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On convex metric spaces II

by
W. Nitka (Wroclaw)

§ 1. Introdaction. R. H. Bing has raised [1] the following problem,
which we quote in the formmulation of K. Borsuk (ef. [4]):

Is it true that every n-dimensional continunum whieh is SC (strongly
convex) and WR (without ramifications) must be topologically an z-cell?

Lelek and Nitka [4] solved the problem positively for # < 2, Rolfsen
[6] for n = 3. For » > 3 only partial solutions are known. E.g., Rolfsen
has shown [6] that every SC-WR compact #-manifold is a cell for n + 4, 5,
and Toranzos [7] claims that it is so for every » including 4 and 5.

The main result of the present paper is the following (cf. Theorem 2
in [3]):

MaiN TEEorREM. If (X,0) is a compact SC-WR-CT-space and
dim X = n, then X s an n-cell. ‘

It follows from 8.3 and 8.1 below that an n-dimensional SC-WR
compact space is a cell if it contains a convex n-cell. And the property
OT defined in § 10 implies the existence of a convex #-cell in X (see 15.3).

Paragraphs 9, 11, 12, and 13 are unnecessary for the proof of the
main theorem. However, they have been inserted here for the sake of
completeness. In particular, in §9 it is shown that in an SC-WR-cell
each metric ball with a centre in the interior is also a cell. And on the
other hand, the existence of such a metric ball in an SC-WR compact
space implies that the space is a cell.

In § 11 equivalent forms of CT-condition are studied (cf. Theorem 1
in [5]).

In §12 we prove that 2-dimensional compact SC-WR-spaces are
OT-spaces (cf. Theorem 3 in [5]). This gives another proof of the main
theorem of [4].

As is shown in § 13, the CT-property is-independent of SC-WR for
higher dimensions.

Notions and symbols not defined in the paper are derived from [4].

The author is indebted to Prof. K. Borsuk and Dr. A. Lelek for
suggestions which greatly influenced the paper.
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§ 2. Preliminary - lemmas. The lemmas below are concerned with
notions of betweenness, convexity, SC, and WR (cf. [4], § 2 and 3).

Let (X, o> be a metric space and let p,q,7,seX.

2.1. If pgr and prs, then pgs and qrs, and conversely.

In a convex space this is equivalent to

2.2. If pgr and p #r, then pg - qr is a segment.

Frequently the following propositions will be useéd:

2.3. A complete metric space is convex iff for cvery p,qeX and for
every 0 <1< 1 there ewists at least one point z ¢ X such that

(0]

o(p,2)=(1—1-e(p,q) and oz 9 =10(p,9.

From 2.3 and the definition of an SC-space we infer

2.4. A metric space is an SC-space iff for every pair of points p,qe X
and for every 0 <1< 1 there exists ewactly one point z such that (1) holds.

2.5, If (X, @) is a compact SC-space, p;,2:, q; € X, piziq; for every
t=0,1,2,..,limp;= p,, limg;= g, and limg(p,, 2:) = 0(Po, 20), then
the sequence {2} is convergent to z,.

Note also the following obvious propositions on WR-spaces.

2.6. If (X, 5> is a WR - space, then pgr, pgs,» % qand o(p, ) < o(p, 8)
wmply prs.

2.7. A metric space (X, p)> 18 a WR-space iff pgr, pgs, p # ¢, and
e(p,7) = e(p, s) imply r=s.

§ 3. B-cones and cells. Let I denote the closed segment [0, 1] with the
natural topology. The space obtained from the Cartesian product M xI
by the identification of the set M x 0 to a point w will be called a bounded
cone over M and denoted by Beone M. A point w will be called a cone
vertex, the image of the set M X1 in Bceone M will be denoted shortly by M.

By a geometrical n-cell K" we mean the unit solid sphere of the
Euclidean »-space E" with the topology induced by the Euclidean norm,
ie. K"={pe®E" |p|<1}. If [pj< 1, we call p an dinterior point of K™
and write p e IntK". It [p| =1, p is a boundary point and we write
p «BAK". The set BAEK" is a geometrical (n—1)-sphere.

A subset Q" of a topological space X is called an n-cell if there exists
a homeomorphism % of K™ onto Q". The image h(IntK" is called the
interior of Q" and denoted by IntQ™ In an analogous way we define the
boundary BAQ" of Q" .

It is known that the interior and the boundary of an m-cell do not
depend on the choice of the homeomorphism A.

A 2-cell will be called a disk.

Recall two useful facts:
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31. If M=Q" is an n-cell, then Beone M is an (n+1)-cell and
Int Beone M = (Beone Int M)\(M v {w}),BdBcone M = {(BeoneBd M) v
v M.
3.2. If i =BdQ", then Beone M is am n-cell with the boundary
equal to M.

§ 4. Maximal prolongation, o-cones. Throughout this paragraph we
suppose <X, o> to be a compact SC-WR-space. Take a eclosed non-void
subset 4 C X and a segment pg C X. We say that pr is a prolongation
in A (through the point gq) of the segment pq if pr Dpg and re 4. In
particular, if 4 = X, then such a segment is called shortly a prolongation
(through the point ¢) of pg.

A prolongation 7 of pg in 4 is calléd a maximal prolongation in A
and segment p7 is called a mawimal segment in A if for every 7" ¢ A the
betweenness prr’ implies r = r'.

41. If peX, ge A, and p 5= q, then there exists a unique maxrimal
prolongation of pg in A.

Proof. Set Z = {z e .4: pgz} contains point ¢ and by 2.5 is closed
in the compact set 4. Take r e Z sueh that o(p,r)= sugg(p,z). It is

ZE
easy to check that pr is a unique maximal prolongation of pq in 4.

The union of all segments joining a set 4 with a point » € X is called,
following (1) § 5 in [4], a p-cone over A with the vertex v and denoted
by Co{4,v). The set of all points @ of Cy(4, v) for which vaz’ and 2’ ¢ 4
implies 2 = &' is called a base of p-cone C,(4, v) and denoted by By(4, v):

1.2, A CB implies C,(A,v)C CyB, v).

4.3. Cy(4,v) is closed for A closed.

The proof depends on 2.5.

4.4, e B4, v) iff v& is maximal in A.

1.5. For every & e Co( 4, v), x = v there exists a unigue point b e B,(A, v)
such that vxb. )

Proof. The existence is obvious, the uniqueness follows from 4.4
and 4.1.

§ 5. g-homotopies. Let <X, o> Dbe a compact SO-space, veX,
0< k<1 and 0<t<1. According to 2.4 there exists for every z¢ X
exactly one point z ¢ X such that

@) efv,a)=(1—K)o(r,2) and (z,2) = ki-g(v,0).

Regarding v and % as fixed and putting z = H,{e, 1), we obtain
a mapping Hyp: X xI->X called p-homotopy.
Evidently,
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5.1. If ACX and = Of4,v), then the partial function Hy,/C x1
maps CxI into C.

5.2, Hyy 28 continuous.

The proof follows from 2.5.

5.3. If <X, o) is a compact SO-WR-space and ki—1 # 0, then
Hyil@, ty) is a homeomorphism of X into X.

Proof. By the compactness of X and 5.2 it suffices to show that
H,(@, 1) is a 1-1 mapping. Indeed, the equality Hox(®;, t)= Hu,u®s, )
= z implies vzz, and vz2,. From ki,—1 5= 0 and from formula (2) we have
o(v, %) = o(v, ). If now v=2, we have by (2) 2, =z, =7, for other-
wise z would be a ramification point, contrary to 2.7.

A compact SC-WR-space possesses a kind of homogeneity (comp. [3],
p. 49):

5.4. If <X, o) is a compact SC-WR-space, v, p,q e X, v # p, and vpg,

then there exists a homeomorphism h: X —X such that h(q) = p.

Proof. Take k=1, t, = o(p, q): o(v, ¢). By hypothesis, 1—%kt, # 0
and so, by 5.3, h(z)= Hyx(z, 1) i3 a homeomorphism from X into X.
By the definition of & we have vh(z)q and g(h(g), g) = o(p, g)- Hence,
by 2.4, h(g) = p.

There is also another kind of homogeneity:

5.5. If <X, @) is a compact SC-WR-space, ve X, and &> 0, then
there exists & homeomorphism k: X —X such that h(X) is contained in a metric
ball B(v, ¢) with the centre v and radius e.

Proof. Let m be a diameter of X, t;= 1, and let k = 1—e: (m¢);
then 1—%t, # 0. By 5.3, h{(#) = H,u(, t,) is & homeomorphism, h: X »X,
and for every x e X we have ¢(v, h(z)) = (L—Kty)-o(v, %) < e.

‘With the proper choice of k& we have a homotopy which moves every
point not more than for a given ¢ > 0:

56. If veX, ACX, 0= Cy4,v) and ¢> 0, then there exists a con-
tinuous function g: O xXI—C such that

1° g2, 0) == for every € C,
2° olg(z, ), @) <&  for every (z,1) e CxI,
3° vg(z, D)z for every (z,t) e OxI,

4° g(z,1) # o Jor every x # v,

Proof. Take k='s: (m-te¢), m being the diameter of a space X,
and consider ¢g= H,3/CxI. The proof follows from 5.1, 5.2 and for-
mula (2).

§ 6. Natural bounded homeomorphism. Suppose that (X, o> is a compach
SC-WR-space, v ¢ X, and 4 + {v} is a closed subset of X. If z ¢ C,(4, v),
x # v; then, according to 4.5, there exists a unique point y e By(4, )

e ®
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with vzy. Putting p.(z) =y, we define the mapping p.: Co(4, s)\{v} >
B4, v) (comp. § 6 in [4]).

Putting

(pc(m): 7’(“’)) for z e Gy(4, v)\{v},

w for z=mw,

(3) Hz) =
where r(®) = o(v, z): g(v, p()) and w = B4, v)x{0}, we obtain the
mapping H: Cu{4, v)>BeoneB,(4, v).

6.1. If B(A,v) is closed, then the mapping H, is a homeomorphism
of Cu{A,v) onto BeoneBy(A, v).

The proof that H, is 1-1 and continuous is on similar lines to that
of 6.2 in [4]. It remains to show that H, is a mapping onto. Take (¥, 1)
€ BeoneB,(4 , v)\{w}; this means that y e B4, v), 0 <i<1. By hypo-
thesis y # v, and for every z ey we have p.(2) = y. The function r is
continuous in vy, and #(v) = 0, r{y) = 1; hence there exists a point
2 ¢y such that 7(x) = {, & 55 v. Therefore, He(z) = (p«z), (@)} = (¥, ?).

The equality Cu(4, v) = Co(B{4, ), ) together with 3.1 and 6.1
implies that

6.2. If ByA,n)=Q" is a k-cell, then O 4,v)= 0@, v) =@ s
a (k+1)-cell and BAGQ = C,BAQ*, v) v QF, IntQ = C,(TntQ¥, v)\(Q* w {v}).

Similarly we infer from 3.2 and 6.1 that

6.3. If Bd,v)=BaQ*= 8", then Cyd,v)=0Q is a k-cell and
BdQ = &

Finally, from 5.6 in [4] and 6.1 we infer that

6.4. If {v, a, b} is mot linear, then D = Cylab,v) is a disk and BAD
= P4, v ab w bo.

§ 7. Labile points and n-cells in X, A point p of a metric space (X, ¢
is called homotopically labile in X whenever for every &> 0 there exists
a continuous mapping ¢g: X xI X fulfilling the following properties:

1° g(z,0) ==

2° oz, glz, 1)) < e

3 g(z, 1) #=p

The notion of a labile point was intreduced by Borsuk and Jawo-
rowski in [2], p. 160.

71. If <X, o) is & compact SC-space, A C X is closed, v,p ¢« X, v # p,
and ©p is mazimal in the o-cone O = Oy(4, v), then p is homotopically la-
bile in C.

Proof. Applying 5.6 to the g-cone €, we find a continuous function g
which satisfies 1° and 2°. Moreover, we have vg(z, 1)o for every = C.

for every we X,
for every (z,t) e X XI,
for every ze X .
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If for some # € ¢ we had g(#,1) = p, we would have vpw, whence by the
maximality of vp in ¢ it would follow that p = x, which contradicts
4° in 5.6.

Borsuk—-Jaworowski’s Corollary (see [2], p. 168): If X 45 an n-di-
mensional space and @ C X is an n-cell, then any point of the interior of
Q is mot homotopically labile in X.

7.2. If <X, is a compact SC-WR-space, QCX is a cell, dimX
= dim@ =n, veX, p eIntQ, and v # p, then there ewists @ point qe X
such that p # q and vpg.

Proof. Evidently, X = C,(X, v). Take a maximal prolongation 7.

of the segment vp. Such a prolongation does exist and is unique, see 4.1.
By 7.1 the point g is homotopically labile, and so we must have ¢ ¢ IntQ;
otherwise we get a contradiction of Borsuk-Jaworowski’s Corollary.
This shows the inequality p s gq.

7.8. If <X, 0) is a compact SC-WR-space, Q CX is a cell, AimX
= dim@Q =n, p eIntQ, and pqg ~BAQ = 0, then pq C IntQ.
Proof. Suppose that p # ¢q. Applying 7.2 o the segment gp, we
have a point » € X such that gpv and p == v. Now suppose, on the contrary,
" that pg\@ # 0. Since @ is compact, the set pg\@ is open in pg. Thus there
exists a segment p.q; C pq such that p, # ¢, pp.¢u, and g ~ Q = {p}.
Evidently, p, € IntQ. Take a maximal prolongation vm of the segment og;
hence p, ¢ gm. Since p, ¢ IntQ, p, ¢ gm, and gim ~ Q is closed in @, we can
choose an n-cell @, CQ such that p, e IntQ, and @, ~ gym = 0. Consider
the g-cone C; = Cy(9;, v). From v s p,, p, e IntQ;, vp,; m, the maximality
of vm in X, and P ~ Q= (pugy v §im) ~ @, = {p,} we infer that the
segment ¥p, is maximal in C; hence p, is homotopically labile in O,
contrary to p, eIntQ;, dim@, = dimC, == and to the Borsuk-Jawo-
rowski’s Corollary.
As has just been shown, in an z-dimensional space every segment
passing through an interior point of an m-cell @ C X is prolongable;

moreover, such a prolongation is- possible up to the boundary of @.
Namely, :

74 If (X, 0) is a compact SC-WR-space, QC X is a cell, diimX

= dim@, v ¢ X, p ¢ IntQ, then there exists a point ¢ such that wpg, pg CQ,
and pg~ BdQ = q.
. Proof. Denote by vm the maximal prolongation in ¢ of the segment
vp and observe that pm ~ BdQ + 0. Indeed, according to 7.3 and the
m;yximalﬂz_ of v in @, we infer that m e BdQ. It is easy to see that the
point g e pm ~ BdQ nearest to p satisfies our assertion.

'Applying 7.3 we can show that the interior of an #-cell @ is an open
set in an #-dimensional SC-WR-space X containing §. More exactly,
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7.5. If <X, 0> is a compact SC-WR-space, Q CX is o cell, dimX
= dim@, and p < IntQ, then for every ¢ >0

(4) &< g(p, BdQ) B(p, ) CIntQ .

By 4.4. and 7.4 we have

7.6. If (X, 0) is a compacti SC-WR-space, Q CX is a cell, dimX
= dimQ, and v € IntQ, then By(X , v) C I\IntQ. Consequently, (v, B(X , v)}
> o(v, Bd@) > 0.

We are going to prove that

7.7.Under the assumptions of 7.6, the base B,(X, v) is closed.

Proof. Supposing the contrary, we would have a sequence of points
{ps} such that p; e B(X, v) fori =1, 2, ..., limps = p,, and p, ¢ Be(X, v).
By 1.6, 0(v, po) = limg(v, p¢) > 0 and hence v # p,. Denote by p a point
of the hase B,(X, v) such that vp,p holds; then » = p, # p. Applying 5.4,
we would find a homeomorphism k: X -X such that h(v) = p,. Thus p,
would become an interior point of the cell @, = 2(Q). By limp; = p, and
by 7.5 we would have p; e Int@, for ¢ sufficiently large. This contradicts
the maximality of the segment vp; and 7.2.

§ 8. Star-like cells, reduction of the main theorem. Let @ be a cell con-
tained in a compact SC-WR-space, and let » e IntQ). We say that @ is
star-like with respect to v if every segment passing through » meets
a boundary of @ in at most one point, i.e. if vpgand p, ¢ e BAQ imply p = ¢.

A cell which is star-like with respeect to each of its interior points
will be shortly called star-like.

8.1. If (X, o) is an SC-WR-space, and @ CX is a convex cell, then
Q s star-like. '

Proof. Take an arbitrary point » e IntQ and let vpg, p, g ¢ BdQ.
‘We must show that p = g. A space <@, ¢)> is a compact SC-WR-space.
Suppose that p s g. Applying 5.4, we find a homeomorphism h: @ ¢
such that & (v) = p, and so p becomes an interior point of the cell @, = A{Q),
dim@, = dim@, whence p € IntQ.

A very important property of a star-like cell is contained in the
following proposition: ’

8.2. If <X, 0> is a compact SC-WR-space, QC X is a cell, dimX
= dimQ, and Q is star-like with respect to a point v e IntQ, then B(X, )
is homeomorphic to Bd Q. .

Proof. Take an arbitrary point @ e By (X,v). According to 7.6
and 7.3, 2% ~ BdQ # 0. If p and ¢ were two points of vz ~ BdQ, we
would have vpg or vgp. In both cases p = ¢. Putting k(2) = y = vz ~ B0,
we define a mapping h: B,(X, v)>BdQ. BEvidently, b is a 1-1 mapping
and from 4.5 we deduce that h transforms B,(X, v) onto Bd@. The con-

implies
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tinuity of % follows from 2.5 and from the fact that BA@ is compact.
TFinally, by 7.7, B(X,v) is compact, which guarantees that h is-a homeo-
morphism.

Joining 8.2 and 6.3, we get

8.3. If <X, o) is a compact SC-WR-space, diim X = n, and X contains
an w-cell Q which is star-like with respect to a point v e IntQ, then X is
am n-cell.

This resnlt reduces a proof of the main theorem to a construction
of an n-eell which is star-like with respect to some point.

§ 9. Geometry of a convex cell. Let <X, o> be a compact SC-WR - space
of finite dimension and let Q C X Dbe a cell such that dim@ = dim X,

We shall show that:

9.1. The following four properties of Q are equivalent:

1° Q is convex,

2° @ is star-like,

3° @ is strictly convez, i.e., if a segment pq has at least three points
in common with BAQ, then pg ~ IntQ = 0,

4° IntQ is conwen.

The equivalence is a consequence of four implications, some of which
will be proved without the assumption that X is a WR-space.

The first implication, 1°->2° is contained in 8.1.

The second implication is given in the following proposition:

9.2. If <X, o> is a metric space, then 2°—>3°,

The proof follows from the observation that under agsumption 2°,
if #eInt@ ~7pg, then « follows or precedes two points of BdQ.

9.3. If <X, 0> is a compact SC-WR-space, dimX = dim@, then
3°—»4°,

) In fa:ct;, applying 7.3, we find that every segment through an interior
point which does not meet the boundary lies in Int). On the other hand,
by 7.4, every segment joining two interior points is prolongable up to
the boundary of Q.

The last implication, 4° ->1° follows from the more generalobservation:

9.4. If {X s @ 18 a compact SC-space and A C X is convex, then the
closure of A in X is also convex.

The proof follows immediately from 3.4 in [4] or from 2.5.

In the Euclidean n-cube I" every metric closed ball B(p, ), where p
IntI” and r < g(p, BAI™), is an n-cell and every metric sphere S(p,r) is
an (n-—1)-sphere.

Now we show that an SC-WR-cell has the same property.
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9.5. If €Q, 0> is an mn-cell with an SC-WR-metric, p ¢ IntQ and
r< o(p,BAQ), then B(p,r)= {x: o(p,x) <1} is an n-cell and 8(p,7)
= {z: o(p, x) =1} is an (n—1)-sphere.

Proof. Evidently, @ = Cy{@, p). By 7.4 every maximal prolongation
of a segment pq ends in BdQ. Conversely, if g ¢ BAQ, then by property 2°
from 9.1 every segment pg is maximal. Consequently, by 4.4, B¢, p)
= BdQ. Now if we assign to every x « BdQ a point h{z) = pz ~ S(p, 1),
we get a homeomorphism of BdQ to S(p,r) (compare 8.2). On the other
hand, B(p,r)= C8(p,r},p) and, evidently, the (n—1)-sphere S(p,?)
is a base of such a p-cone. Applying 6.3, we find that B(p,r) is an iz—e-ell.

In a similar way it can be proved that every metric closed ball B(p,r)
is an n-cell if p ¢ IntQ. However, we do not know whether this is also
true if p e BAQ.

All metric spheres are star-like with respect to the centre but, in
general, we cannot expect them to be convex. Joining 8.3 with 9.5 we
find that '

9.6. An SC-WR compact metric space <X, o> of finite dimension is
a celb iff there exists a metric closed ball B(p, r) which is a cell and for
which p is an interior poini.

§ 10. CT-condition. An SC-space (X, g) has a convex-triangle property
(and then p is called an SC-CT-metric and X is called an SC-CT-space}
if the following condition holds:

(CT) for every triple v, p, g € X, Co(pq, v) i8 conves.

In an SC-CT-space the operation of taking a g-cone over a segment
is “associative”. We have :

10.1. If <X, 0> is a compact SC-space, p,q,v <X, and one of the
o-cones Co(PT, ), CfTD,q), Culq@,p) is cowves, then all ihree go-cones
are equal. .

Evidently, the CT-condition becomes trivial for a linear triple
{p, g, v}. Otherwise, by 6.4, we infer that

10.2. If (X, p) is a compact SC-WR-CT -space and a triple p, g, v ¢ X
is not linear, then Cypq,v) is an SC-WR-disk.

Condition (CT) states the convexity of a ¢-cone over a segment only.
However, it implies also the convexity of a g-cone over an arbitrary
convex set: ‘

10.3. If <X, o> is an SC-CT-space, ve X, and A C X is convew, then
Co(4, v) is conves.

Proof. Take p, g e C,(4, ) and let p’, ¢ be points of A such that
vpp’ and vgg’. By the convexity of A we have p'g’ C 4. By (CT), ¢-cone
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Co(p'T, v) is convex, and so it contains the segment 5. According to 4.2,
CoP'q’5 0) € Col 4, 0) -

§ 11. Equivalent forms of the CT-condition. Throughout § 11 we assume
that (X, ¢)> is a compact SC-WR-space.

A triple {p,q, v} determines three ¢-cones and (CT) ensures the
convexity of each. By 10.1 the convexity of one of those ¢-cones implies
the identity of all three.

Consider now a kind of the Pasch axiom

(P) for every siz points v,p,q,v, 0,4, if pv'q, ¢p'v, vq'p, then there
exists a point z such that vev' and p'zq’.

In an SC-space, let us call a triangle with the vertices p, g, v the
union of three sides pg, gv and vg. Then

11.1. In an SC-space (P) is equivalent to the condition that each segment
joiming two sides of the triangle meets each segment.joining the verter common
to the two sides with a point of the opposite side.

In [8] there is the following axiom:

for every five poinis v, p, q,p’, ¢, if vp'q and vq'p, then there ewists
a point z such that pzp' and gqzq'.
11.2. In an SC-space axiom (Wh) is equivalent to the condition that
two segments joining two wvertices of a triangle with points on the opposite
sides meet.

Let us introduce the following condition, needed only in this and
the next paragraph:

) for every triple {p, q, v} and every » « O,(pq,v) we have px C Oy(pg, v).

Condition (5) appears to be antisymmetric, but it suffices to observe
that for every xe Cy(Bg,v) we have 2w C Uy(pg, v). On the other hand,
from C,(pg, v) = Cy(qp, v) and (5) we infer that gw C Cy(pq, v).

Now we will show that in an SC-WR-space the four conditions just
introduced are equivalent.

Note first that

11.3. If a triple {p, g, v} is linear in an SC-space, then (CT), (P), (Wh)
and (3) are equivalent.

Suppose now that a triple {p, q, v} is not linear. According to 6.4,
th-ree o-eones Co= Cy(pq, v), Cp = Cyo(q0, p) and O, = C,(vp, q) are disks
with the common boundary equal to B =vp v pg v go. Under this as-
sumption

11.4. (CT) implies (P).

Proof. A convex digk C, is strictly convex in the sense of 3° in § 9.
Take v’ P’y ¢ as in (P) and consider the set 45’ ~ B. If this set has more

e ©®
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than two points, then v0’ C B and the segments 2’ and p’¢’ have p’ or ¢’
in common. If vo’ n B = {v, v}, then the segment 7%’ separates the disk C,
between every point ¢ evp (¢° #v) and every point p’eng (p" # v);
hence the are p’qg’ C , meets o', Since O, = Cp = C,, the proof runs
analogously for every permutation of the triple {p, q,v} and the corre-
sponding permutation of {p’, ¢, v'}.

11.5. (P) implies (Wh).

In fact, axiom (Wh) in the triangle C, is a special case of condition (P)
in the g-cones Cp and (.

11.6. (Wh) implies (5).

Proof. Take a point 2 € C,. By the definition of a p-cone there
exists a point #’ such that 2" « pg and »ax’, and so we have (, = C,(pz’, v)
C (,. Now we shall show that the segment pz is contained in C,. If the
triple {v, p, '} is linear, the implication is trivial. Otherwise C; is a disk
with the boundary B’ = vp v px’ w z'w. Take an arbitrary point e pa’.
Segments pz and vt join the vertices p and v with the points of the opposite
sides in the triangle with the vertices v,p,s and therefore, by (Wh),
there exists a point 2(t) such that 2(?) epz ot. Bvidently, 2(t) € Cy,
2(p) = p and 2(z’) = @ Moreover, by applying 2.5, we check the continuity
of the function z. The continuous image of pa* in p_m contains the points p
and @. Hence 7@ — #(px’), which proves pwC C,C (. The proof for
a segment gz follows symmetrically.

11.7. (B) implies (CT).

Proof. Take two points a,be Gy, find o/, b’ in pg such that vaa',
vbb’” and put ¢, = C,(a’d’, v). Evidently, C; C, and a’, b C Cj; hence by (5)
we have a'b C (. Put 0, = C,(ba’, v). We have C,C C, and applying (5)
to C, we have ba C Cy:

By implications 11.3-11.7

11.8. In a compact SC-WR-space <X, o) the properties (CT),
(Wh) and (5) are equivalent.

®)

§ 12. Two-dimensional spaces. The following proposition shows that in
two-dimensional spaces the Pasch axiom is a consequence of SC-WR,
compare [3] p. 52.

12.1. If (X, o) is a compact SC-WR-space and dimX = 2, then X
s a CT-space.

Proof. In view of 11.8 it suffices to show that X possesses
property (5). The implieation is trivial if the triple {p,¢, v} is linear,

‘so we may suppose that €= C,(pg,») is a disk with the boundary

=7p v pgu go. Take an arbitrary point z IntC. Applying 7.4 to
the segment px and to the disk C, we get a point r such that par and
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7 ~ B = {r}. Evidently, the point # must belong to og and v = 7 # q.
We shall prove that pa ~ B = {p}. For if this were no-t.t:f"ue, we should
have a point z « B such that pze and p # 2. By the transitivity of between-
ness we should have also per and zar, and so the point z could not belong
to 7g. If » e pv, then from per, p2v and p # 2 we would have prv or por.
In both cases pr C B, which contradicts e pr and @ ¢ Int €. In a similar
way, if 2epg, then pzg, pr and p # # should imply pgr or prq and we
should get the same contradiction. We have thus proved that, _for every
point z e pz distinct from p, %~ B =0, whence, }?y 7.3, zz C Int (.
Taking a sequence {z,} such that z e P&, 2n 7 p and limz, = p, we .have
" %2, C Int 0; therefore pz C C. To complete the proof of the proposwi?n,
suppose that # « B and take a sequence {w,} of interior points converging
to «. For every n we have pa, C 0, and so, by 2.5, paC C.

§ 13. Product of convex spaces. Let <X, o), <¥, 0,y be metric spaces
and o> 0. Let p, and p, be arbitrary points of the Cartesian product

XXY, ie py= (@1, 41, Po= (@5 Ya), @y, %y e X and Yo, Yo € Y. We put

(6) 0alps, Do) = [i(ms, @)+ e, %)) -

14 is known that (XX ¥, ooy is a metric space and the following
implication holds (see [3], P. 42):

13.1. If py = (@1, 92), D = (%, 9), Do = (@, 9o) are points of (XX Y, ga),
then p,ppy holds iff #,2%,, y1Yys and

(7) either 0%, ¥) = @Y1, %) =0 o (@, 1) @y, ) = @ul®, B2):

oo, ¥2) = k.

From the definition of a centre and 13.1 we infer by a direct calcu-
lation that

13.2. A point p = (,y) is a centre of a pair p, = (15 Y1) P2 = (Bgy Ya}
in (X XY, oy iff % is a centre of the pair oy, &y in <X, o) and y 18 a centre
of the pair yi, Yo i (X, 023

From 2.3, 2.4, 2.7, and 13.2 we easily infer (comp. [3], p. 43) that:

13.3. If complete metric spaces <X, 0,5, <Y, g;> are respectively convez,
SC or WR, then the product (X XY, o) is respectively convexz, SC or
WR.

It is easy to find a disk D with an SC-WR-metric g, such that
D = Cgab, ¢) and such that if a’, ', ¢ are the centres of bc, ac, ab,
respectively, then a point z common to the segments a'b’ and ¢¢’ is not
the centre of a’b’. Evidently, the disk (D, g,> possesses the CT-property.
Also the k-cube I* with an ordinary FEuclidean metric possesses the
CT-property. Now we will show that CT-property is not productive even
in the restricted case of the class of cells. More exactly,
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13.4. For every k> 1 the a-product of <D, g> by I¥is a (k4 2)-cell
with an SC-WR-meti:ic and non-convex triangles.

Proof. By 13.3, <@, o> = <D XIk, 0.> i1s an SC-WR-space. Put
A=1(a,0,..,0), - B=(h,1,0,..,0), C={(¢,3,0,..,0),
A'={(a',%,0,..,0), B=(,},0,..,0), ¢'=(¢,4,0,..,0).

2

By 13.2 A’, B’, (' are the centres of the segments BC,4AC, AB respectively.
Suppose now that there exists a point Z such that Z € @, i.e. Z = (2, 1, ..., &),
where z e D, te I, CZ(' and B'ZA’. Applying 13.2 once again, we infer
from CZC' that cze’ and §, =13, t,=..=1f=0. By A'ZB and t,=%
we see that the point z must be the centre of the segment a'b’; therefore
we get a contradiction of the property of the disk .D that no point #z com-
mon to the segments a’d’ and c¢’ is the centre of a'd’.

§ 14. o-cones over convex cells. Some preliminary steps are needed in
the inductive construction of a convex n-cell.

14.1. If <X, o) s a compact SC-WR-space, @ C X is a convew cell,
v¢Q, peInt@Q, and 7p ~BAQ =0, then peBo(Q,v) and op N Q = p.

Proof. In order to prove p e B(@,v) it suffices, by 4.4, to show
that vp is maximal in Q. If it were not, a point s would exist such that
s # p, s €@ and vps. Applying 7.4 to the compact SC-WR-space <@, ¢)
and to the segment 5p, we could prolonge 5p up to the boundary of @;
hence, we would find a point ¢ e BAQ. such that spg. From spg, spo, s # p,
we would have pgv or pvg. In the first case we get a contradiction of
7p ~ BdQ = 0, in the second of v ¢ Q. Now, if there were another point
p’ evp ~ @, then from p’ ¢ IntQ, p’ ~ BdQ = 0 and from the preceding
part of the proof applied to p’ it would follow that p’e By(@, v), which
contradicts the maximality of »p’ in @ and vp'p.

The above result can be strenghtened in a OT-space. Namely,

14.2. If <X, o) 18 a compact SO-WR-CT-space, QC X is a convex
T-cell, k=2, v¢Q, pelntQ, and v7p ~BAQ =0, then By(Q,v) =@

Proof. Since the boundary of the &-cell @ is closed in X and p e Int@,
we can find a cell @, C IntQ such that p €@,, dim@, =k, and for every
g €@, we have og ~ BdQ = 0. The existence of @, is ensured by 2.5 and
by the elementary properties of cells. By 14.1 for every ¢ €@, we have
%g ~ Q = q. Let a be an arbitrary point of @, let o7 be a maximal prolon-
gation of va in @ and suppose that a 7 7. Let as be a maximal prolon-
gation of @ in . According to 7.4 we have s ¢ BdQ. Take g € Q\as
(because of dim@, > 1 such a point g exists). By the convexity of @,
q,7 €@, v ¢Q, the maximality of 5g in @ and by vg ~ Q@ = ¢ We infer that
the triple {v, g, 7} is not linear. By 6.4, D = Cy(gr, ) is a disk with
the boundary B = or u 7q v go. We have a, gD and, by the CT-con-
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dition, @g C D. It can be verified that ag ~ B = {a, ¢}. A simple proot
of this equality can be deduced from the strict convexity of D (see 9.1),
because neither v nor » belong to ag. So, every « belonging to ag, @ # & + q,
is an interior point of a convex disk D, and by 7.4 a segment vz is prolong-
able to a point on g7, in consequence vz is not maximal in @. On the other
hand, by an argument analogous to the beginning of the present proof,
we can find a point @ eag, o # # % ¢, such that 92 ~ BdQ = 0, which
contradicts 14.1. We have thus shown that a # r, which means that pa.is
maximal in @ and, by 4.4, a € By(Q, v).

§ 15. Construction of a convex n-cell. For condition (C) below see
formula (4) in § 7.

15.1. Let <X, o> be a compact SC-WR-CT-space, dimX =n, n > 1.
Then there exists a convex cell Q C X satisfying the following condition:

(C) if pelntQ, 0 <e< o(p,BdQ), then B(p,e)CQ.

Proof. Take two arbitrary points a,b ¢ X, a = b and put Q, = ab.
If @, does not satisfy (C), we find a point p e IntQ,, 0 < ¢ < o(p, BdQ,),
and a point @ € B(p, e)\@;. Then the triple {a,b, v} is evidently not
linear and, by 6.4 and by CT-condition, we infer that @, = OQ(E , D) 18
a convex disk. Suppose that @, C X is a convex cell of maximal di-
mension m. Evidently, we have 2 < m < n. If @, satisties (C), we take
Q = Qm and the proof is finished; otherwise, we find a point p ¢ IntQp,
0 <e< o(p,BdQn), and a point v e B(p, e \@n. We can see that op n
~BdQn=0, whence, by 14.2, ByQm,v)=@m. By 6.2, the p-cone
Qmi1= C(@m, v) is an (m—+1)-cell, by 10.3 the cell Qny is convex and
this contradicts the maximality of m. .

In 7.5 it has been shown that every nm-cell has property (C). We
have to show that the converse is also true, namely the homogeneity
of the space X stated in 5.5 implies that

15.2. If <X, 0> 48 a compact SC-WR-space and a cell Q,QC X,
satisfies (C), then dim X = dimgQ.

Joining 15.1 with 15.2, we get

15.3. 4 compact SC-WR-CT-space <X, o> of finite dimension n con-
tains @ convex n-cell.
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