ich

From this corollary we get a complete characterization of the Lebesgue integral in terms of translations. This result was suggested to me by Professor Gödel.

COROLLARY 3.9. Let f, g be non-negative finite integrable functions. Then I(f) = I(g) iff there are non-negative finite integrable functions f_1, f_2, g_1, g_2 such that $f_4 \cong g_4$ for $i = 1, 2, f = f_1 - f_2$ and $g = g_1 - g_2$.

Proof. Suppose $I(f) = I(g), f, g < \infty$. We can assume that $f, g \in \mathfrak{A}^+$. Then $f \approx g$. So, there are negligible f', g' such that $f + f' \cong g + g'$.

It is easy to show, since the set of finite Baire functions is a G.C.A., that we can take $f', g' < \infty$.

Let h be the characteristic function of a bounded open set. Then we have

$$f'+h\cong h\cong g'+h$$
 and $f+f'+h\cong g+g'+h$.

Thus, take

$$f_1 = f + f' + h$$
, $f_2 = f' + h$, $g_1 = g + g' + h$, $g_2 = g' + h$.

In a similar way we obtain for the Lebesgue measure, in the terminology of [1],

COROLLARY 3.10. Let A, B be bounded measurable sets.

Then $\lambda(A)=\lambda(B)$ iff there are bounded measurable sets $A_1,\,A_2,\,B_1,\,B_2$ such that $A_4\cong B_4$ for $i=1,\,2,\,\,A_2\subseteq A_1,\,\,B_2\subseteq B_1,\,\,A=A_1-A_2$ and $B=B_1-B_2$.

References

- R. Chuaqui, Cardinal algebras and measures invariant under equivalence relations, Trans. Amer. Math. Soc. 142 (1969), pp. 61-79.
- [2] A. Tarski, Cardinal Algebras, New York 1949.

UNIVERSIDAD CATOLICA DE CHILE
THE INSTITUTE FOR ADVANCED STUDY, Princeton, N. J.

Reçu par la Rédaction 21. 1. 1970

A representation theorem for linearly ordered cardinal algebras

b.

Rolando Chuaqui (Santiago)

This paper gives a characterization of linearly ordered cardinal algebras. This result is a consequence of theorems proved in [1]. The idea for the theorems resulted from a conversation with Professor K. Gödel. I am also very grateful to Professor Gödel for several suggestions he made to improve the paper.

Cardinal algebras were introduced and extensively studied in [2]. Many results from this book will be needed. In what follows, I will use the terminology of [2]. In particular, \overline{N} will be the set of non-negative real numbers including ∞ , and \overline{I} the set of non-negative integers including ∞ . \overline{N} and \overline{S} will be the corresponding algebras. Let $\mathfrak P$ be $\langle \{0,\infty\},+,\Sigma\rangle$ where + and Σ are ordinary addition and infinite addition.

From Theorem 15.12 of [2] it is clear that if $\mathfrak{A} = \langle A, \leqslant \rangle$ is a linearly ordered system with a first element and closed under least upper bounds (l.u.b.) of countable sets, then $\langle A, +, \sum \rangle$, where $a+b=a \circ b$ and $\sum_{i < \infty} a_i = \bigcup_{i < \infty} a_i$, is a linearly ordered idemmultiple cardinal algebra. On the other hand, the ordering in a linearly ordered idemmultiple cardinal algebra has a first element and is closed under l.u.b. of countable sets. So, I will identify linearly ordered systems with a first element and closed under l.u.b. of countable sets with linearly ordered idemmultiple cardinal algebras.

I will first prove an auxiliary theorem

THEOREM 1. Let $\mathfrak{A} = \langle A, \leqslant \rangle$ be a linearly ordered system with first element 0 and closed under l.u.b. of countable sets. Let $\{\mathfrak{B}^x = \langle B^x, +^x, \sum^x \rangle : x \in A\}$ be a family of disjoint cardinal algebras with zero element 0_x such that:

- (i) Bo is the one element algebra,
- (ii) If $x_i \in A$ for $i < \infty$ and $x = \bigcup_{i < \infty} x_i > x_j$ for every $j < \infty$, then \mathfrak{B}^x is isomorphic to \mathfrak{B} . In this case, let $B^x = \{0_x, \infty_x\}$.

Define $\mathfrak{B} = \langle B, +, \Sigma \rangle$ as follows:

- (1) $B = \bigcup \{B^x \sim \{0_x\}: x \in A\} \cup B^0$.
- (2) Let $a_i \in B^{x_i}$ for i = 1, 2. Then

$$a_1 + a_2 = egin{cases} a_1 + x_1 a_2 & if & x_1 = x_2 \ a_1 & if & x_2 < x_1 \ a_2 & if & x_1 < x_2 \ \end{cases},$$

- (3) Let $a_i \in B^{x_i}$ for $i < \infty$, $x = \bigcup x_i$. Then
- (3.1) If $x = x_j$ for a certain $j < \infty$,

$$\sum_{i < \infty} a_i = \sum_{k < n}^x a_{i_k}$$

where a_{i_k} is the sequence defined by $i_k =$ the least $i < \infty$ such that $i \neq i_j$ for every j < k and $a_i \in B^x$.

(3.2) If $x > x_j$ for every $j < \infty$,

$$\sum_{i\leq \infty}a_i=\infty_x.$$

Then B is a cardinal algebra.

Furthermore, if for all $x \in A$, \mathcal{B}^x is a simple cardinal algebra, then \mathfrak{A} is isomorphic to the cardinal subalgebra of idemmultiple elements of \mathfrak{B} .

Proof. It is easy to prove postulates I, II, III, IV and V of Definition 1.1 in $\lceil 2 \rceil$.

(a) Proof of postulate VI. Let $a+b=\sum\limits_{i<\infty}c_i$. Suppose that $a\in B^x$, $b\in B^y$, $c_i\in B^{z_i}$ for all $i<\infty$, $z=\bigcup\limits_{i<\infty}z_i$. We have $x\cup y=z$, as $a+b\in B^{x\cup y}$ and $\sum\limits_{i<\infty}c_i\in B^z$.

Case 1. x = y. Then a+b = a+xb

(i) $x = z_j = z$ for some $j < \infty$.

Then we have $\sum_{i<\infty}c_i=\sum_{k< n}^x c_{i_k}$, where the c_{i_k} 's are all the c_i 's in B^x . Hence, $a+xb=\sum_{k< n}^x c_{i_k}$.

Thus, since \mathfrak{B}^x is a cardinal algebra, there are a_{i_k} and b_{i_k} such that

$$a = \sum_{k < n}^{x} a_{i_k}, \quad b = \sum_{k < n}^{x} b_{i_k}$$

and

$$c_{i_k} = a_{i_k} + {}^xb_{i_k}.$$

Define

$$a = egin{cases} a_{i_k} & ext{if} & i = i_k ext{ and } a_{i_k}
eq 0_x, \ 0_0 & ext{if} & i = i_k ext{ and } a_{i_k} = 0_x, \ c_i & ext{otherwise}; \end{cases}$$
 $b_i = egin{cases} b_{i_k} & ext{if} & i = i_k ext{ and } b_{i_k}
eq 0_x, \ 0_0 & ext{otherwise}. \end{cases}$

Then

$$a = \sum_{i < \infty} a_i, \quad b = \sum_{i < \infty} b_i$$

and

$$c_i = a_i + b_i.$$

(ii) Suppose $x = z > z_i$ for all $i < \infty$. Then

$$a+b=\infty_x=\sum_{i<\infty}c_i$$
.

So,

$$a=\infty_x=b$$
.

As $z>z_i$ for all $i<\infty$, there is a non-decreasing subsequence z_{kn} for $n<\infty$ such that

$$\bigcup_{n<\infty} z_{k_{2n}} = \bigcup_{n<\infty} z_{k_{(2n+1)}} = \bigcup_{n<\infty} z_{k_n} = z.$$

Let

$$a_i = egin{cases} c_{k_{2n}} & ext{if} & i = k_{2n}\,, \ 0_0 & ext{otherwise}\,; \ b_i = egin{cases} c_{k_{(2n+1)}} & ext{if} & i = k_{(2n+1)}\,, \ 0_0 & ext{if} & i = k_{2n}\,, \ c_i & ext{otherwise}\,. \end{cases}$$

Then we have

$$a = \sum_{i \le \infty} a_i$$
, $b = \sum_{i \le \infty} b_i$ and $c_i = a_i + b_i$ for all $i < \infty$.

Case 2. x>y. Then $a=\sum\limits_{i<\infty}\,c_i.$ As x=z, there is a $j<\infty$ such that

$$y < z_j$$
.

Thus, define $a_i = c_i$

$$b_i = \begin{cases} 0_0 & \text{if} & i \neq j, \\ b & \text{if} & i = j. \end{cases}$$

Thus VI is proved.

(b) Proof of postulate VII. Let $a_n = b_n + a_{n+1}$.

Case 1. There is an $n_0 < \infty$ and an $x \in A$ such that $a_n \in B^x$ for all $n \ge n_0$ and $a_n \notin B^x$ for all $n < n_0$. Then we have, for $n \ge n_0$, $b_n \in B^y$ with $y \le x$.

Let

$$d_n = \begin{cases} b_n & \text{if } b_n \in B^x, \\ 0_x & \text{otherwise.} \end{cases}$$

Then $a_n=d_n+^xa_{n+1}$ and a_n , $d_n\in B^x$ for all $n\geqslant n_0$. As \mathfrak{B}^x is a cardinal algebra, there is a $c'\in B^x$ such that

$$a_n = c' + x \sum_{i < \infty} d_{i+1}$$
 for all $n \ge n_0$.

Let c=c' if $c'\neq 0_x$ and $c=0_0$ if $c'=0_x$. Then $a_n=c+\sum\limits_{i<\infty}b_{n+1}$ for all $n\geqslant n_0$.

On the other hand, we have,

$$a_{n_0-m} = \sum_{i < m} b_{n_0-m+i}$$

as $a_{n_0-m} \in B^{\nu}$ for a certain y > x.

So,

$$a_{n_0-m}=c+\sum_{i<\infty}b_{n_0-m+i}.$$

Case 2. Suppose that, for no $n_0 < \infty$ and no $x \in A$, we have $a_n \in B^x$ for all $n \ge n_0$.

Let $n < \infty$ be given. Suppose $a_n \in B^x$, $a_{n+m} \in B^x$ and $a_{n+m+1} \notin B^x$. Then $a_{n+m+1} \in B^y$ for a certain y < x. So

$$a_{n+m} = b_{n+m}$$

and

$$a_n = \sum_{i < m}^{x} b_{n+i} = \sum_{i < \infty} b_{n+i}.$$

Then taking $c = 0_0$, we obtain VII.

(c) Suppose now that \mathfrak{B}^x is a simple cardinal algebra for every $x \in A$. Let $a \in B^x \sim \{0_x\}$. Then a is idemmultiple in \mathfrak{B} if and only if a is the infinite element in \mathfrak{B}^x . Let f(x) be the infinite element of \mathfrak{B}^x for $x \neq 0$, and $f(0) = 0_0$. Then f is a one-one function from A onto the set of idenmultiple elements of \mathfrak{B} . We have $x \leqslant y$ if and only if f(x) + f(y) = f(y) if and only if $f(x) \leqslant f(y)$. So f is the required isomorphism.

THEOREM 2 (Representation theorem). An algebra $\mathfrak{C} = \langle C, +, \Sigma \rangle$ is a linearly ordered cardinal algebra if and only if it is of the form of the algebra \mathfrak{B} of Theorem 1 with \mathfrak{B}^x isomorphic to $\overline{\mathfrak{R}}$, $\overline{\mathfrak{I}}$ or \mathfrak{P} for every $x \neq 0$.

Furthermore, in any such representation ${\mathfrak A}$ is isomorphic to the cardinal algebra of idemmultiple elements of ${\mathfrak C}$.

Proof. It is clear from Theorem 1 that if \mathfrak{C} is of the form indicated in the theorem it is a linearly ordered cardinal algebra as $\overline{\mathfrak{N}}$, $\overline{\mathfrak{J}}$ and \mathfrak{P} are cardinal algebras (cf. 14.2, 14.4, 14.5 and 14.6 of [2]).

So, suppose C is a linearly ordered cardinal algebra.

Define the equivalence relation R over C by aRb if and only if $\infty \cdot a = \infty \cdot b$ for $a, b \in C$. Then, by Theorem 8.5 of [2], R is an equivalence relation and \mathfrak{C}/R is isomorphic to the idemmultiple cardinal subalgebra $\mathfrak{A} = \langle A, +, \Sigma \rangle$ of the idemmultiple elements of C.

For $x \in A$, let $\mathfrak{B}^x = \langle B^x, +^x, \sum^x \rangle$ be defined by

- (1) $B^x = x/R \cup \{0_x\}$ for $x \neq 0$, where $0_x \notin C$, $B^0 = 0/R$,
- (2) 0_x acts as a zero element for \mathfrak{B}^x ,
- (3) $+^x$, \sum^x are the operation +, \sum restricted to x/R for elements of x/R.

We have to prove now that all the conditions of Theorem 1 are satisfied

(a) \mathfrak{B}^x is isomorphic to one of the algebras

$$\overline{\mathfrak{N}}, \overline{\mathfrak{I}}$$
 or \mathfrak{P} if $x \neq 0$.

It is clear that if $a \in x/R$ with $x \in A$ and $r \in \overline{N}$ with $r \cdot a$ defined in C, then $r \cdot a \in x/R$, as $\infty \cdot r \cdot a = r \cdot \infty \cdot a = r \cdot x = x$ (cf. 1.6, 1.9 of [1]).

There are two cases to consider. Let $x \in A$.

Case 1.
$$x/R = \{x\}$$
. Then $B^x = \{0_x, x\}$ and

$$\mathfrak{B}^x \cong \mathfrak{P}$$
.

Case 2. There is an $a \neq x$ such that $a \in x/R$. Then, for any $b \in x/R$ with $b \neq x$, we have $a+b \neq b$ and $a+b \neq a$. For suppose that a+b=b; then $x = \infty \cdot a \leqslant b \leqslant \infty \cdot b = x$ (by 1.29 of [2]). Similarly if a+b=a, then a=x. It is also true that $b \leqslant x = \infty \cdot a$.

So, by Theorem 1.18 of [1], we have, for any $b \in x/R, \ b = r \cdot a$ where $r \in \overline{N}.$

As $a+a \neq a$, we infer by Theorem 1.19 of [1] that if $r_1 \neq r_2$, then $r_1 \cdot a \neq r_2 \cdot a$.

Hence, if we define $f(r \cdot a) = r$ for all $r \cdot a \in B^x$, f is an isomorphism of \mathfrak{B}^x into $\overline{\mathfrak{R}}$ (Theorems 1.9 and 1.10 of [1]).

We now have two subcases:

(i) There is a largest integer $n < \infty$ such that $a = n \cdot b$ for a certain b. Then by 1.7 of [1]

$$\mathfrak{B}^x \cong \langle P, +, \Sigma \rangle$$
 where $P = \left\{\frac{m}{n} : m \in \overline{I}\right\}$

and by 14.4 of [2], $\langle P, +, \Sigma \rangle \cong \overline{\Im}$.

(ii) There is no largest integer $n < \infty$ such that $a = n \cdot b$ for a certain b. Then by 1.8 of [1]

$$\mathfrak{B}^x \cong \overline{\mathfrak{N}}$$
.

(b) Suppose $x_i \in A$ for $i < \infty$ and $x_j < \bigcup_{i < \infty} x_i = x$ for all $j < \infty$. Let $a \in C$, $a \in x/R$. Then $\infty : a = x$ and $a \le x$.

Suppose now that a < x. Then, as $\mathbb C$ is linearly ordered, $a \le x_i$ for a certain $i < \infty$. Hence $\infty \cdot a \le \infty \cdot x_i = x_i < x$, as x_i is idemmultiple. But this contradicts $\infty \cdot a = x$.

So, $B^x = \{0_x, x\}$ as required by Theorem 1 (ii).

- (c) $B^0 = 0/R = \{0\}$ as required by Theorem 1 (i).
- (d) As R is an equivalence relation, the B^x 's are disjoint and

$$C = \bigcup \{x/R: x \in A\} = \bigcup \{B^x \sim \{0_x\}: x \in A\} \cup \{0\}.$$

So (1) of Theorem 1 is satisfied.

(e) Suppose that $a \in x/R$, $b \in y/R$ with $y, x \in A$ and y < x. We have, as C is linearly ordered,

$$y \leqslant a$$
 or $a \leqslant y$.

But if $a \leq y$, we would have

$$x = \infty \cdot a \leqslant \infty \cdot y = y$$
.

So $y \leqslant a$.

Also $b \leqslant y$ and so,

$$\infty \cdot b \leqslant y \leqslant a$$
.

Hence a+b=a by 1.29 of [2].

From this, (2) and (3.1) of Theorem 1 are easy to prove.

(f) Suppose now that $a_i \in x_i/R$, $x_i \in A$ and $x = \bigcup_{j < \infty} x_j > x_i$ for all $i < \infty$. Then $x \in A$.

We have $\sum_{i<\infty} x_i = x$. So

$$\infty \sum_{i < \infty} a_i = \sum_{i < \infty} \infty a_i = \sum_{i < \infty} x_i = x,$$

i.e., $\sum_{i<\infty} a_i \in x/R$. But by (b), $x/R = \{x\}$.

So
$$\sum_{i < \infty} a_i = x$$
 and 3.2 is verified.

The last conclusion of Theorem 2 is an immediate consequence of Theorem 1 as it is clear that $\overline{\mathfrak{R}}, \overline{\mathfrak{I}}$ and \mathfrak{P} are simple cardinal algebras (cf. 14.2, 14.4, 14.5 and 14.6 of [2]).

References

- R. Chuaqui, Cardinal algebras and measures invariant under equivalence relations, Trans. Amer. Math. Soc. 142 (1969), pp. 61-79.
- [2] A. Tarski, Cardinal Algebras, New York 1949.

UNIVERSIDAD CATÓLICA DE CHILE THE INSTITUTE FOR ADVANCED STUDY, Princeton, N. J.

Recu par la Rédaction le 27. 1. 1970