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Chains of simple closed curves
and a dogbone space

by
E. H. Anderson (State College, Miss.)

1. Introduction. R. H. Bing in [4] presented an example of an upper
semicontinuous decomposition of E® into points and tame ares, Bing’s
dogbone space, that is not topologically E°. In [2], a second dogbone
space, resulting from a simpler construction than that of Bing’s dogbone
space, was shown to be topologically different from & but the proof
could not be easily modified to apply to a third dogbone space, also
presented in [2], resulting from an apparently minor change in the con-
struction. In this paper, we prove some theorems about linking simple
closed curves and use them to show that this third dogbone space is not
topologically E°.

It will be assumed where necessary or convenient that all embedded
complexes are triangulated and polyhedral and any two are in relative
general position and all homeomorphisms are piecewise linear.

The standard definitions and basic results employed will be those
of Hocking and Young [6].

After Casler [5], if ¥ is a positive integer, Na will denote a sequence
of positive integers J(1),...,J(N), and if » is a positive integer, the
sequence J(1),...,J(N), r will be denoted by Na,r. If N =0, Na=0
and Na,r=r.

2. Chains of simple closed curves. The concept of linking of simple closed
curves will be that of [3], namely, two simple closed curves X; and X,
link if and only if there is a two complex ¥, with boundary X, and X,
intersects ¥, an odd number of times.

A simple chain Z is a collection Ly, ..., Ly, N > 3, of simple closed
curves which ean be numbered so that I, links only L, Ly links only Ly
and if ¢ # 1, N, I; links only Z;_, and L. A closed chain [ is & collection
Ly, ..,Ly, N >3, of simple closed curves which can be numbered so
that each I; links only L;_; and.L;., where subscripts are taken modulo N.
A simple closed curve in a chain is called a link.
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The following is well-known:

TusorEM 1. Suppose I° is a topological cube in F? and f is a homeo-
morphism of & into B°. Then each component of I’ ~f(S*) separates I
into exactly two components. .

We paraphrase Theorem 3 of [4] by Bing:

TaEoREM 2. Suppose L, and L, are two linking simple closed curves
in the interior of a topological cube I® in B® and f is o homeomorphism of 8
in EP. Then, for each component M of I* ~ f(8%), there is a component of
IP—M that intersects both L, and L,.

‘We prove:

THEOREM 3. Suppose [ is a simple chain in the interior of a topological
cube I® in B°, f is a homeomorphism of S° into B°, and some component
M of IP ~ f(8%) separates two links of L. Then some link of [ intersects M.

Proof. Suppose M, a component of I® ~ f(S%) separates links I,
and L;;; of . Denote the two components of I°—~M by A and B with
L;C A and L;;CB. Let T be the least integer such that ¢ < 7' < i+j
and Lrn B #@. Then Lgp_,CA. By Theorem 2, Lr ~ A # @. Thus,
Ly interseets M and the proof of Theorem 3 is completed.

Since a closed chain ¢ = {L,, ..., Ly} may be expressed for each
integer J as the sum of two simple chains {L,, ..., L;} and {Ly, ..., Ly, L},
we apply Theorem 3 twice and obtain:

THEOREM 4. Suppose { is a closed chain in the interior of a topological
cube I* in BP, f is a homeomorphism of % into B® and some component M
of I® ~ f(8°) separates two links of . Then two links of ¢ intersect M.

The proof of the following is inspired by Theorem 5 of [4] by Bing:

THEOREM 3. Suppose L is a closed chain in the interior of a topological
cube I' in B°, f is a homeomorphism of S in EP, {U3, 1<t < T, is the
set of components of I°—f(8°%), and Li . Then some U; intersects L; and
iwo other elements of L.

Proof. Let Z be a continuum such that

(a) Z is composed of closures of elements of {U3,1<t< T
(b) Z intersects Iy and two other elements of I
(¢} no proper subcontinuum of Z satisfies (a) and (b).

We show Z containg exactly one element of {U},1<t< T. For,
suppose Z contains two elements of {U},1 <t < 7. Then, Z is the sum
of two proper subcontinua Z, and Zs, both composed of closures of ele-
ments of {Us},1 <t T, and Z, ~ Z,— M for some component M of
I* ~ f(8?). Suppose Z intersects Ly, Ly and Ly. We show a contradiction
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when we show that the assumption that M does not separate any pair
of L, Ln and Ln violates (c) and the assumption that M separates some
pair of Ly, Ln and Ly violates (c).

" Suppose M does not separate any pair of I;, L, and Ly,. Then, each
of Li, In and Ln intersects M or some one of L;, L, and L, does not
intersect M. If each of L;, L, and Ly intersects M, then each of Ly Ly
and Ln, intersects both Z; and Z,, a violation of (c). If some one of Liy L
and Lm, say Ly, does not intersect M, then I; intersects exactly one of
Z, and Z,, say Z;. Then, each of L, and L. must intersect Z, since, if,
say Lo intersects Z, only, L, would not intersect M and M would separate
L; and L. Thus, each of L;, L, and Ln would intersect Z,, a violation
of (c). Thus, the assumption that M does not separate any pair of L;, Ly
and L, violates (c).

Suppose M separates some pair of L;, L, and Ly,. If M separates L;
and, say, Ln, by Theorem 4 two links L, and I, of { interseect M and
Li # Ly, Ly since Ly does not interseet M. Thus, L;, L, and I, intersect
one of Z, and Z,, a violation of (¢). If M separates L, and L, by Theo-
rem 4 two links L, and L, of { intersect M and one of them, say Ly, is
not L, then, L;, L, and one of L, and Ly would intersect one of Z; and Z,,
a violation of (e). Thus, the assumption that M separates some pair
of L;, L, and Ly violates (c).

Thus, the promised contradiction has been demonstrated and the
proof of Theorem 5 is complete.

Theorem 5 is the best result obtainable since for every integer N > 3,
it is possible to construet a closed chain { of N elements in the inferior
of a topological cube I° in E® and a homeomorphism f of §* into E* such
that every component of I* ~ f(8?) intersects at most three elements of .

A result needed later is:

THEOREM 6. Suppose £ is a closed chain in the interior of a topological
cube I® in B* and f is a homeomorphism of & into EP. Then either

(i) some component of I° ~ f(8%) separates two elements of £, or,

(ii) some component of I°—f(S?) intersects each element of .

Proof. We suppose (i) is false and show (ii) is true. If (i) is false,
then no component M of I® ~ f(8%) separates any two elements of { and,
hence, for any two elements of ¢, there is a component of I°—f(§®) inter-
secting both. Thus, we complete the proof of Theorem 6, by applying
the following theorem by Bing [4, Theorem 5]:

Suppose U is the interior of a topological. cube, ¥ is a collection of
bounded continua in U, and M is a compact 2-manifold with boundary
such that for each pair of elements of X, there is a component of U— M inter-
secting both of these elements. Then there is a component of U—M inter-
secting each element of Y.
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3. Topological Figure Eights and Property R. An arc [ is the image of
the unit interval I = [0, 1] under a homeomorphism which will also be
denoted by I. The end-points of an arel are [(0) and (1) and I may be
written 1(0)I(1). A p-odk is the union of p arcs{li} such that if ¢ = j,
1; ~ Iy = 4;(0) = };(0); the center of % is [,(0) and the set of end-points
of kis {Ii(1): i=1,..., p}

Suppose ! is an arc and A and B are sets. The integer N is an Inter-
section Number of I with respect to 4 and B if and only if there are N1
points vy, ...; oy in I such that 0 =9, < .. <wy=1 and for each K,
U[Vx, Vz+1]) intersects at most one of 4 and B.

A topological figure eight has Property B with respect to sets 4
and B if and only if for every two points p and ¢ in opposite loops there
is an are [ in it from p to ¢ and 2 is an Intersection Number of ! with
respect to 4 and B.

Fig. 1

For the remainder of this section, we adopt the notation of Figure 1.
As in Figure 1, let I° be a topological cube in B* and Ly, ..., L, a collection
of simple closed carves in Interior (I°) linked as shown. For each i — 1,..,4,
L; is the sum of two ares from a; to b; which intersect only at their end-
points; to distinguish these arcs, we arbitrarily designate one +-a;b; and
the other —a;by: ase; is an are with ¢; only on Boundary (I®). The ares ¢, ¢,
and ¢;e, are in the complement of Interior (I*) with end-points only on
Boundary (I%).

The main result of this section is

TMOREMM 7. Buppose f is a homeomorphism of 8% into E®, A and B are
closed disjoint subsets of f(S%), ' ~ f(§%) C A B, for each i =1, ..,4,

each ared- aib; intersects at most one of A and B, and F(&) (01(19 “ CaCy Y-
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v Nae) = 0. Then there is a topological figure eight @ in Interior
(I%) w 6,65\ €304 SUCh that ¢,¢, and cyo, are in opposite loops of @ and @ has
Property B with respect to A and B.

Proof. From Theorem 6 we have
(i) some component of I® ~ f(8%) separates two of Ly, .., L, or

(ii) some component of I®—f(8?) intersects each of Ly, .., L.

We begin the argument for (i) by supposing that some component M
of I* ~ f(8?) separates two of L, ..., L,. The component M cannot sepa-
rate Ly from Ly or L, nor L, from L, or L,. Thus, we assume that M sepa-
rates L, from L,. Then, by Theorem 5, some component U, of IP—f(8%
intersects Ly, Ly and L, and some component T, of I°— (&%) intersects L,,
L, and L,.

Select a point p, in U, and for i =1, 3, 4, construct an are pic by
construeting an arc in U; from p; to L;; then along I, to a; so as to inter-
sect at most one of 4 and B, and finally along a;e;. There results a 3-od Ty
in I* such that p, is the center of k,, the end-points of %, are ¢, €3 and ¢,
and each arc p; ¢, ¢ = 1, 3, 4 intersects at most one of 4 and B. Similarly,
select a point p, in U, and construct a 3-od k, with center p, and end-
points ¢, ¢; and ¢, such that each arc pye;, 1= 2, 3,4, in k, intersects
at most one of 4 and B. Let K=k vk, U ee, U ey,

A copy of K is shown in Figure 2a (see p. 136). We show how to construct
the desired figure eight @ by selecting, except for one case, ares pic; in K or
ares each of which are so close to some arc pie; that the selected arc inter-
sects 4 -or B only if p;c; intersects 4 or B. It is always true that
(6163 ™ €36,) m (A« B) =@. The cases where some p;¢; does not inter-
sect 4 v B may be neglected. Thus, we have gix arcs of the form pic;,
each of which intersects at most one of A and B, a total of 64 cases.
However, we may assume p,c, intersects only 4 and appeal to symmetry
in the cases where p,¢, intersects B. Further, if p,¢, intersects 4, the
problem is not simplified if we assume p,c, intersects B. Thus, we need
consider only the 16 cases listed in Figure 2b (see p. 136), where each
row is a case and the letter 4 or B in each column designates which of
the sets 4 or B each p;¢; intersects. The solutions, the desired figure eight
® with Property R, are shown in Figure 3 (see p. 137). Except for case 13,
the solutions are obtainable from ares in K or ares near K. To solve
case 13, we use a theorem by Bing [4, Theorem 6], paraphrased for our
purposes;

Suppose A and B are two mutually exclusive closed subset of a topological
cube I3 and cypy o, and cypyc, are homotopic arcs in I® such that esp, 0y N A
= 6Ps0, ~ B = @. Then, there is an arc | in I’ with end-poinis cg and ¢,
such that 1~ (4 B) = 0.
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o Pr R
Cp P2 Ca
&
P16 P16y Pals P26y
1 A 4 4 A
2 A A A B
3 A A B A
4 A A B B
5 A B A A
6 A B 4 B
7 A B B A
8 A B B B
9 B A A4 A
10 B A A B
11 B A B A
12 B A B B
13 B B A A
14 B B A B
15 B B B A
16 B B B B
b
Fig. 2

The arc I allows the solution of case 13 and the argument when
some component M of I’ ~ f(8%) separates I, and L, is complete. The
argument when some component of I* ~ f(S%) separates L, and L, follows
by symmefry, thus completing the argument for (i).

The argnment for (i) follows readily since it may be assumed that
the centers p, and p, of the 3-ods k; and %, of (i) are in the same component
of I—f(8"). Thus, the proof of Theorem 7 is complete,
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4. A dogbone space that is not topologically E°. To construet the dogbone
space of this paper, let A, be a solid double torus in E® as in Figure 4.
Embed a cube U, in the top of 4, and cubes D, and D, in the bhottom
of A,. Then, embed solid double tori 4, ..., 4,, linked as indicated,
in 4,; although each of 4,, ..., 4, is shown as a finite graph, it is topologic-
ally equivalent to 4,. For each i =1, ..., 4, Closure (4;— (T, v D, v D,)
is a topological cube and the intersection of Interior (4,) with any horizontal
plane is an open disk or the sum of two disjoint open disks.

For each i=1,...,4, cubes U, D;; and D;: and solid double
tori A1, ..., A;4 ave embedded in .4; such that there is a homeomorphism
of E® onto itself which is the identity on the compliment of some open
set containing 4, and takes 4, onto 4y, U, onto Uy and Dj onto Diy,
j =1, 2. Let this process be continued; succeeding steps of the construction
may be described inductively.

Let M= Ay~ 3 Ai D Aizn Y Aigp 0... Let G be the set whose
elements are components of M and one-point subsets of EP—M. Then,
@ is an upper semicontinuous decomposition of B® into tame arcs and
one-point sets. Let B°/@ denote the associated decomposition space, the
doghone space of this paper. We show:

TrEEOREM 8. EYG is mot topologically E°.
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Proof. To assist in the proof of Theorem 8, we state some definitiong
and prove some lemmas.

Let ¢ denote U; v D, v Dyu D Ai, i=1,..,4 Then, ¢ is a topo-
logical cube with handles. As in Figure 5, let I'y be a central curve of ¢
consisting of points u,, d; and d, and arcs dy, ..., ty, where the end-points
of a; are u, and d; if 4; intersects U; and D;. Similarly, for a fixed sequence
Na, Uner Dy © Dz v D Anaiy 4= 1, ..., 4, i & cube with handles
with central curve I'ya.

—
( Aw-ya e Iaa O\
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Tig. & Fig. 6

Also in Figure 5, let Py, ..., P, be disks in 4, such that for each i,
Pi ~ Boundary(4,) = Boundary (P;). We may regard P, v P, v Pyu P,
as the intersection of 4, with a homeomorphic image of S

The statement and proof of the following lemma is identical to that
of the proof of Lemma 1 for Theorem 5 of [2].

LEm 1. Buppose g is a continuous function of A, into A, which 1is
homotopic to the identity by a homotopy @ which is fized on Boundary(A,).
Then, for some i=1, .., 4, g(a;) intersects both P, v P, and Py P,

We. prove:

Bl@m 2. Suppose N ?S a positive integer and F is a homeomorphism
of Boundary(de) v YPy, i=1,..,4, into A, which satisfies
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(i) F is the identity on Boundary(4,),

(ii) each ayai 0 each I'ye intersects at most one on F (P Ps) and
F (Ps w P,).

Then there is o homeomorphism h of Boundary (4,) v 3 Pi,i=1, ..., 4,
into A, which satisfies

(i) b is the identity on Boundary (4,),

(i) each av-1as in each Tiv-1a intersects at most one of h{P,w Py)
and h(Ps v Py).

Proof. Suppose N is a positive integer and F is a homeomorphism
which satisfy the hypotheses of the lemma. Let (N —1)a be a fixed
sequence. The solid double torus 4(y_i. is shown in Figuare 6. For clarity,
only the details of Aw-ne1 and I'y_1.; are shown and possible inter-
sections of F(P, u Py u Py v Py) With ap—1a,:, ¢ =1, ..., 4, are indicated.
Tt may be assumed that F(P; v Py v P, v P,) does not interseet uy—1a,1,1
w Ay @ dy-nae Since F(Pyw Pyw Py Py could be adjusted in
a neighborhood of, say, Uw-ne11 without adding intersections to any
are aw-nesi- Thus, a cube ¥ may be constructed in Ap-_nes such
that ¥ contains #y-veiss; X N Iv—ne1 is @ 4-0d and ¥ does not inter-
sect B(P, w Pyu Pyu P,). Replace ¥ A Ty-ne by two 3-ods with
a single common end-point, expand ¥ by a homeomorphism k, of E®
onto E® which is the identity on the complement of Interior(A@-ne1)
and arrive at the situation of Figure 7 (see p.140).

If a cube Y’ similar to ¥ is constructed in Aw_iez, ¥ N Jv—nas
is replaced by two 3-ods and ¥’ is expanded by a bomeomorphism A,
of B onto E? which is the identity on the complement of Interior (4 w—ye.2),
there results four simple closed curves which link in Day—na; 28 shown
in Figure 8 (see p. 140). For i=1,2 each pair of simple closed curves
in Ay_1,; I8 connected by an are in A—1,; Which does not intersect
hyh F(P, v P, w P, u P,; for each i, let I; denote the closure of each
arcin the complement of Dyv—1y,. Bach simple closed curve in Dyw_1a,1
is the sum of two arcs each of which intersects at most one of hohyF'(P; w Py)
and hhF (P, w P,). We apply Theorem 7 to obtain a topological figure
eight @,, shown in Figure 9 (see p. 140), composed of a 4-0d k., and the
ares I, and I, such that I, and I, are in opposite loops of @, and @; has
Property R with respect to hyh,F(P;w Py) and ok F(Py v P,). By
2 homeomorphism %, of E® onto B® which is the identity on the comple-
ment of a small neighborhood W; of Dpy-na1, each component of
hehy (P, w P, u P, P,) may be pushed along the arc of k it inter-
sects to the complement of Dyy_nes 80 that N hhahF(Py v Py Py
v P,) =@ and &, has Property R with respect to hehohy F(P; v P,) and
Jghoh F(Pyw Py).
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The 4-0d k; is contained in Dy and has endpoints only on
Boundary (Dv-ne1). Let W, be a neighborhood of D11 con-
tained in Wy. The eutting and sewing process of [1] may he applied which
results in a homeomorphism &, of Py v P, w Py u P, into 4, such Dy yyaq
Ahy(Pyw Pyw Py v P)=0 and for each 4, h, is the identity on
Boundary (Ps), hA(Interior(Pi)) C Interior(4,), hy(Py)—W,C hohohy F(Py)
and @, has Property B with respect to h(P;, v P,) and hy(Py o P,). An
important point is that for each sequence (N—1)8,j = (N —1)a,1 or
(N—1)a, 2, hy(Ps), =1, ..., 4, intersects an arc Aw-vpie 0 Tin_np;
only if F(P;) intersects aw-ugje since hy(P;)—W,C hshohy, F(Py) and
Bshphy is the identity on the complement of Aw_ij1 v Aw. gae.
Bxtend %, to a homeomorphism. of Boundary(d,) v Y P, i=1,...,4
by defining %, as the identity on Boundary(4,).

Let h; be a homeomorphism of E° onto E® which is the identity on
the complement of Interior (Aw-ne1 v Aw-1e2 “ Dyy-1a1) and, as shown
in Figure 10, expands Interior (Duy-na1) 50 that hy(Interior (Dgy-iss))
containg (6w-ne1 v Uy¥-na2) — Uav-naa. The clogure of gD —Dy—_ya1)
is eomposed of two ares, hy(l;) and hy(l,). For each 4= 1,2, extend hyls)
to a point in the interior of the component of Up—_iei ~ hy(Div—1a1)
it intersects and from this point construet an arcin Ugy_pe; v hs( Dy -1a,1)
to I'w-ne » Boundary (Um.ne1). Thus, a finite graph ¥, composed of
two simple closed curves s, and s, joined by a connecting arc has been
constructed in Aw_1a1 v Aw-102 Y Day-1e,. The simple closed curves
sy and s, are linked and each links Apw_yos and Ap-nes in In-
terior (Uiv—1a,1). That part of ¥, in the complement of Upy_qy,:, which
is also that part of the connecting arc in the complement of Upy_,; is
{a@—ve1 Y G -1j0,2) — Uv—1a2. The connecting arc does not intersect
hshy(Py v Py Py o P,). Since hy(®P;) has Property R with respect to
hshy(Pyw Py} and hghy(Ps v P,), if p and ¢ are points in, respectively, s;
and s, there is an are pq in ¥, such that 2 is an Intersection Number of pg
Wwith respect t0 hshy(Py v Py) and hghy(Py v Py). (N —1)8,j # (N —1)e,1
or (N—1)a, 2, hyh,(P;) intersects an arc aw-ng,jc in av—yp,; only it F(Py)
intersects auv_np,je, Since h; is the identity on the complement of In-
terior (Ap—ne1 v Aw—1a2 v Dy-1s,1)- -

Thus far, the definition of homeomorphisms and construction has
been done relative to Aw_1a1, Aw-iaz 80d Dw-ne:. A similar de-
finition of homeomorphisms and construction is to be done relative o
Aw-1os, A@w-nas and Dgy_pes resulting, as shown in Figure 11, in
a homeomorphism b, of Boundary (4,) v >, Pi, i=1, ..., 4, into 4, which
is the identity on Boundary(4,), and a finite graph¥y in Aw-nes v
Y AN-104 Y Dy—1jos. In the complement of Aw—ias" AE—tes
Y Dy-1ja,2, for each i, he(Py) i contained in kshy(P:). Thus, for (N—1)8,§
#(N-1)a,n, n=1,..,4, each arc aw-nssc in each I'w_ys; inter-

’
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sects he(Pi) only if F(P;) intersects a(N-l)ﬁ',,-,‘c.. The finite gra,pl.l P, is
composed of two simple closed curves s, and s, joined by a connecting are.
The connecting arc does not inbersect he( Py Pyv I.’a v P,). If p and q
are points in, respectively, s, and s, there is an arc pgin Y, such that 2 is
an Intersection Number of pg with respect to he(P; v P,) and he(Py v P,).
All four simple cloged curvesin ¥, and ¥y, are linked in Interior (Upy_pa,).
The sum of ¥, and ¥, in the complement of Uw—_1y4,1, Which is also

( Awve  Umnar ) (- Awa ™

<~ r{N-1)a

o

(8

Q
\

Dyjay S \ _

Fig. 11 TFig. 12

25

\/

Ayt Uy-1)e,2

L - D{N"l}rx,'l

the sum of the connecting. ares in the complement of - Uw_ga,, is

T —re— Uiwv—na1-

Sinee the four simple closed curves in ¥, and ¥, are linked in
Uin-1e1; by Theorems 3 and 5 of [4], there is a component V of
Un-1ya1—he(P; © Py w Pyu P,) which intersects each simple closed
curve. In V, select a point p, and for ¢ = 1, ..., 4, construct an arc p,r; to
a point 7y in 8;. Then, for each ¥y, ij = 12, 34, there is an arce 747y in Py
such that 2 is an Intersection Number of 7;7; with respect to hg(Py v Ps)
and he(P; v P;) and we select a point 7y in 7;7; such that each of 77y
and ryry intersects at most one of he(Py v Py) and hy(P; « P,). The sum
of the ares +p,ry, ij = 12, 23, is a figure eight, @,. By a homeomorphism
h; of E® onto E® which is the identity on the complement of Uw—1y: ¥
w Y Aw-yan; n=1,.., 4, push each of 7, and 7y along the arc of
EPedN-1j0,m, m=1,2, they intersect to, respectively, duy_1aa and
dv-ne,1 and push the intersections of @, and he(P, v P, v P, u P,) along
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the arcs tpey intersect to the complement of Uy—ya1. Then, @, may be
regarded as the union of four ares +2,dw_yum, m — 1,2, and each
are intersects at most one of hoh(Py v Py) and B he( Py w P,). Since
&~ Un—ijep 8 & 4-0od k, with center p, and end-points only on
Boundary (Uwv—naz) and %y n khy(Py w P, U Pyu P,) = 0, we apply the
cutting and sewing process of [1] in a small neighborhood W, of Uz —1a1
and obtain a homeomorphism ks of Boundary(d,) 2P s i=1,..,4,
into 4, which is the identity on Boundary(4,), each arc +Padv_y5,
j=1,2, in @, intersects at most one of k(P w Py} and he( Py u P,
U—sja1 O hg(Boundaer(Ao) vPuP Py P) =@ and for i — 1,..,4,
ho(Pi)—Wo C hrho(Pi).  Since  Up_sjaz ~ he(Boundary (4,) w P, u Pu
v PyuPy) =0, we may replace k, by Iy-na ~ Up_pe1, as shown in
Figure 12. Thus, ks is a homeomorphism of Boundary(4,) v Y'P,,
i=1,..,4, into 4, which is the identity on Boundary(4,), each N ~1)a,7
in I'wy-1e intersects at most one of kg P, v P,) and hy(Py v Py), and for
i=1,..,4, h(Pi)—Aw-1. CF(Py).

To complete the proof of Lemma 2, we note that the construction
and definition of homeomorphisms leading to the definition of the homeo-
morphism hg has been done relative to Ap_i.. If a similar construction
and definifion of homeomorphisms were done for each Aw_ng, (N—1)8
# (N—1)e, the result would be a homeomorphism satisfying the con-
clusions of Lemma 2. Thus, the proof of Lemma 2 is completed.

We now prove Theorem 8 by showing that the assumption that
EY@ is topologically B® leads to a contradiction.

For, suppose B°/@ is topologically B®. Then, we have the following
two definitions of the shrinking number I of B*@ which were shown to
be equivalent in [2]:

Depmvrrion. Tf BP/@ is topologically EP, the shrinking number L
of BY@ is the least integer such that there is a homeomorphism g of E*
onto B* which satisfies :

(i) g is isotopic to the identity by an isotopy which is fixed on the
complement of Interior(4,), and

(ii} each g(azss) in each g(I',) intersects ab most one of P, u P,
and Pyu P,.

DzrNtion. If B%@ is topologically B, the shrinking number L of
B is the least integer such that there is a homeomorphism F of
Boundary (4,) v 3Py, i =1, ..., 4, into 4, which satisfies

(i) F' is the identity on Boundary(4,), and

(i) each az,, in each I, intersects at most one of F(P, u P,) and
F(P,u P.

By the first of the above definitions and Lemma 1, L is not zero
since there is no homeomorphism ¢ of E® onto #° which is isotopic to the
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identity by an isotopy which is fixed on the complement of Interior(4,)
and such that for each i = 1, ..., 4, g(a:) intersects at most one of P, v P,
and Py v P,. By the second of the above definitions and Lemma 2,
L cannot be greater than zero since if I is any integer greater than zero
and F is a homeomorphism satisfying the requirements of the second
of the above definitions, there is a homeomorphism A such that L—1
and h also satisfy the requirements of the second of the above definitions.
The contradiction that L is not zero nor greater than zero completes the
proof of Theorem 8.
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Some characterizations of paracompactness in k-spaces *

by
James R. Boone (Texas)

1. Introduction. Paracompact spaces and k-spaces both have the
distinetion of being simultaneous generalizations of metric and compact
spaces. The purpose of this paper is to present some of the interactions
between these seemingly unrelated notions. Throughout this paper the
underlying topological structures will be the k-spaces (e.g. first countable,
TFréchet, sequential, locally compact, %'-space, and %-space). Specifically,
for spaces within the class of k-spaces, those with the paracompact
property are characterized. For this purpose, four generalizations of
paracompactness are introduced. These generalizations are defined in
terms of refinements which have some finiteness condition on the elements
of a given collection of subsets. With the additional structure of the
k-spaces these refinements have the properties required for the charac-
terizations. These characterizations are given in § 3 and are summarized
in the implication diagram which appears in Figure 3.2.

The fundamental notions used in this study are developed in § 2.
Applications of these concepts to metrizability of spaces are given in § 4.
Some examples are presented in § 5. The term “space” will mean a Haus-
dorff topological space and the term “family” will mean a family of subsets.

2. Preliminaries. The fundamental notions involved in this work will
be developed in the general setting of F'-hereditary collections and weak
topology in the sense of Whitehead. A family % = {K.: a< 4} in a space
X is said to be an F-hereditary collection provided: (i) X is a covering
of X and (i) for each closed set J'C X, F ~ K, « X for each a < 4. Some
mapping properties of collections with property (ii) were investigated
by Renmow [11]. For all '~ hereditary collections of interest, the singletons
are in X, and (i) is satistied. For instance, the collection of all compact

* This paper represents part of the author’s dissertation which was written under
the guidance of Professor Hisahiro Tamano at Texas Christian University. The author
would like to acknowledge the National Aeronautics and Space Administration for
financial support during the research and the Society of Sigma Xi for assistance in the
Preparation of the dissertation.
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