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Metric spaces in which a strengthened form
of Blumberg’s theorem holds

by
Jack B. Brown (Auburn, Ala.)

Introduction. Let the following statement be referred to as

PROPOSITION A. If f is a function from X into ¥, then there is a dense
subset D of X such that flD is continuous.

Henry Blumberg first proved [2] that Proposition A holds if X is
the plane and Y is the space R of real numbers, and he later proved [3]
that Proposition A holds if X and ¥ are Euclidean spaces. Blumberg
observes in [3] that according to his construction, the set D is countable,
and that it cannot be made to be otherwise, for Sierpinski and Zygmund
have shown ([9], p. 118; [10]) that if the continuum hypothesis is true,
there exists a real function f with domain R such that if D is any un-
countable subset of R, then f|D has a point of discontinuity. Block and
Cargal [1] show that Proposition A holds for fairly general topological
spaces X and Y, with suitable restrictions on the categoric nature of
the open sets in X. In [6] Goffman gave an example to show that D can-
not be constructed so as to make f|D a homeomorphism from D onto f(D).
He also gave an example [6] which shows that Proposition 4 of [5], which
states that Proposition A holds for every pair of metric spaces X and Y,
is false. Bradford and Goffman [4] proved that if X is a metric space,
then Proposition A holds (where Y is R) if and only if every open subset
of X is of second category.

The main purpose of this paper is to establish theorems analogous
to those of Bradford and Goffman concerning the following two prop-
ositions, each of which is stronger than Proposition A (where Y = RE).

PrOPOSITION B. If f is a function from X into R, then there exists an
uncountably dense subset W of X and a dense subset D of W such that fIW is
continuous at each element of D.

PropostTION C. If f is a function from X into R, then there exists
@ c-dense subset W of X and a dense subset D of W such that fIW is continu-
ous at each element of D.
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The statement that W is uncountably dense (c-dense) in a metric
space X means that every open subset of X contains uncountably many
(¢c-many) elements of . '

The paper is divided into two parts. In Section I the notion of
2 metric space being “typically dense” in itself is defined, and it is shown
that Proposition B holds in every metric space which is typically dense
in itself. Tt is then shown that if X is a metric space which is not typically
dense in itself, then Proposition O fails to hold in X. In Section II the
notion of a metric space being “c-typically dense” in itself is defined,
and it is shown that Proposition C holds in every metric space which is
¢-typically dense in itself and that this property characterizes the sepa-
rable metric spaces in which Proposition C holds. It follows as a corollary
that Proposition C holds for real valued functions with a complete metric
domain which is dense in itself.

L. Typical density and Propositions B and C. Suppose that M is a sub-
set of a metric space X. The statement that M is nowhere dense means
that if §is an open subset of X, then there is an open subset 7' of § which
does not intersect M. The statement that M is of first category means
that M is the union of countably many nowhere dense sets. The statement
that M is of second category means that M is not of first category. The
statement that M is a Lusin set means that M has no uncountable no-
where dense subset. The statement that 3 is of first type means that M is
the union of a first category set and a Lusin set. The statement that I is
of second type means that M is not of first type. If § is an open subset
of X, then the statement that M is dense in S (eategorically demse in 8)
{typically dense in §) means that if T is an open subset of 8, then T ~ I
is non-empty (second category) (second type). The statement that M is
nowhere categorically dense (nowhere typically dense) means that if 7' is an
open set, there is an open subset ¥ of 7' such that M ~ V is first category
(tirst type).

I every set of second category had an uncountable nowhere dense
subset, it would not be necessary to introduce the notions of “firgt type”
and f‘typica]ly dense”. However, N. Lusin has shown ([8], [9], p. 36)
that if the continuum hypothesis is true, there is an uncountable number
set which has no uncountable nowhere dense subset, and this set is of
second category in R. '

) Notice that every subset of a nowhere dense (first category) (Lusin)
(fll‘ﬁt type) (nowhere categorically dense) (nowhere typically dense) set
is Powhere dense (first category) (Lusin) (first type) (mowhere cate-
gorically dense) (nowhere typically dense). Every countable set is a Lusin
-~ set. .Howe\'er, there can be finite sets (of isolated points) which are not

of first category. First category sets and Lusin sets are of first type.
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LeMMA 1. Suppose @ is a property and every open subset of a metric
space X has an open subset with property Q. Then there exists a collection G
of mutually exclusive open subsets of X such that G* (the union of the sefs
in @) is dense in X and every set in G has property Q.

LEMMA 2. The union of countably many first type subseis of a metric
space X is of first type.

LemmA 3. If M is a nowhere categorically dense subset of a metric
space X, then DM is first category. .

Proof. If S is an open subset of X, there is an open subset 7' of §
such that M ~ T is first category. Thus, from Lemma 1 it follows that
there is a collection @ of mutually exclusive open subsets of X such
that G is dense in X and if Tis in &, M ~ T is first category. For each T
in @, let M(T,1), M(T,2), ... be a sequence of nowhere dense sets such
that M (T,1)w M(T,2)v..is M ~ T, and let 4 = M—G*. For each
positive integer j, let My = A v {M(T,j)| T is in G}*. Then M, M,, ...
is a sequence of nowhere dense sets with union M.

" Remark 1. A nowhere typically dense subset of a separable metrie
space X has to be of first type, but this may not be true in non-separable
spaces X. Suppose the continuum hypothesis is true and that M is
a Lusin subset of T.= [0, 1] such that M is second category. Let X be
{(z, y)| # and y are in I} with the metric d: d[(z, ¥), (4, 0)]=11if 2 5 u,
and d{(x, ¥), (4, v)] = [y—o] if 2 =u. Let N = {(»,y)| 2 is in T and y is
in A}. N is nowhere typically dense in X, but is not of first type. Never-
theless, the following lemma does hold.

LeMyuA 4. The union of countably many mowhere typically dense sub-
sets of a meiric space X is nowhere typically dense. ’

Proof. Suppose M is typically dense in an open subset § of a metric
space X, and M;, M,, ... is a sequence of nowhere typically dense sub-
sets of X with union M. Assume that M is a subset of S. Suppose that
for each positive integer j and each open subset T of § for which M; T
is first type, M; ~ T is actually of first category. Then it follows (Lemma 3)
that each 3, would be of first category, and M is of first category, which
is 8 contradiction. Therefore, there is an open subset T of S and a positive
integer n such that M, ~ T is of first type but not of first category.
M, ~ T is the union of a first category set A and a Lusin set B, and
there must be an open subset ¥V of 7' in which B is dense. Let N = M nV,
and for each positive integer j, let Ny= M; ~nV. N is typically dense
in V, each N; is nowhere typically dense, and N, is the union of a first
category set A'= A~V and a Lusin set B'= B ~V which is dense
in V. Notice that since N is typically dense in ¥, then no open subset
of V is degenerate. Now, suppose j “is a positive integer different from n.
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N; is nowhere typically dense, so there must be a collection @ of muty-
ally exclusive open subsets of V such that @* is dense in ¥ and if W is
in &, N; ~ W is of first type. Suppose @ is uncountable. B is dense in V,
80 let B be a subset of B’ which consists of just one element of B’ in
each set in @. Since no open subset of V is degenerate, it follows that B"
is an uncountable nowhere dense subset of B, and this is a contradiction.
Thus, @ is countable, and N; is the union of countably many sets of first
type and must be of first type. Then N = N, U N, u ... is also of first
type. This is a contradiction.

Levya 5. If M is a typically dense subset of an open set 8 in a melric
space X and N is a subset of M which is ncwhere typically dense, then M —N
1s typically dense in S.

Proof. If M—N is not typically dense in §, then there is an open
subset T of § such that T ~ (M —N) is of first type. But there is an open
subset ¥ of 7' such that N ~ V is of first type, s0 M nV = [(M—N) A V] u
v (N ~ V) is of first type, and M is not typically dense in S.

LeMMA 6. If G is a collection of open subseis of a metric space X such
that G* is dense in an open subset S of X and M is a subset of X which is
lypically dense in each set of G, then M is typically dense in S.

Proof. If M is not typically dense in §, then there is an open sub-
set T of 8 such that T ~ M is of first type. 7 must intersect an open
set V of @, and T~V is an open subset W of V such that M ~ W is of

first type, which means that 3 is not typically dense in V. This is a contra-
diction.

Levma 7. If M is a typically demse subset of an open subset § of
a metric space X, and Hy, H,, ..., H, s a finite sequence of mutually ex-
clusive subsets of M with union M, then there exists a collection G of mutually
exclusive open subsets of S such that (1) @* is dense in 8, and (2) if T is
in @, there is a positive integer + < n such that H; is typically dense in T.

Proof. The proof is by induction on #. The lemma holds for n — 1.
Suppose the lemma holds for # = % and H,, H,,..,Hyp, is a k+1 term
sequence of mutually exclusive subsets of M with union M. Let g be
the union of all the open subsets of § in which Hy,, is typically dense.
It follows from Lemma 6 that Hy,, is typically dense in g. Let
T = 8—~Cl{g). T ~ Hy., must be nowhere typically dense, so M—Hj .,
=H, v H, v ... v Hy is typically dense in T, and there is a collection Gy
of mutually exclusive open subsets of 7 such that (1) G% is dense in T,
and (2) if ¥V is in Gy, there is a positive integer ¢ < % such that H; is
typically dense in V. The collection G = (9) v Gq is the desired collection.

Norarron. If f is a function from a subset of a metric space into R
and a < b, then the symbol [a < f < b7 shall denote the set {z| a < f(x) < b}.
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LeMMA 8. Suppose a < b and f is a real valued function with domain
a typically dense subset M of an open subset S of a meiric space X, and
a < f(x) < b for each & in M. Then there is a subset N of M such that N is
typically dense in S and fIN is continuous at some element © of N.

Proof. Assume without loss of generality that b = a-+1. Since M is
typically dense in 8, it follows that if T is an open subset of S, fuhlen
T ~ M is not a Lusin set and is therefore uncountable. For each positive
integer m, let P, denote the set- of all n-term sequences of zero’s and
one’s, and if 2= {iy, s, ..., in} belongs to Pn, let i(z), G(2), and M(?)
be defined as follows: (1) t(z) = a+i1/2+i2/22+ e 27, (2) G(2) is
the union of all open subsets 7 of § such that [t(2) < F< t(2)+1/2"] is
typically dense in T, and (3) M (z) = [t(2) < f < 1(2) +1/2"] ~ G(2). For
each positive integer n, let Vy = {@(2)] zis in Py}*, let Hy = [S—Va] ~ M,
and let K= M—{M(2)| # is in P,}*. It follows from Lemma 7 thab
if n is a positive integer, Vy is dense in §, so that Hy is nowhere dense.
Furthermore, if 7 is a positive integer, K, must be nowhere typically
dense, otherwise there would be a z in P, such that part of Ky would
be in M(z) (Lemma 7). Thus, K; v K, v ... is nowhere typically dense
(Lemma 4), as is J = (Hy v Hy v ...) v (B3 v Ey v ). Therefore. M-J
must be typically dense in § (Lemma 5). Let # be in #—J. Notice that
if u is a positive integer, and 2’ is in Py, and 2z is in Ppy, and .z’ and 2
agree in the first » terms, then G(2) is a subset of G(2’) and M(z) is a sub-
set of M (2'). Now, for each positive integer n, there is an element 2 of Py
suech that # is in M(z), so there must be one infinite sequence
Z = {i,, iy, ...} of zero’s and one’s such that if » is a positix‘fe intc?gel; and
2= {iy, iy, ..., in}, then z is in M (2). It follows that f(z) = a.+1«1/2+z2/2 +...
Now, let R, R,, ... be a sequence of spherical open neighborhoods of z
such that for each positive integer #, (1) Cl(E) is a proper subset of
G(iy, Gy, oory in)y (2) Cl(Bny1) is a proper subset of Rs, and (3) R. .has
radiug less than 1/n. (The above set inclusions can be made proper since
no open subset of § is degenerate.) Now, let A;, 4,, ... be -suc.h thaj-o A,
= M —Ol(R,), and if » is ah integer greater than 0, Anyy = M (i, i, .‘.,'%,,?—
—Cl{Ry41). A, is typically dense in S—CL(RE,) and for each positive
integer m, Ay is typically dense in Ey—Cl(En41), S0 N=(z)v 4 v
w A4, ... is typically dense in 8 (Lemma 6).

Tn order to show that f|N is continuous at z, suppose & > 0. Let n be
a positive integer such that 1/2" < &. N n R, is a subset of M (iy, Ty cuey in)y
g0 if y is in N » Ry,

Gt iyf2 4 o a2 <F) < @t iyf2 o /212

and |f(z)—f(y)l <1/2" <e.
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TEmorEM 1. If X is o metric space which is typically dense in itself,
then Proposition B holds for X.

Proof. Since X is typically dense in itself, X has no degenerate open
subsets. If for each integer t, the seb [t < f < t+41] is nowhere typically
dense, then it follows from Lemma. 4 that X is nowhere typically dense.
Therefore, there must be an integer ¢ such that [¢ < f < 1+1] is typically
dense in some open subset of X. In fact, it follows from Lemma 1 that
there must exist a collection G, of mutually exclusive open subsets of X
such that G is dense in X and for each set § in @, there is an integer g
such that Mg=[ts<f<ts+1]~ 8 is typically dense in 8. Now, an
infinite sequence of steps, each step involving four stages, is defined
inductively as follows:

Step Al. Let Gy be the collection described above, and for each
8 in @, let ts and Ms be as described above.

Step B1. For each S in @, let N s and a5 be such that Ny is a subset
of Mg, Ng is typically dense in 8, and g is an element of Ng at which
fINs is continuous.

Step C1. For each S in Gy, let Hs be an uncountable nowhere dense
subset of Ng such that Hg contains zg (Hg can be made to contain zs
because X has no degenerate open subsets), and let Ky be a collection
of mutually exclusive spherical open subsets of S of radius less than 1/1
such that K¥ is dense in § but does not intersect Hs.

Step D1. For each §in Gy, and for each V in Ky, let &y = tg and
let My = Ngs~ V (which is typically dense in V).

Now, for each integer # > 1, Steps An, Bn, Cn, and Dn can be defined
inductively as follows:

Step An. Let 6, = {Ks| § is in Gp_i}*.

Step Bn. (Same as Step B1, except “G,” replaces “Gy”).

Step Cn. (Same as Step Cl, except “Gy” replaces “G” and “1/n”
replaces “1/1”).

Step Dn. (Same as Step D1, except “Gy” replaces “G,”).

Notice that if # is an integer greater than 1 and § is in Gy, then
there is an §’ in G,_; such that § is an element V of K, ts = tgy, and
Ms= Ng ~ 8, so that Mg, Ng, and Hg are subsets of Ny .

Now, let W = {#| there is a positive integer n and a set § in G, such
that # is in Hg}, and let D = {x| there is a positive integer » and a set S
in Gn such that @ = #g}. D is a subset of W. In order to show that W is
uncountably dense in X and D iz dense in X, suppose T is a spherical
open subset of X of radius & Let n be a positive integer such that 1/
< ¢/3. The open sets of Gy, are spherical with radins less than 1/n, 50

©
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there must be an open set 8 in G4y which lies inside 7. Hs is an un-
countable subset of W~ T and x5 is an element of D~ T.

Now suppose « is an element of D. Let » be a positive integer and §
be an element of G, such that # = 2s. W ~ § is a subset of ¥g~ § and
fIN¥ s is continuous at s, so fi[W is continuous at x. This completes the
proof of Theorem 1.

TaEOREM 2. If X is a metric space which is not typically dense in
itself, then Proposition C fails to hold in X.

Proof. If X is not ¢-dense in itself, then the theorem holds vacuously,
80 assume every open subset of X has cardinality at least ¢. Suppose X is
not typically dense in itself. There is an open subset § of X which is of
first type. Then 8 = 4 w M, v M, v ..., where A is a Lusin set, M, is
nowhere dense for each positive integer =, and A, M;, and M; are
mutually exclusive if 4 5= j. First, suppose S is actunally first category
(4 is empty) or that A has cardinality less than c¢. Then, as in [4], let
f(z) = 0if g isnotin My v M, v ..., and let f(z) = j if # is in M;. Suppose
there is a c-dense subset W of X and a dense subset D of W such that
fIW is continuous at each element of D. Let # be an element of D n S,
and let ¥ be an open subset of 8 such that z is in V and |f(z)—f(y)| <1/2
for each y in W ~V. W ~ ¥V has cardinality at least ¢, so it is not a sub-
set of A. Therefore, there is a positive integer j such that W ~ V is a sub-
set of M;. Since M; is nowhere dense, there is an open subset V' of V
which contains no element of M;. Then V' contains no element of W,
and this is a contradiction.

Assume § is not of first category. There must be an open subset I
of § in which A is dense. Let B = T ~ A, and for each positive integer j,
let Nj= T ~ M;. Assume B has cardinality at least c. Since B has no
uncountable nowhere dense subset, and B is dense in 7, and no open
subset of T is degererate, then 7' cannot have uncountably many mutu-
ally exclusive open subsets. Thus B, considered as a subspace of X, must
be separable and of cardinality ¢. Then it follows from the theorem of
Sierpiniski and Zygmund ([7], p. 422; [10]) that there is a function g
from B into the segment (0, 1) such that if M is a subset of B of cardi-
nality ¢, then g|M has a point of discontinuity. Now, let f be defined so
that f(#) = 0 if z is in X— T, f(x) = g(«) if » is in B, and f(x) =j+1
if # is in N; for some positive integer j. Now, suppose there is a c-dense
subset W of X such that f|W is continuous at each element of a dense
subset D of . Let  be an element of D ~ T, and let ¥ be an open sub-
set of T such that z is in ¥ and [f(#)—f(¥)] < 12 yisin WA V. WV is
either a subset of B or a subset of one of the sets N;. If W ~ ¥V is a subset
of one of the sets Ny, then the contradiction reached earlier occurs again.
Suppose W' = W ~ ¥ is a subset of B. Since f|W is continuous at a dense
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subset of W’ and W’ is dense in V, then the set  of points of W’ at which
fIW is discontinuous is first category. But since W’ is a Lusin set
it follows that ¥ is countable. Since W’ has cardinality ¢ and f{(W’_E),
= g|(W'—E), then W' —E is a subset M of B of cardinality ¢ such that
fIM = g|M is continuous. This is a contradiction and completes the proof
of Theorem 2. )

Remark 2. The set W constructed in the proof of Theorem 1, while
uncountably dense in X, is nevertheless of first category. It cannot be
made to be otherwise, for suppose the continmum hypothesis is true
and consider the function f of Sierpinski and Zygmund mentioned in the:
introduction. If there is an uncountably dense subset W of R such that
W is of second category and f|W is continuous at each element of a dense
subset of W, then f|{W is continuous on an uncountable subset of W,
which is a contradiction. ’ ’

Remark 3. There are clearly metric spaces in which Proposition A
hf)l.ds and Proposition B fails, for a metric space X can satisfy the con-
dition f’f [4] and have degenerate open subsets, whereas in order for
Proposition B to hold in X, every open set in X must be uncountable.
Furthermore, if the continuum hypothesis is true, and M is an un-
~eounta:ble Lusin subset of the line, then M would have to be categorically
dense in some segment §. Then N = M ~ §, considered as a metric space
would satisfy the condition of [4] and would have no countable oper;
subsets, but would not be typically dense in itself.

II..c-typica] density and Proposition C. Suppose that M is a subset of
?1» metric space X. The statement that M is a e-Lusin set means that
if ¥ is a nowhere dense subset of M, then N = N, u N, u ..., where
each N is of local cardinality less than ¢ (i.e. such that if o ’belongs
to ¥y for some positive integer 4, then there is an open set U containing x
such. that U~ N; has cardinality less than c). The resulting definitions
of first c-type, second c-type, o-typically dense, and nowhere c-typically
dense are analogous to definitions in Section I.
. A 1?usm seb is a c-pusin set. AA first type set is a first ¢-type set.
@ meftric space Is ¢-typically dense in itself, it is typically dense in itself.
The lemmas and theorems of this section are analogous to lemmas

and theorems of i 15 o
analogy. § of Section I and are numbered so as to indicate that

Lewmma 2. The union of coun a i7st ¢
4 . f tably many first ¢-t 7l
) i y ype subsets of a metric

suehPtll‘lozf.ASt}ppqse M=M v M,w.., where each set M; = A; u By
i nat A; is first category and By is a c-Lusin set. Tet 4 = A. v
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wAy,u... and B=B,vByv.. 4 is first category. Suppose N is
2 nowhere dense subset of B. For each positive integer 4, let G; be a count-
able collection of subsets of By, each of local eardinality less than ¢, such
that the union of the sets in G; is By~ N. Then G=G, v G v .. i8
a countable collection of subsets of B, each of local cardinality less than ¢,
such that the union of the sets in @ is N. Therefore B is a c¢-Lusin seb
and M is of first ¢-type. .

Lienoa 3'. If M is a nowhere c-typically dense subset of a metric space X
then M is of first c-type.

Proof. There exists a collection & of mutually exclusive open sub-
sets of X such that G* is dense in X and if T is in &, then M ~ T'is the
union of a first category set Ar and a e-Lusin set Br. Let B be the union
of all the sets By such that 7 is in @, and let A = M —B. As in the proof
of Lemma 3, 4 is first category. Now, suppose N is a nowhere dense
subset of B. For each set T of @, let N(T,1), N(T,2), ... be a sequence
of sets with union By ~ N such that each set N (T, 1) is of local cardinality
less than e. Now, for each positive integer ¢, let N; be the union of all
the sets N (T,4) such that T is in G. Then Ny, Ny, ... is & sequence of
sets with union N, and each set N; is of local cardinality less than c.
Thus, B is a ¢-Lusin set and M is of first ¢-type.

Lemmas 4/, 5, 6', 7', and 8', will not be stated, but their statements
are analogous to the statements of Lemmas 4, 5, 6, 7, and 8, respectively,
with the notion of c-typical density replacing the notion of typical
density. The proofs are either obvious, or else analogous to the proofs
of the earlier lemmas.

THrOREM 1°. If X is a meiric space which is c-typically dense in itself,
then Proposition C holds for X.

Proof. Analogous to the proof of Theorem 1, except on “Step Cn” Hs
is made to have cardinality c.

COROLLARY. If X is a complete metric space which is dense in itself,
then Proposition C holds for X. o

Proof. Suppose T is an open subset of X such that T=B v M; v
U M, ..., where B is a ¢c-Lusin set and each M; is nowhere dense. Let
Gy, Gy, ... be a sequence of collections of neighborhoods such that (1)
@, contains just one neighborhood and that neighborhood is a subset
of T and (2) if » is an integer greater than 1 and g belongs t0 Gy, then G
contains just two neighborhoods & and % which interseet g, and the closures
of h and k lie in g, are mutually exclusive, have radii less than 1/n, and
fail to intersect M,. N = Gf ~ G% .. is a separable Cantor subset
of B of cardinality ¢. Since B is a ¢-Lusin set, ¥ = N,v N, U ..., where
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each N; is of local cardinality less than c. Since N is separable, it follows
that each N; is the union of countably many sets of cardinality less
_ than ¢. Therefore, each N; is itself of cardinality less than ¢ ([9], p. 7),
50 N is of cardinality less than ¢. This is a contradiction. Thus X is
¢-typically dense in itself, and Proposition C holds for X.

TeEoREM 2. If X is a separable metric space which is not c-typically
dense in dtself, then Proposition O fails to hold in X.

Proof. Analogous to the proof of Theorem 2, except the set B,
considered as a metric subspace of X, is now separable simply because
X is separable.

Remark 4. If the continuum hypothesis is true, then the notions
of typically dense and c-typically dense are the same, as are Propo-
sitions B and C, and Theorems 1 and 2 yield a characterization of all
metric spaces in which Proposition C holds. However, except in the case
of separable spaces, this paper does not yield an outright characterization
of the metric spaces in which Proposition C (or Proposition B) holds.
Hopefully, there might exist a generalization of the theorem of Sier-
pinski and Zygmund which would lead to a proof of Theorem 2’ without
the hypothesis of separability of X.

Remark 5. When this paper was originally submitted, a ¢-Lusin
set was defined to be a set which had no nowhere dense subset of cardi-
nality ¢. This author found it necessary to have the additional hypothesis
of separability of X in Lemmas 3’ through 8 and Theorem 1’ at that
time. The referee observed that changing the definition of a ¢-Lusin
set to its present form would so strengthen the property of a space being
c-typically dense in itself that the hypothesis of separability of X would
become superflous in Lemmas 3’ through 8 and Theorem 1’. The author
is indebted to the referee for this suggestion.

References

(1] H.D. Block and B. Cargal, Arbitrary mappings, Proc. Amer. Math. Soc. 3

(1952), pp. 937-941.

H. Blumberg, New Properties of all real functions, Trans. Amer. Math. Soc.
24 (1922), pp. 113-128.

— Arbitrary point transformations, Duke Math. J. 11 (1944), pp. 671-685.

J. C. Bradford and C. Goffman, Metric spaces in which Blumberg's theorem
holds, Proc. Amer. Math. Soc. 11 (1960), pp. 667-6170.

A. Froda, Aspect abstraits d'une proprieté des fonctions réelles sur um support
sans structure, C. R. Acad. Sci. Paris 246 (1958), PP 2994-2996.

C. Gr;)ffma,n, On a theorem of Henry Blumberg, Mich. Math. J. 2 (1954),
Pp- 21-22.

[3]
(4

(51
(6]

Metric spaces 253

[71 K. Kuratowski, Topology, Vol. I, New York, London, Warszawa 1966.
[8] N. Lusin, Sur un probléme de M. Baire, C. R. Acad. Seci. Paris 158 (1914),

p. 1259,

[9] W. Sierpinski, Hypothése du Continu, Monogratie Matematyczne 4, War-
szawa 1934.

[10] — and A. Zygmund, Sur une fonction qui est di 17 sur tout ensemble de

puissance dw continu, Fund. Math. 4 (1923), pp. 316-318.

Regu par la Rédaction le 7. 7. 1969

18*


GUEST




