A note on transfinite dimension

by
A. R. Pears (London)

1. Introduction. This paper is concerned with the following sum
theorem for large transfinite inductive dimension: if X = 4 v B where 4
and B are closed and Ind 4, Ind B exist then Ind X = Max(Ind 4, Ind B).
An example due to B. T. Levienko [3] shows that this is not generally
true even if X is a compact. metric space. Recently D. W. Henderson has
proved this result in the case that X is a hereditarily paracompact Haus-
dorff space and IndA ~ B is finite ([2], Proposition 1). Since the proof
only requires the sum theorem for Ind for finite dimensional summands,
Henderson’s result holds in the wider class of totally normal spaces.
In Theorem 1 of the present paper we prove that if X is completely
normal, Ind X < Max(Ind4, IndB)(-B(Ind(A A B)—|—1) where @ denotes
the ‘lower sum’ of ordinals introduced by G. H. Toulmin [6]. Henderson’s
proposition follows immediately from. this (Corollary 2). Theorem 2 is
a ‘Urysohn inequality’. This is merely a reformulation of a theorem due
to Levienko ([4], Theorem 1). However, it might be of interest because
it shows up the theorem more clearly as an extension of Yu. M. Smirnov’s
result [5] in the finite dimensional case. In § 2 the definition of large
transfinite induective dimension is given and some, of course well-known,
properties required in the subsequent work are established. Toulmin’s
definition of the lower sum @ is recalled in § 3. § 4 contains the two
theorems described above.

2. Transfinite dimension. Large transfinite inductive dimension is
defined by transfinite induction as follows. IndX = —1 if X is empty.
Ind X < a if for each closed set' B and each open set @ such that EC @
there exists an open set U such that B C U C G and Indb(W) << a
where b(W) = A—U iz the boundary of AU IdX =a if ndX e
and it is not true that Ind X < £ for any g < a. X is said to have trans-
finite dimension if there exists an ordinal o such that IndX = a. To
establish that X has transfinite dimension it is enough to establish that
Ind X < a for some ordinal g, for the ordinals are well-ordered and hence
there exists a first ordinal for which the inequality is satisfied.
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‘We shall write b(V) to denote the boundary of a subset ¥ of a space X.
If A is a subspace of X and W C A, the boundary of W in 4 will be de-
noted by b4(W). ’

LemmA 1. If X has transfinite dimension and A is a closed subset
of X, then A has transfinite dimension end Ind4 < Ind X.

Proof. The proof is by transfinite induction. Suppose that the
result is true for all spaces with transfinite dimension less than a and
let IndX = a. Let ECGCA where F is closed and G is open in A.
Since- 4 is closed, E is closed in X and B C H where H is an open set
of X such that H ~ A = G. Hence there exists an open set V such that

ECVCH and Tndd(V)<f<a.

Let U=V ~ A. Then U is open in 4, EC U CG@ and
bU)=TU—-TUCV AnA-V=0b(V) 4.

Since b4(U) is a closed subset of 5(V) by the induction hypotheses
Indbs(U) < f < a. Hence Ind 4 < a. It follows that A has transfinite
dimengion and Ind4 < Ind X.

Lemua 2. If X is the topological sum of spaces A, B which have trans-
finite dimension, then X has tramsfinite dimension and

Ind X = Max(Ind 4, Ind B) .

Proof. The proof is by transfinite induction. Suppose that the result
is true for the topological sum of spaces of transfinite dimension less
than o and let Jnd4d < a, IndB < a. If ¥C @C X where F is closed
and @ is open then there exists ¥ open in A such that E~ACV C @ A
and Indbs(V) < a and there exists W open in B such that B~ BC W
CG~Band Indbs(W) < a.Tt U=V v W then U is openinX, BECUCG@G
and the boundary b(U) of U is the topological sum of b4(V) and bg(W).
Hence by the inductive hypothesis Indb(U) < a and s0 Ind X < a. Thus

Ind X < Max(Ind 4, IndB).

Hence X has transfinite dimension and it follows from Lemma 1 that
the reverse inequality holds. Thus we have

Tnd X = Max(Ind 4, Tnd B)
as was to be shown.

LeMMA 3. If X is a completely normal space and A is o subsp‘ace such
that Ind A < a then if EC GC X where B is closed and G is open there
exists an open set U such that

ECUCUCGEH

and Indb(U)mnA<a.
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Proof. Since X is normal there exist open sets I, M such that
ECLCLCMCHMCGE.

L~ Ais closed in 4, M ~ A4 is open in 4 and L~ AC M ~ A. Hence
there exists H open in A4 such that

LAACHCMA~A and TIndbyH)<a.

Tet P=FvH, Q=A—H Then P=FE v H and it is clear that
PAnQ=@. QC A—H which is closed in A so that § ~ ACA—H and
it follows that H ~ @ = @. And A—H C X—I which is closed in X so
that §C X—I and it follows that B ~ @ = @&. Hence P ~ § = 0. Since
X is completely normal there exists W open in X such that

EvHCW and WhAn(Ad-—H)=0.
Let U= M ~W. Then U is open in X and EC UC U C G. Since
UCW,U~(A—H)=0 and so U~ ACH. But HC U and so we have

U~A=Hn~ A. Hence
W(U)"nA=UnA-U=H~A-UCHANA-H="04H).

b(U) n A is closed in A and so is closed _in b4(H). Thus by Lemma 1,
Ind(b(U)r\A)< a. .

3. Ordinal arithmetic. We recall some definitions due to Toulmin.
A well-ordered set A is said to be a shuffling of well-ordered sets B and ¢
if 4 = B’ u (' where B’ and (' are disjoint sets order-isomorphic with B
and ( respectively. An ordinal number a is a shuffling of ordinals 8, y if
there are sets 4, B, C with ordinals a, $, y respectively such that 4 is
a shuffling of B and C. If 8, y are given ordinals then there is at least
one ordinal shuffling # and y, namely the sum Sy, for it is clear that
the well-ordered set B+ C (i.e. B followed by C) shuffles B and C. The
lower sum f@y is the least ordinal shuffling # and . Clearly @ is commu-
tative and associative.

Toulmin obtains a shuffling of well-ordered sets which gives rise
to the lower sum of their ordinals. Let B and € be disjoint well-ordered
sets with ordinals g, y respectively. Then there is an order-isomorphism
between the initial segment of the ordinals {£| & < f} and B; let the image
of £ under this isomorphism be b;. Similarly we can label the elements
of C (in order) ¢, for 0 < 7 < y. Then B v  with the order < given by

be << ¢

if and only if &<y
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is a well-ordered set whose ordinal is f@y. From this Toulmin obtains
the following rule: if a = a'-+p, § = §'--¢ where o', f are limit ordinals
and p, g are non-negative integers then

a it d>p,
@f=jatg=F+p # =4,
Jij it o <p.

We make the following convention if just one of the summands is —1.

_ _fe—1 i O0<a<w
a@(-1) = (-D@a={* " b

" where o is the first infinite ordinal.
For each ordered pair (a, ) of ordinals such that o = § let

0(a, ) = a®(F+1) .
And for each ordered pair (a, f) of ordiﬁals let

(@, f) = Max(a, )@ (Min(a, f)+1) .

It is clear that 6,y are non-decreasing in each argument.
In the next section we shall need the following strict inequalities.
LeMumA 4. (a) If y << a then 0(a, y) < 0(a, a).
b) If B <y < a then 8(y, §) < b(a, B).
¢) If a= B and y < a then y(y, f) < (a, B).

Proof. (a) Let a= a'-+p where o' is a limit ordinal and p >0 is
an integer.
If y < o' then

(e, ) =a< a+p+1=0(a,aqa).

If y = o’'+s where s is an integer and 0 < s < p then

8a,y) = a+s+l < a+p+l=0(a,a).

(b) Let & = o'+ p where o’ is a limit ordinal and p >0 is an integer.
Then if f <y < o

(Vaﬂ)<a'<a=e(a;ﬂ)'

If f<a' <y then

byl =y<a=6(a,p).

ff=a'4gqgy=0d+s where ¢, § are integers and 0 < g < 8<p then

0y, )= a'+s+q+1 < o +p+g+1=0(q, ).
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(e)

0(a,p) i a
6(B,a) i a

_ >4,
v(a, /)= 25

y<a

vy, B)=0(y, f) < b(a
If y < f < a then

ply, B)=0(8,y) < 0(a,y) <
Finally if y < a, then ‘
Py, @) = 0(a, y) < 8(a, a) = p(a,

4. The theorems.
THEOREM 1. Let X be a completely normal space which is the union
of two closed subsets A and B. If Ind A, Ind B exist then

Ind X < Max(Ind 4, Ind B)®(Ind(4 ~ B)+1).

Proof. If Max(ITnd4,IndB) = o and Ind(4 ~ B) = f§ then, in the
notation of the preceding paragraph, we must prove that Ind X < 6(a, f).
The proof is by transfinite induction.

Let [o, '] denote the statement: if A’ and B’ are closed subsets
of X and Max(Ind4’,TndB’)= o/, Ind A’ ~n B'= f/, then IndA’' v B’
< 6(«’, f'). By Lemma 2, [¢, —1] is true. Let us suppose that [a’, 8] is
true lf B’ < B orif f'=p and < o < a and prove that [a, ] is true,
Thus let 4, B be closed subsets of X such that Max(Ind 4, IndB) = o,
IndiAd ~B=p and let Y =A4A v B.

Suppose first that « = . If B C ¢ C Y where F is closed and G open
in ¥ then by Lemma 3 there exists U open in ¥ such that

ECUCG and Indd(U)mnAdnB=y<a.

Thus if § <
1 B)=1v(a, ).

0(a, ) = v(a, §) .

a).

Now b(T) = (5(U) ~ 4) v {b(T) ~ B). Moreover Indd(U)~ A <a

and Indb(U) ~ B < a. Thus since [a, ] is true by hypothesis, we have
. Indd(U) < 6(a, y) -

But by Lemma 4 (a), 6(a, y) < 0(e,a). Thus we have an open set Dot ¥

such that :

ECUCGH

Hence Ind Y < 6(a, a).
Now suppose a > §. If BC G C Y where E is closed and G is open
in Y, then by Lemma 3 there exists U open in ¥ such that
ECUCGE mdd(U)nd<a.

Fundamenta Mathematicae, T. LXXI

and Indd(U) < 0(a,a).

and
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And there exists ¥V open in ¥ such that

ECVCVCU and Indd(V)nB<a.

Let W be the interior (in ¥) of (4 ~ U) v (B ~ V). Then W is open
in ¥ and since VCWC U we have EC WC G. Clearly W—A4 =V —4.
Tfxé¢d and v¢ V then X4 o ¥ is an open neighbourhood of 2 which
does not meet ¥ and so does not meet W. Thus W—4 = V—4 and it
follows that

B(W)—A=b(V)—ACHV)nB.
Similarly b(W)~BCb(U) ~"A. Thus
B(W)C((T)n4) v (b(V) ~nB) v (4~ B).

Sinee 7 C U, b(U) and b(V) are disjoint. Thus if (= ®(U) ~ 4) v
v (b(V) ~ B), O is the topological sum of b(T) ~ A and b(V) ~ B and it
follows that Ind( = o' < a. Hence Max(IndC,Tnd4 ~ B) = Max (o, B)
=y < aand Ind(C ~ 4 ~ B) = ¢ < B. By hypothesis [v, d] is true and so

TndCw (4 nB)< 0(y,8) < 0(y, ).

But by Lemma 4 (b), 6(y, f) < 0(a, B). Thus, since (W) is a clogsed
subset of Cuv (4 ~B) we have Indb(U)< 0(a, p). It follows that
Ind¥ < 6(a, B). This completes the proof.

. CoROLLARY 1. Let X be a completely normal space which s the union
of two closed subsets A and B. If ITnd A ~ B is finite, Ind A, Ind B ewist,
and at least one of Ind A, IndB is infinite then .

Ind X = Max(Ind 4, TndB)..

Proof. If Ind4 ~ B is finite, and Max(Ind4,IndB) is infinite
then the theorem gives

Ind X < Max(Ind4, IndB).

Since X has transfinite dimension the reverse inequality holds (Lemma 1)
and the proof is complete. '

COROLLARY 2. Let X be a totally normal space which is the wnion of
two closed subseis A and B. If Ind A ~ B is fimite and Ind A, Ind B exist then
Ind X = Max(Ind 4, IndB).

. Ifroof. The ease in which Max(Ind A, IndB) is infinite is dealt
with in Corollary 1. But if Tnd 4 and Ind B are finite then the result is
also known to be tiue ([1], Theorem 3).
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TueOREM 2. Let X be a completely normal space which is the union
of subsets A and B. If IndA and IndB exist then

Tnd X < Max(Ind4, Ind B)® (Min(Ind 4, Ind B} +1) .

Proof. We must prove that if Ind4d =« and IndB=p then
Ind X < y(a, B). The proof is by transfinite induction.

Let {a, p’} Dbe the statement: if A’, B'C X and Indd' = d,
IndB’ = ' then IndA’' v B’ < y(a, f'). Let us suppose that {a', §'} is
true if Min(a’, 8’) < B or if Min(a', §’) = p and Max(a’, f') < a and then
prove {a, f} where a > f. .

Let 4, BCX and let Indd = a, IndB= § where ¢>f. Let ¥
—= A v Bandlet EC GC Y where ¥ is closed and @ is open. By Lemma 3
there exists U open in ¥ such that EC UC G and Indb(U)n A=y < a
And by Lemma. 1, Indb(U) nB=45<f. But

b(U) = (b(U) ~ 4} v (b(U) ~ B)
and by the inductive hypothesis {y, 6} is true. Thus

Indb(U) < ply, ) <vly, B) <y(a, )

where the last inequality is supplied by Lemma 4 (¢). It follows that
IndA4 v B < ¢(a, f) which completes the proof.
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