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Completely regular compactifications
by
Anthony J. D’Aristotle (New York City)

1. Introduction. In [3] Frink studied Wallman-type Hausdorff com-
paetifications of Tychonoff spaces. In this paper we generalize Frink’s
Jresults to obtain completely regular (and normal) compactifications of
arbitrary completely regular spaces which are not Hausdorff or T,. We
also derive necessary and sufficient conditions for extending continmous
functions defined on the original space to continuous functions on the
compactification. ' )

In [3] Frink provided an internal characterization of Tychonoff or
completely regular 7'; spaces in terms of the notion of a mormal base for
the closed sets of a space X. A normal base Z for the closed sets of a topo-
logical space X is a base for the closed sets which is a disjunctive ring
of sets, disjoint members of which may be separated by disjoint com-
plements of members of Z. Frink showed that if Z is a normal base for
a T, space X, then the Wallman space w(Z) consisting of the Z-ultra-
filters, is a Hausdorf! compactification of X. It is then clear that X is
a Tychonoff space. On the other hand, if X is Tychonoff then the family
of all zero sets of real continuous functions over X is a normal base for
the closed sets. Therefore, a T, space is Tychonoff if and only if it has
a normal bage. Trink pointed out that by choosing different normal
hases Z for X, wo may obtain different Hausdorff compactifications
of X in the form of Wallman spaces w(Z).

In this paper we modify Frink’s technique to produce a Wallman
space x(Z) which is a completely regular but not necessarily Hausdorfi
compactification of a given topological space X with normal base Z.
Instead of taking all the Z-ultrafilters on X, we form y(Z) by adding
the free Z-ultrafilters U of X to the .original points of the space. It may
then be seen that the family of all sets A* of the form 4 v {# € W| 4 e 4}
for 4 € Z is a base (of closed sets) for a topology on x(Z). We show thatb
many of the basic results about the spaces w(Z) can be carried over to
this more general setting.
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2. Definitions. A family F of closed sets of a topological space X
is said to be disjunctive if, given any closed set A and any point z not
in A there exists a closed set F e J which containg 2 and ig disjoing
from A. '

A family of sets is called a 7ing of sets if it contains all finite uniong
and finite intersections of its members. Bvery ring of sets is a lattice,

A base Z for the closed sets of a topological space X is called a normal
base if it is a disjunctive ring of closed sets such that any two disjoint
members A and B of Z are subsets respectively of disjoint complements ¢’
and D' of members ¢ and D of Z; thatis, A C ¢', BC D', and ' ~ D' = @,
More generally, a family 5 of sets of a space X is said to be a normal
tamily if any two disjoint members 4 and B of F are contained in disjoint
complements ¢’ and D’ of members ¢ and D of F.

A family 5 of closed sets of a topological space X is said to be -

separating if it separates points from closed sets; that is, given any closed

set S and any point 4 not in §, there exists sets 4 and B in & such that,

zed, 8C B, and 4 ~ B=@. It is clear that a family F of closed sets
is separating if and only if it is & disjunctive family which is a base for
the closed sets.

Members of a normal base will be called Z-sefs and their comple-
ments Z-complements. The Z-complements form a base for the open sets
of the space.

A proper subset of a normal base Z is called a Z-filter if it is closed
under finite intersection and contains every superset in Z of each of its
mewmbers. No Z-filter contains the empty set @.

A Z-ultrafilter is a maximal Z-filter. It follows from Zorn’s lemma
that every Z-filter iy contained in at least one Z-ultrafilter.

A Z-filter # on a topological space X is said to be fived if there is
an element p of X with p (") {A: A e} A Z-filter which is not fixed
is said to be free. '

3. Generalization of Frink’s result. We have already noted that in [3],
Frink provided an internal description of Tychonoff spaces (completely
regular and Ti). A T, space X is Tychonoff if and only if it has a normal
base. In [8], Steiner extended this result to cover all completely regular
spaces. A topological space is completely regular if and only if it possesses
a normal separating family of closed sets. We ghall refer to thiz result
in proving the following theorem.

TrrorEM 1. Let X be a completely regular topological space. Then to
each normal base Z for X there corresponds a completely regqular compactifi-
cation y(Z) of X.

Proof. If Z is a normal base for X, let U be the collection of all
free Z-ultrafilters on X and let y(Z)= X u U. We define 2 topology
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for z(Z) by taking as a base for the closed sets the family ¥ of all sets A*
of the form A w {#AcU: Ae#A} where 4 ¢Z. The fact that A¥u A3
= (4, v 4,)* implies that the sets 4* do indeed form a base.

We-note that the topological space X with base Z is homeomorphic
to X considered as a subspace of y(Z), This is easy to see because the
pasic closed sets for X C x(Z) are of the form A* ~ ¥ = A. That X is
dense in x(Z) may be seen as follows. If X C A* =4 U {#cUW: 4 A}
we must have 4 = X. But X e+ for all £¢W and so X C A* implies
that A* = X* = 1(2).

‘We next show that x(%) is a compact topological space. For if
{ A;{}“ 4 18 & family of basic closed sets with the finite intersection property,
then the corresponding family {4d:}ics of Z-sets has the finite intersection

i=n
property. To see this note that () A= @ for 1;¢A together with
i=1 .

4%, £ @ would imply there exists B eUs with Ay e® for 1< i< n.

i=1
q=m i=n
Therefore we must have (") 4, ¢ B and so () 4, +# @ which is a contra-
g=1 i=1
diction. Now either there exists a p e[ )4, in which case p €/ﬂl A¥ or
© A€d €

M 4;=@. In the latter situation the familly' {A;}1e4 generates a free

€4 :

Z-ultrafilter € and clearly Ce () Af. Hence this family has a non-empty
A€

intersection. ) ‘

Finally it may be seen that x(Z):is a completely regular space. In
light of the remarks made prior to the statement of this theorem, it suffu?es
to exhibit a normal séparating family of closed sets in x(Z). It is easily
verified that the family & of sets 4* for 4 in Z is such a family. This
completes the proof of the theorem.

Since a compact regular space is normal, it follows that the spaces
2(Z) are normal compactifications of X. . .

In [3], as we noted in the Introduction, Frink showed that 1f. Z is
a normal base for a T; space X, then the Wallman spaces o (Z) GODSIStlFlg
of the Z-ultratilters, is o Hausdortf compactification of X. If we require
that X be a T, space, then it i quite easy to verify that the space 1(2)
is homeomorphic to w{Z).

4, Continuous extensions. Frink also showed that the rea.l functions
over a Tychonoff space X which may be extended to gontmuous reaPl
functions over the compactification w(Z) are those which are Z-uni-
formly continuous. In light of the above remarks, it is natural to try.to
generalize thiy result. Tn making this extension, we found a proof which
is simpler and more direct than the original proof.
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DErINITION. A real function f(z) defined over a completely regulay
space X with normal base Z is said to be Z-uniformly continuous if for
every positive epsilon there exists an open cover of X by Z- complements,
on each of which the oscillation of f(x) is less than epsilon.

ToEOREM 2. A real function f(z) defined over @ completely reg-.

ular space X with normal base Z can be extended. to a real continuous
function over the compactification y(Z) if and only if f(») is Z -uniformly
CONTINUOUS. . i

Proof. We first prove that the condition is necessary. For suppose flo)
iy a continuous real function defined over the compact space y(Z). Given

a positive epsilon, it is clear that x(Z) C L%/){f'l(S(f(y), e/Z)}} where
yexZ

8(fy), &/2) is the spherical neighborhood of f(y) and /2. But each set
f'l(S(f(y), 3/2)) is a union of basic open sets of the form y(Z)—4*
= (X—4) v {#eW| TP e with P C X —A}. Since x(Z) is compact we
may extract a finite cover of x(Z) consisting of basic open sets, on each
of which the oscillation of f(y) is less than epsilon. We have that 2(2)
C(x(Z)—A3) o (1(Z)—48 v ... © (y(Z)—4%). Tt then becomes obvious
that the Z-complements X—A,, X—A4,,..,X—4, cover X, and on
each of them the oscillation of the restriction f(#) of f(y) to X is less than
epsilon. Hence f(x) is Z-uniformly continuous.

Conversely, suppose the real function f(z) is Z-uniformly continuous
on a completely regular space X with normal base Z. We define a func-
tion g which extends f from X to y(Z) as follows. Now 2(Z) =X v
and if ¢ X we let ¢(x) = f(). If # ¢ U then the family S ={f(4): A £}
has. the finite intersection property and is therefore a subbage for the
filter &4 consisting of all supersets of finite intersections of members
of 84. The filter F4 is a Cauchy filter and therefore converges uniquely
to a real number which we call g(«).

That g is continuous at each point of X is readily verifiec. It remaing
to show that g is continuous at each point B & . Let the family {X — ¢;{zr
be a finite cover of X by % -complements, on each member of which the
oscillation of f(z) is less than £/3 .We may suppose that ¢, ¢ B so that
there is an element @ ¢ % with @ C X— ¢,. We show that

JUX =0 v {be Wz TP e with P C X—0)] C 8{g(h), o) .

Now ¢(B) e clpf(@) and we choose ge@ so that lg (B)—~f(g)] < ¢/3.
If y e X— 0, we then have

19 (B)~g @I < 1g(B)~F(@DI+IF (@) — g (w)| <§I§- < &

It therefore follows that g(X— () c ;S’(g(‘%), &) If #eU and there is
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an 8 € & with § C X— 0y, we choose a point s e § satisfying |g(£)—f(s)|
<¢/3. The points ¢ and s are members of X Cy and so
g &)= g B < A —FEHT )~ @I+ @~ 0B < 5+5+5=¢.
Thus we have established that ¢ is a continuous, real-valued function
on x(Z).

If X is a Hausdorff space and Z is the normal base consisting of the
zero sets of X, then y(Z) is the Stone-Cech compactification of X and
it follows that X is C*-embedded in y(Z). The above theorem therefore
implies that every bounded, continuous real-valued function on X is Z
(zero set)-uniformly continuous. We get immediately the following result.

CoroLLARY 1. Let X be a completely regular topological space and
let Z be the normal base consisting of the zero sets of X. Then every bounded,
continuous real-valued function on X has an extension to a bounded, continu-
ous real-valued function on yx(Z).

Proof. We note that every bounded, continuous real-valued function
on X is zero-set uniformly continuous and appeal to Theorem 2.

5. The one-point compactification. In [2], Brooks has shown that the
one-point Hausdorff compactification of a locally compact Hausdorff
space may always be obtained as a Wallman space w(Z), where the normal

base Z consists of the zero sets of those continuous real functions on X

which are constant on the complement of a compact set. (A topological
space X is said to be locally compact if each point of the space is contained
in a compact neighborhood.) We now generalize this result and note that
the work of Alo and Shapiro in [1] was most helpful in doing so.

The following lemma is easily verified.

LeMMA 1. Let X be a topological space with normal base Z, and let
1(Z) = X w A be the completely regular compactification of X corresponding
to Z. Then cach point Ce W is a closed subset of y(Z).

It is known that if X is a locally compact, Hausdorff space, then
the zero sets of continuous real-valued functions which are constant on
the complement of a compact subset of X form a normal base for X.
It isnt very difficult to obtain the following result.

LEMMA 2. Let X be a completely regular, locally compact topological
space. Then Z equal 1o the collection of zero sets of continuous, real-mlued
functions which are constant on the complement of & compact subset of X is
a normal base for X. o

Lmuma 3. Let X be a completely regular, locally compact topological
space. If we take Z to be the mormal base for X consisting of the zero sets
of continuous, real-valued functions on X which are constant on the comple-
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ment of a compact subset of X, then to each p ¢ X there exisis an A, ¢ 7
with A, compact and p e Ay C Ap. (A5 denotes the interior of 4,.)

Proof. If peX there is an open set U in X with pe U Celyy
where clx U is a compact subset of X. There is a continuous mapping 3

from X to [0,1] with 2(p) =0 and A(X-U)=1. If welet 4, = {zcX:

k(z) < 3§}, then A, is compact since it is a closed subset of the compact
set clx U. Moreover, p e Ay since {# ¢ X: h(x) < 3} is an open set containing
p and contained in 4,. Also, it is clear that 4, e Z since it is the zero
set of the continuous function h(z)— %+ |h(x)—%| which is constant .on
the complement of the compact set clyU.

TrEEOREM 3. Let X be a complelely regular, locally compact topological
space. Then there is a normal base Z for X such that the one-point compactifi-
cation ¥ = X v {co} of X is homeomorphic to x(Z).

Proof. Let Z be the collection of zero sets of continuous, real-valued
functions on X which are constant on the complement of a compact
subset of X. Z is a normal base for X by Lemma 2. If we let $ = {4 ¢ 7|
4 is closed but not compact}, it is easily verified that B is the only free
Z -ultrafilter on X. :

‘We now verify that ¥ = X v {co} is homeomorphic to x(Z) = X u U.
We define a function f from X o {co} to X U W by f(2) = & for ze X
and f(co) = . Then f is obviously 1-1, and it is an onto map since we
have shown above that U = {$}.

That f is continuous may be seen as follows. Each basic closed set
In x(Z) is of the form A w {#eU: 4 e#} = A* where A eZ. Since
W = {B} the basic closed sets of y(Z) are the closed, compact member
of Z together with sets of the form A U {B} where 4 ¢ %. If 4 is a closed,
compact member of Z, then f~(4) = 4 is a closed, compact subset of X
and therefore elosed in Y= X u{o}. If 4% then Y4 v {8}
= A v {oo} which is closed in ¥. The inverse image of each basic closed
in y(Z) is closed in ¥ =X U {oo} and so f is continuous. :
) It remains to show that f is a closed map. The cloged sets
In ¥= X v {co} consist of the closed, compact subsets of X, and sub-
sets qf Y which are of the form F' U {co} where 7 is a closed subset of X-
If @ is a clesed, eompact subset of X, then from Lemma 3 we see that
to each ¢ iQ there is a compact member 4, of Z with ¢ € Ag. Therefore
the? s.ets 44 form an open covering of @, and since ¢ is compact there is
a fm‘lte number of elements g, g,, oy ne@with Q C Ag v A5 v ... u 45,
szttmg B=A, ..U 4, we see that B is g a)mpa}ct member. of "Z
Wlth @ C B. Now Z is a base for the closed subsets of X and so @ is an
intersection of members of Z. Suppose Q = (M {4, 4, € Z}. Clearly we
may assume 4; = bo

icm°®

B for some AeA. Let 4, be the set of all o e A such.

Complelely regular pastifisations 145

that Aq is a closed but not compact member of Z, and let A, be the set
of all p € A with 4, o closed, compact member of Z. We note that A4, # .

Thus, f(@) = ¢ == [(’Q_L(Aou {BH] ~ EQQ,AQ]’ and it is now clear that

f(@) is closed in x(Z). We now congider the case where the closed set K

of Y is of the form F v {oo} where I is closed in X. If F is, in addition,

compact then f(F v {o0}) = f(I) v {&}. We have just verified that f(F)

is closed in %(%), and from Lemma 1 we have that {3} is closed there.

Tt follows that f(K) is closed in x(Z). If F is closed but not compact,

suppose F' = dﬁl As where each A is a member of Z. We note that each A,
€/l

is not compact for otherwike ¥ would be compact. Then f(F v {oo})
=f(F) v {B} = F v {BY == [N As] v {8} =) (4s w {B}). Bubt each 4;©
sed ded
U {8} is & basic closed sol in x(Z) and so FIF w {eo}) is closed_ in x(2).
We conclude that f is a closed map and hence a homeomorphism from

7= X U {oo} to 5(%) = X v {%B}..
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