of a bounded open set. Then
we have

f'+h=h=g+h and f+ft+h=gtg+h.
Thus, take
h=f+f'+h, fo=["+h,
Gi=9+g'+h, gG=g+h.

In a similar way we obtain for the Lebesgue measure, in the termi-
nology of [1],

CorOLLARY 3.10. Let 4, B be bounded measurable seis.

Then A(A) = A(B) iff there are bounded measurable sets A,, Ay, By, B,
such that A~ By; for 1=1,2, 4,C 4, B,CB,, 4= A,—A, and B
= B,—B,.
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A representation theorem
: for linearly ordered cardinal algebras

by
Rolando Chuagqui (Santiago)

This paper gives a characterization of linearly ordered cardinal
algebras. This result is a consequence of theorems proved in [1]. The
idea for the theorems resulted from a conversation with Professor
K. Godel. I am also very grateful to Professor Godel for several suggestions
he made to improve the paper. .

Cardinal algebras were introduced and extensively studied in [2].
Many results from this book will be needed. In what follows, I will use
the terminology of [2]. In particu_lam, N will be the set of non-negative
real numbers including co, and I the set of non-negative integers in-
cluding co. %t and I will be the corresponding algebras. Let P be
{0, oo}, +, 3> where + and 2 are ordinary addition and infinite
addition.

From Theorem 15.12 of [2] it is clear that if A = <4, <) is a linearly
ordered system with a first element and closed under least upper bounds
(Lu.b.) of countable sets, then {4, +, > >, where a+b=avbd and

2= U a4, is a linearly ordered idemmultiple cardinal-algebra. On

- i<co i<co

the other hand, the ordering in a linearly ordered idemmultiple cardinal
algebra has a first element and is closed under Lu.b. of countable sets.
8o, I will identify linearly ordered systems with a first element and
closed under Lu.b. of countable sets with linearly ordered idemmultiple
cardinal algebras.

I will first prove an auxiliary theorem

TaroREM 1. Let % = <A, <) be a linearly ordered system with first
element 0 and closed under Lu.b. of countable sets. Let {B° = (B®, +%, 20
% € A} be a family of disjoint cardinal algebras with zero element Oz such that:

(i) B° is the one element algebra, ..

(i) If @i e A for i < co and 2= {Ejmm > @y for every j < oo, then B is

isomorphic to P. In this case, let B® = {0z, ooz}



GUEST


86 . R. Chuaqui Im

Define B= (B, +, 3 > as follows:
(1) B= U{B*~{0s}: z e A} u B".
(2) Let 0;e B® for ¢=1,2. Then

a+Say i o=,
tay= {a i <o,
y if  w <.
(8) Let a; € B* for ¢ < oo, m=¢U ws. Then ‘
<00

(3.1) If o=y for a certain § < oo,

£
g == 2 Gy

i<oo k<n
where ay, is the sequence defined by i = the least ¢ < oo such that
t 54 for every j <k and a; ¢ B®
(3.2) If @> w; for every j < oo,

2 Ay = ooy .
i<eo
Then B is a cardinal algebra.

Furthermore, if for all » e A, B®

is a stmple cardinal algebra, then
A is isomorphic to the cardinal subalge ts.

bra. of idemmultiple clements of .

Proof. It is easy to prove postulates I, II, XII, IV and V of Defi-
nition 1.1 in [2].

(a) Proof of postulate VI. Let a—]—b——Z ¢;. Suppose that
aeB% beBY, ¢;eB* for all { < 00, %= Uz;

6+beB™ and Y o e B°.

i<oo

We have By =2z as

Case 1. 2 =y. Then a-+b = a-4%p.
(i) #= 2 =2 for some J< oo
Then we have {%‘o i = Z Ci, Where the o,’s are all the ¢/s in B°
Hence, a4-%h = >°
k

<N

Cipe

Thus, since B” is 2 cardinal algebra, there are ay, and by, such that

— ks .
a= Zaim b= Zbik
k<n

k<n
and

Cip = Qi 4Dy, .
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Define
ay, if 4=ix and ai, 7~ Oz,
a =10, if 4=17; and a; = 0z,
¢; otherwise;
. by, if 4= dix and by, # Oz,
*= o, otherwise.
Then
a = 2 173 b= 2 by
<00 i<oo
and
¢ = @i--by.

(i) Suppose @ = 2> 2; for all i < co. Then
a+b= ooy = 2 Ci.
i<oo
So,
o — COg == b.
As 2> 2; for all 4 < oo, there is a non-decreasing subsequence z,
for n < oo such that

U'zk,,, = U Zhomin = U 2e =2
n<oo n<oo

n<oo

Let
(}k! n lf 7: = kzn ]
o 0, otherwise ;

Chilania) if i= k(m-ﬂ) E]
by — it 4= kan,
o4 otherwise .
Then we have

a——za,, b-zb’ and o= a-+b; for all i< oo.

i<oo i<oo

Oase 2. ©>y. Then a= ) . Asw=¢, thereis a j < oo such that
i<o0

Yy<zs.
Thus, define as = o0s
{o., it 4,
b= . L
b it i=J.
Thus VI is proved.
(b) Proof of postulate VII. Let an= bn+an+1.
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Cage 1. There is an #,< oo and an @ € A such that a, ¢ B® for all
n>n, and ay ¢ B® for all n < n,. Then we have, for % =1y, by e BY
with ¥ < 2.

Let

by if  byeB®,
0; otherwise.

|

Then s = dn~+"tny1 and @y, dy € B for all n>n,. As B* is a cardinal
algebra, there is a ¢’ ¢ B® such that

= ¢'+= Emdn+1

i<oo

for all n > n,.

Let ¢=¢ if ¢’ # 0, and ¢ = 0, if ¢’ = 0,. Then a, = 0+_Z by for
all n > n,. e

On the other hand, we have,

Ong—m = Z bnq-—m+i
i<m

a8 Gnp—m ¢ BY for a certain y > .

So, -

g = €+ Z bpy—mti»

i<oo

Case 2. Suppose that, for no ny < co and no = €4, we have a, ¢ B®
for all % > u,.

Let n < oo be given. Suppose an € B, tnimeB® and anims: ¢ B
Then animi1 € BY for a certain y < #. So

rtm = Dnym

an = Zmb,,,.}.,' = 2 .b,H_a; .

i<m i<oo

and

Then taking ¢ = 0,, we obtain VII.

(¢} Suppose now that B is a simple cardinal algebra for every « ¢ A.

Let @ ¢ B*~{0,}. Then o is idemmultiple in B if and only if a is
the infinite element in B° Let f(@) be the infinite element of B for o # 0,
and f(0) = 0,. Then f is a one-one function from A onto the set of iden-
Tnultiple elements of B. We have o <y if and only if f(x)+f(y) = f(v)
if and only if f(z) <f(y). So [ is the required isomorphism.

) T]IEOBEMT 2 (Representation theorem). An algebra € = {0, 4+, 2
is a linearly ordered cardinal algebra if and only f it is of the form of the
algebra B of Theorem 1 with B isomorphic to T, T or P for every z £ 0.

icm°
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Furthermore, in any such representation N is isomorphic to the cardinal
algebra of idemmultiple elements of €.

Proof. It is clear from Theorem 1 that if § is of the form indicated
in the theorem it is a linearly ordered cardinal algebra as %, J and P
are cardinal algebras (cf. 14.2, 14.4, 14.5 and 14.6 of [2]).

So, suppose € is a linearly ordered cardinal algebra. .

Define the equivalence relation R over C by aRb if and only if
oo a = oo-b for a, b e C. Then, by Theorem 8.5 of [2], R is an equivalence
relation and €/R is isomorphic to the idemmultiple cardinal subalgebra 9
= {4, +, > > of the idemmultiple elements of C.

For z e A, let B = (B, +% 3 be defined by

(1) B = a/R v {04} for @ # 0, where 0,¢ 0, B'= /R, "

(2) 0, acts as a zero element for B°,

(3) +5, 3% are the operation -+, restricted to z/R for elements
of »/R.

‘We have to prove now that all the conditions of Theorem 1 are
satisfied )

(a) B is isomorphic to one of the algebras

R, JFor Pitw#0.

It is clear that if a € /R with # ¢ A and r ¢ N with r-a defined in C,
then r-a ex/R, a8 co-r-a=r-co-a=r-z=u2u (cf. 1.6, 1.9 of [1]).

There are two cases to consider. Let 2 ¢ 4.

Case 1. #/R = {#}. Then B”= {0, s} and

B =P

Case 2. There is an @ 5 # such that a € 2/R. Then, for any b ea/R
with b # @, we have a-+b # b and a+b # a. For suppose that a+b = b;
then = ccra<b < co'b=2 (by 1.29 of [2]). Similarly if a+b=a,
then a = z. It is also true that b < 2= co-a.

So, by Theorem 1.18 of [1], we have, for any b e #/E, b= r-a where
reklN.

As a+a # a, we infer by Theorem 1.19 of [1] that if 7, s 7,, then
T 0 F Ty

Hence, if we define f(r-a) = r for all r-a ¢ B, f is an isomorphism
of B” into 9t (Theorems 1.9 and 1.10 of [1]).

‘We now have two subecases:

(i) There is a largest integer n < oo such that @ = n-b for a cer-
tain b. Then by 1.7 of [1]

8% = (P, +,3> where P:{%:
and by 14.4 of [2], <P, +, 2> = 3.

mef}
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(ii) There is no largest infeger m < oo suech that ¢ =n-b for a cer-
tain 5. Then by 1.8 of [1]

B~ N .
(b) Suppose #; ¢ A for i < co and @ <£U @ =@ for all j < co. Let
<00

aeC, a ex/R. Then oo-a=x and o < .
Suppose now that & < 2. Then, as € is linearly ordered, a < @; for

a certain 4 < co. Hence co'0 < cor@y= @< @, a8 ®; is idemmultiple,

But this contradicts co-a = a.
8o, B®= {04, 2} as required by Theorem 1 (ii).
(¢) B*=0/R = {0} as requiréd by Theorem 1 (i).
(d) As R is an equivalence relation, the B™s are disjoint and

0= U{o/R: ve )= U{B*~{0z}: o e 4} v {0}.

So (1) of Theorem 1 is satisfied. _

(e) Suppose that aew/R, bey/R with y,zed and y < 2.

We have, as C is linearly ordered,

y<a or a<y.
But if a <y, we would have
T=oco gL oo Yy=79.
So y <.
Also b <y and so,
cobg<y<a.

Hence a+b =a by 1.29 of [2].

From this, (2) and (3.1) of Theorem 1 are easy to prove.

(f) Suppose now that asexy/R, med and = Jay> o for all

J<oo

i< co. Then 2 ¢ A.

We have ) #;= 2. So

i<oo
OOZM:Z O Qg == Zm——- €,
<00 i<oo i<oo

ie., i%’o ai € z/R. But by (b), o/R = {x}.

80 3 ai=w and 3.2 is verified.

i<oo
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The last conclusion of Theorem 2 is an immediate consequence of
Theorem 1 as it is clear that 9, I and P are simple cardinal algebras
(cf. 14.2, 14.4, 14.5 and 14.6 of [27).
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