

A note on transfinite dimension

bу

A. R. Pears (London)

- 1. Introduction. This paper is concerned with the following sum theorem for large transfinite inductive dimension: if $X = A \cup B$ where A and B are closed and Ind A, Ind B exist then Ind X = Max(Ind A, Ind B). An example due to B. T. Levšenko [3] shows that this is not generally true even if X is a compact metric space. Recently D. W. Henderson has proved this result in the case that X is a hereditarily paracompact Hausdorff space and Ind $A \cap B$ is finite ([2], Proposition 1). Since the proof only requires the sum theorem for Ind for finite dimensional summands, Henderson's result holds in the wider class of totally normal spaces. In Theorem 1 of the present paper we prove that if X is completely normal, $\operatorname{Ind} X \leq \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B) \oplus (\operatorname{Ind}(A \cap B) + 1)$ where \oplus denotes the 'lower sum' of ordinals introduced by G. H. Toulmin [6]. Henderson's proposition follows immediately from this (Corollary 2). Theorem 2 is a 'Urysohn inequality'. This is merely a reformulation of a theorem due to Levšenko ([4]. Theorem 1). However, it might be of interest because it shows up the theorem more clearly as an extension of Yu. M. Smirnov's result [5] in the finite dimensional case. In § 2 the definition of large transfinite inductive dimension is given and some, of course well-known, properties required in the subsequent work are established. Toulmin's definition of the lower sum (+) is recalled in § 3. § 4 contains the two theorems described above.
- 2. Transfinite dimension. Large transfinite inductive dimension is defined by transfinite induction as follows. Ind X = -1 if X is empty. Ind $X \le \alpha$ if for each closed set E and each open set G such that $E \subseteq G$ there exists an open set G such that $E \subseteq G$ and Ind $G(G) \le \beta < \alpha$ where $G(G) = G \cap G$ is the boundary of G. Ind $G \cap G$ if Ind $G \cap G$ and it is not true that Ind $G \cap G$ for any $G \cap G$ and $G \cap G$ said to have transfinite dimension if there exists an ordinal $G \cap G$ said to have transfinite dimension it is enough to establish that Ind $G \cap G$ and Ind $G \cap G$ said to have transfinite dimension it is enough to establish that Ind $G \cap G$ for some ordinal $G \cap G$ for the ordinals are well-ordered and hence there exists a first ordinal for which the inequality is satisfied.

We shall write b(V) to denote the boundary of a subset V of a space X. If A is a subspace of X and $W \subset A$, the boundary of W in A will be denoted by $b_A(W)$.

LEMMA 1. If X has transfinite dimension and A is a closed subset of X, then A has transfinite dimension and $\operatorname{Ind} A \leqslant \operatorname{Ind} X$.

Proof. The proof is by transfinite induction. Suppose that the result is true for all spaces with transfinite dimension less than α and let $\operatorname{Ind} X = \alpha$. Let $E \subset G \subset A$ where E is closed and G is open in A. Since A is closed, E is closed in X and $E \subset H$ where H is an open set of X such that $H \cap A = G$. Hence there exists an open set Y such that

$$E \subset V \subset H$$
 and $\operatorname{Ind} b(V) \leqslant \beta < \alpha$.

Let $U = V \cap A$. Then U is open in A, $E \subset U \subset G$ and

$$b_A(\overline{U}) = \overline{U} - \overline{U} \subset \overline{V} \cap A - \overline{V} = b(\overline{V}) \cap A$$
.

Since $b_A(U)$ is a closed subset of b(V) by the induction hypotheses $\operatorname{Ind} b_A(U) \leqslant \beta < \alpha$. Hence $\operatorname{Ind} A \leqslant \alpha$. It follows that A has transfinite dimension and $\operatorname{Ind} A \leqslant \operatorname{Ind} X$.

LEMMA 2. If X is the topological sum of spaces A, B which have transfinite dimension, then X has transfinite dimension and

$$\operatorname{Ind} X = \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$
.

Proof. The proof is by transfinite induction. Suppose that the result is true for the topological sum of spaces of transfinite dimension less than a and let $\operatorname{Ind} A \leqslant a$, $\operatorname{Ind} B \leqslant a$. If $E \subset G \subset X$ where E is closed and G is open then there exists V open in A such that $E \cap A \subset V \subset G \cap A$ and $\operatorname{Ind} b_A(V) < a$ and there exists W open in B such that $E \cap B \subset W \subset G \cap B$ and $\operatorname{Ind} b_B(W) < a$. If $U = V \cup W$ then U is open in X, $E \subset U \subset G$ and the boundary b(U) of U is the topological sum of $b_A(V)$ and $b_B(W)$. Hence by the inductive hypothesis $\operatorname{Ind} b(U) < a$ and so $\operatorname{Ind} X \leqslant a$. Thus

$$\operatorname{Ind} X \leq \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$
.

Hence X has transfinite dimension and it follows from Lemma 1 that the reverse inequality holds. Thus we have

$$\operatorname{Ind} X = \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$

as was to be shown.

LEMMA 3. If X is a completely normal space and A is a subspace such that $\operatorname{Ind} A \leqslant a$ then if $E \subset G \subset X$ where E is closed and G is open there exists an open set U such that

$$E \subset U \subset \overline{U} \subset G$$
 and $\operatorname{Ind} b(\overline{U}) \cap A < \alpha$.

Proof. Since X is normal there exist open sets L, M such that

$$E \subset L \subset \overline{L} \subset M \subset \overline{M} \subset G$$
.

 $\overline{L} \cap A$ is closed in A, $M \cap A$ is open in A and $\overline{L} \cap A \subset M \cap A$. Hence there exists H open in A such that

$$\overline{L} \cap A \subset H \subset M \cap A$$
 and $\operatorname{Ind} b_A(H) < \alpha$.

Let $P=E\cup H,\ Q=A-\overline{H}$. Then $\overline{P}=E\cup \overline{H}$ and it is clear that $\overline{P}\cap Q=\emptyset.\ Q\subset A-H$ which is closed in A so that $\overline{Q}\cap A\subset A-H$ and it follows that $H\cap \overline{Q}=\emptyset.$ And $A-H\subset X-L$ which is closed in X so that $\overline{Q}\subset X-L$ and it follows that $E\cap \overline{Q}=\emptyset.$ Hence $P\cap \overline{Q}=\emptyset.$ Since X is completely normal there exists W open in X such that

$$E \cup H \subset W$$
 and $\overline{W} \cap (A - \overline{H}) = \emptyset$.

Let $U=M\cap W$. Then U is open in X and $E\subset U\subset \overline{U}\subset G$. Since $U\subset W,\ \overline{U}\cap (A-\overline{H})=\emptyset$ and so $\overline{U}\cap A\subset \overline{H}$. But $H\subset U$ and so we have $\overline{U}\cap A=\overline{H}\cap A$. Hence

$$b(U) \cap A = \overline{U} \cap A - U = \overline{H} \cap A - U \subset \overline{H} \cap A - H = b_A(H)$$
.

 $b(U) \cap A$ is closed in A and so is closed in $b_A(H)$. Thus by Lemma 1, Ind $(b(U) \cap A) < a$.

3. Ordinal arithmetic. We recall some definitions due to Toulmin. A well-ordered set A is said to be a shuffling of well-ordered sets B and C if $A=B'\cup C'$ where B' and C' are disjoint sets order-isomorphic with B and C respectively. An ordinal number a is a shuffling of ordinals β , γ if there are sets A, B, C with ordinals α , β , γ respectively such that A is a shuffling of B and C. If β , γ are given ordinals then there is at least one ordinal shuffling β and γ , namely the sum $\beta+\gamma$, for it is clear that the well-ordered set B+C (i.e. B followed by C) shuffles B and C. The lower sum $\beta\oplus\gamma$ is the least ordinal shuffling β and γ . Clearly \oplus is commutative and associative.

Toulmin obtains a shuffling of well-ordered sets which gives rise to the lower sum of their ordinals. Let B and C be disjoint well-ordered sets with ordinals β , γ respectively. Then there is an order-isomorphism between the initial segment of the ordinals $\{\xi \mid \xi < \beta\}$ and B; let the image of ξ under this isomorphism be b_{ξ} . Similarly we can label the elements of C (in order) c_{η} for $0 \leqslant \eta < \gamma$. Then $B \cup C$ with the order \preceq given by

$$b_{\xi} < c_n$$
 if and only if $\xi \leqslant \eta$

is a well-ordered set whose ordinal is $\beta \oplus \gamma$. From this Toulmin obtains the following rule: if $\alpha = \alpha' + p$, $\beta = \beta' + q$ where α' , β' are limit ordinals and p, q are non-negative integers then

$$a \oplus \beta = \begin{cases} \alpha & \text{if} \quad \alpha' > \beta', \\ \alpha + q = \beta + p & \text{if} \quad \alpha' = \beta', \\ \beta & \text{if} \quad \alpha' < \beta'. \end{cases}$$

We make the following convention if just one of the summands is -1.

$$a \oplus (-1) = (-1) \oplus a = \begin{cases} a - 1 & \text{if} \quad 0 \leqslant a < \omega \\ a & \text{if} \quad a \geqslant \omega \end{cases}$$

where ω is the first infinite ordinal.

For each ordered pair (α, β) of ordinals such that $\alpha \ge \beta$ let

$$\theta(\alpha, \beta) = \alpha \oplus (\beta + 1)$$
.

And for each ordered pair (α, β) of ordinals let

$$\psi(\alpha,\beta) = \operatorname{Max}(\alpha,\beta) \oplus (\operatorname{Min}(\alpha,\beta)+1)$$
.

It is clear that θ , ψ are non-decreasing in each argument.

In the next section we shall need the following strict inequalities.

LEMMA 4. (a) If $\gamma < \alpha$ then $\theta(\alpha, \gamma) < \theta(\alpha, \alpha)$.

- (b) If $\beta \leqslant \gamma < \alpha$ then $\theta(\gamma, \beta) < \theta(\alpha, \beta)$.
- (c) If $\alpha \geqslant \beta$ and $\gamma < \alpha$ then $\psi(\gamma, \beta) < \psi(\alpha, \beta)$.

Proof. (a) Let a = a' + p where a' is a limit ordinal and $p \geqslant 0$ is an integer.

If $\gamma < \alpha'$ then

$$\theta(\alpha, \gamma) = \alpha < \alpha + p + 1 = \theta(\alpha, \alpha)$$
.

If $\gamma = \alpha' + s$ where s is an integer and $0 \leqslant s < p$ then

$$\theta(a,\gamma) = a+s+1 < a+p+1 = \theta(a,a).$$

(b) Let a=a'+p where a' is a limit ordinal and $p\geqslant 0$ is an integer. Then if $\beta\leqslant \gamma< a'$

$$\theta(\gamma,\beta) < \alpha' \leqslant \alpha = \theta(\alpha,\beta)$$
.

If $\beta < \alpha' \leqslant \gamma$ then

$$\theta(\gamma, \beta) = \gamma < \alpha = \theta(\alpha, \beta)$$
.

If $\beta = \alpha' + q$, $\gamma = \alpha' + s$ where q, s are integers and $0 \leqslant q \leqslant s < p$ then

$$\theta(\gamma,\beta) = \alpha' + s + q + 1 < \alpha' + p + q + 1 = \theta(\alpha,\beta).$$

(c)
$$\psi(\alpha, \beta) = \begin{cases} \theta(\alpha, \beta) & \text{if } \alpha \geqslant \beta, \\ \theta(\beta, \alpha) & \text{if } \alpha < \beta. \end{cases}$$

Thus if $\beta \leqslant \gamma < \alpha$

$$\psi(\gamma, \beta) = \theta(\gamma, \beta) < \theta(\alpha, \beta) = \psi(\alpha, \beta)$$
.

If $\gamma < \beta < \alpha$ then

$$\psi(\gamma, \beta) = \theta(\beta, \gamma) < \theta(\alpha, \gamma) \leqslant \theta(\alpha, \beta) = \psi(\alpha, \beta)$$
.

Finally if $\gamma < a$, then

$$\psi(\gamma, \alpha) = \theta(\alpha, \gamma) < \theta(\alpha, \alpha) = \psi(\alpha, \alpha)$$
.

4. The theorems.

THEOREM 1. Let X be a completely normal space which is the union of two closed subsets A and B. If Ind A, Ind B exist then

$$\operatorname{Ind} X \leq \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B) \oplus (\operatorname{Ind} (A \cap B) + 1)$$
.

Proof. If $\operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B) = a$ and $\operatorname{Ind}(A \cap B) = \beta$ then, in the notation of the preceding paragraph, we must prove that $\operatorname{Ind} X \leq \theta(\alpha, \beta)$. The proof is by transfinite induction.

Let $[a', \beta']$ denote the statement: if A' and B' are closed subsets of X and Max(Ind A', Ind B') = a', Ind $A' \cap B' = \beta'$, then Ind $A' \cup B' \leq \theta(a', \beta')$. By Lemma 2, [a', -1] is true. Let us suppose that $[a', \beta']$ is true if $\beta' < \beta$ or if $\beta' = \beta$ and $\beta \leq a' < a$ and prove that $[a, \beta]$ is true. Thus let A, B be closed subsets of X such that Max(Ind A, Ind B) = a, Ind $A \cap B = \beta$ and let $Y = A \cup B$.

Suppose first that $\alpha=\beta.$ If $E\subset G\subset Y$ where E is closed and G open in Y then by Lemma 3 there exists U open in Y such that

$$E \subset U \subset G$$
 and $\operatorname{Ind} b(U) \cap A \cap B = \gamma < \alpha$.

Now $b(U) = (b(U) \cap A) \cup (b(U) \cap B)$. Moreover $\operatorname{Ind} b(U) \cap A \leq a$ and $\operatorname{Ind} b(U) \cap B \leq a$. Thus since $[a, \gamma]$ is true by hypothesis, we have

Ind
$$b(U) \leqslant \theta(\alpha, \gamma)$$
.

But by Lemma 4 (a), $\theta(\alpha, \gamma) < \theta(\alpha, \alpha)$. Thus we have an open set U of Y such that

$$E \subset U \subset G$$
 and $\operatorname{Ind} b(U) < \theta(\alpha, \alpha)$.

Hence Ind $Y < \theta(\alpha, \alpha)$.

Now suppose $a > \beta$. If $E \subset G \subset Y$ where E is closed and G is open in Y, then by Lemma 3 there exists U open in Y such that

$$E \subset U \subset G$$
 and $\operatorname{Ind} b(U) \cap A < \alpha$.

And there exists V open in Y such that

$$E \subset V \subset \overline{V} \subset U$$
 and $\operatorname{Ind} b(V) \cap B < a$.

Let W be the interior (in Y) of $(A \cap U) \cup (B \cap V)$. Then W is open in Y and since $V \subset W \subset U$ we have $E \subset W \subset G$. Clearly W - A = V - A. If $x \notin A$ and $x \notin \overline{V}$ then $X - A \cup \overline{V}$ is an open neighbourhood of x which does not meet V and so does not meet W. Thus $\overline{W} - A = \overline{V} - A$ and it follows that

$$b(W)-A=b(V)-A\subset b(V)\cap B$$
.

Similarly $b(W)-B \subset b(U) \cap A$. Thus

$$b(W) \subset (b(U) \cap A) \cup (b(V) \cap B) \cup (A \cap B)$$
.

Since $\overline{V} \subset U$, b(U) and b(V) are disjoint. Thus if $C = (b(U) \cap A) \cup (b(V) \cap B)$, C is the topological sum of $b(U) \cap A$ and $b(V) \cap B$ and it follows that $\operatorname{Ind} C = a' < a$. Hence $\operatorname{Max}(\operatorname{Ind} C, \operatorname{Ind} A \cap B) = \operatorname{Max}(a', \beta) = \gamma < a$ and $\operatorname{Ind}(C \cap A \cap B) = \delta \leqslant \beta$. By hypothesis $[\gamma, \delta]$ is true and so

Ind
$$C \cup (A \cap B) \leqslant \theta(\gamma, \delta) \leqslant \theta(\gamma, \beta)$$
.

But by Lemma 4 (b), $\theta(\gamma, \beta) < \theta(\alpha, \beta)$. Thus, since b(W) is a closed subset of $C \cup (A \cap B)$ we have $\operatorname{Ind} b(U) < \theta(\alpha, \beta)$. It follows that $\operatorname{Ind} Y \leq \theta(\alpha, \beta)$. This completes the proof.

COROLLARY 1. Let X be a completely normal space which is the union of two closed subsets A and B. If $\operatorname{Ind} A \cap B$ is finite, $\operatorname{Ind} A$, $\operatorname{Ind} B$ exist, and at least one of $\operatorname{Ind} A$, $\operatorname{Ind} B$ is infinite then

$$\operatorname{Ind} X = \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$
.

Proof. If $\operatorname{Ind} A \cap B$ is finite, and $\operatorname{Max}(\operatorname{Ind} A,\operatorname{Ind} B)$ is infinite then the theorem gives

$$\operatorname{Ind} X \leqslant \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$
.

Since X has transfinite dimension the reverse inequality holds (Lemma 1) and the proof is complete.

COROLLARY 2. Let X be a totally normal space which is the union of two closed subsets A and B. If $\operatorname{Ind} A \cap B$ is finite and $\operatorname{Ind} A$, $\operatorname{Ind} B$ exist then

$$\operatorname{Ind} X = \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B)$$
.

Proof. The case in which Max(IndA, IndB) is infinite is dealt with in Corollary 1. But if IndA and IndB are finite then the result is also known to be true ([1], Theorem 3).

THEOREM 2. Let X be a completely normal space which is the union of subsets A and B. If IndA and IndB exist then

$$\operatorname{Ind} X \leq \operatorname{Max}(\operatorname{Ind} A, \operatorname{Ind} B) \oplus (\operatorname{Min}(\operatorname{Ind} A, \operatorname{Ind} B) + 1)$$
.

Proof. We must prove that if $\operatorname{Ind} A = \alpha$ and $\operatorname{Ind} B = \beta$ then $\operatorname{Ind} X \leqslant \psi(\alpha, \beta)$. The proof is by transfinite induction.

Let $\{\alpha', \beta'\}$ be the statement: if A', $B' \subset X$ and Ind $A' = \alpha'$, Ind $B' = \beta'$ then Ind $A' \cup B' \leq \psi(\alpha', \beta')$. Let us suppose that $\{\alpha', \beta'\}$ is true if $\min(\alpha', \beta') < \beta$ or if $\min(\alpha', \beta') = \beta$ and $\max(\alpha', \beta') < \alpha$ and then prove $\{\alpha, \beta\}$ where $\alpha \geq \beta$.

Let $A, B \subset X$ and let $\operatorname{Ind} A = a$, $\operatorname{Ind} B = \beta$ where $a \geqslant \beta$. Let $Y = A \cup B$ and let $E \subset G \subset Y$ where E is closed and G is open. By Lemma 3 there exists U open in Y such that $E \subset U \subset G$ and $\operatorname{Ind} b(U) \cap A = \gamma < a$. And by Lemma 1, $\operatorname{Ind} b(U) \cap B = \delta \leqslant \beta$. But

$$b(U) = (b(U) \cap A) \cup (b(U) \cap B)$$

and by the inductive hypothesis $\{\gamma, \delta\}$ is true. Thus

$$\operatorname{Ind} b(U) \leqslant \psi(\gamma, \delta) \leqslant \psi(\gamma, \beta) < \psi(\alpha, \beta)$$

where the last inequality is supplied by Lemma 4 (c). It follows that $\operatorname{Ind} A \cup B \leqslant \psi(\alpha, \beta)$ which completes the proof.

References

- C. H. Dowker, Inductive dimension of completely normal spaces, Quart. J. Math. Oxf. Ser. (2), 4 (1953), pp. 267-281.
- [2] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 63 (1968), pp. 167-173.
- [3] Б. Т. Левшенко, О бесконечномерных пространствах, ДАН СССР, 139 (1961), pp. 286-289. English translation: On infinite-dimensional spaces, Soviet Math. Dokl. 2 (1961), pp. 915-918.
- [4] Пространства трансфинитной размерности, Матем. сб. 67 (109) (1965), pp. 255–266.
- [5] Ю. М. Смирнов, Некоторые соотношения в теории размерности, Матем. сб. 29 (71) (1951), pp. 157-172.
- [6] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. Lond. Math. Soc. 4 (1954), pp. 177-195.

QUEEN ELIZABETH COLLEGE UNIVERSITY OF LONDON

Reçu par la Rédaction le 2. 6. 1969