Elementary arcs in 3-space
that can be realized by squeezing 3-cells
by
R. J. Daverman * (Knoxville, Tenn.)

1. Introduction. If C is a 3-cell in Euclidean 3-space E°, then it
follows from [7, Theorem 3] that there exists a map s of E® onto itself
squeezing O to an arc. This paper deals with the converse question asking
whether each are in F® can be realized by squeezing some 3-cell. The
main result here, Theorem 1, indicates that if 4 is such an arc which
is locally tame modulo one point and which satisfies a finiteness con-
dition at this point, then A lies in the boundary of a disk in E*. Con-
sequently, many almost tame arcs in E? cannot be realized by squeezing
3-cells. )

Let 4, denote the set {(z,¥,%) e B?| a* Ly <1} and 4, the set
{(x,0,0) e ds]—1 <& <1}. Define = as the projection of A; onbto A;
sending (z,v,2) to (2,0,0).

Tet ¢ be a 3-cell in the interior of 2 3-manifold M. A map s of M onto
itself is said to squeese C to an arc A if and only if there exist homeo-
morphisms %, of 4, onto ¢ and h, of 4, onto A = s(C) such that shy = bz
and s takes M — C homeomorphically onto M—s(C). In addition, we say
that an arc A in the interior of M can be realized by squeezing @ 3-cell if
and only if there exist a 3-cell ¢ in M and a map 8 squeezing C to A.

Although we could define similarly the concept of a map of B to
itself squeezing a disk onto an are, it would not enlarge the context of
the question at hand, because any disk in the interior of M can be thickened
0 a 8-cell that flattens back onto the same disk [7, Theorem 9]. Thus,
an are in the interior of M can be realized by squeezing a 3-cell if it can
be realized by squeezing a disk.

Tet 4 be an arc in B* locally tame modulo an interior point p. The
local enveloping genus of A at p, written LEG(4, p), is the smallest
non-negative integer r such that there exist arbitrarily small neighbor-
hoods of p, each of which is bounded by 2 sphere with r handles that
intersects A in precisely two points. If no such integer r exists, we write

* Research supported in part by NSF Grant (GP-8888.


GUEST


LEG(4,p)= co. In the special case that LEG(4, p) = 0, we say that
A is locally peripherally unknotted at p.

An arc A4 in E? is locally unknotled at a point p ¢ A if and only if there
exist a disk D in F* and a neighborhood N of p such that ¥~ 4 g
contained in the boundary of D.

L. V. Keldy¥ [13] has shown that for any locally unknotted are 4
in B® there exists a psendo-isotopy of E® translating a straight line segment
homeomorphically onto 4. The property considered in this paper is
almost as strong, for if 4 is an arc in E® that can be realized by Squeezing
a 3-cell, it follows from [16, Lemma 6] and [19] that there exists a pseudo-
isotopy of E® (not necessarily satisfying all the conditions of [13]) trans-
lating the 3-cell onto A.From this one can easily construct a pseudo-
lsotopy translating a straight line segment homeomorphically onto A.
Lioosely speaking, then, the results given in Section 5 represent converses,
in severely lmnted cases, to Keldy¥’ result.

If (s an n-cell, then Int ¢ and Bd ¢ denote the interior and boundary
of 0 respectlvely The symbol Cl denotes the topological closure operator.

"The atﬁaek on Theorem 1. involves three distinct procedures. First,
we show that any 3- cell which squeezes to an almost tame arc can be
aJtered 80 tha.t the 3- cell is locally tame modulo the preimage of the wild
point of the' are. Secondly, we show that the finiteness of the local en-
velopmg genus implies that this preimage contains at most one troublesome
pomt T]m‘dly, begmnmg Wlth a singular disk attached to the 3-cell, we
enact the map approx1mablons ‘and disk tradmgs typical of 3-space.topo-

logy to define a set Whobe image under the squeezmg map is the desired
disk.

2. Improvmg the 3-cell

Levma 1. Let € be'a 3=cell in B°, s a map of B onto itself squeezing O
to an arc that is locally tawe modulo its endpoints e, and e, and U an open
subset of E*: comimining C—s~Ye, ©v e). ‘Suppose g, is a - homeomorphism
of. Az onto & 3-cell C* in s~ (e1 w ey) v IntC such that for each. x e Ints(C)
there ewists ' ¢Iut A, salisfying g,n~'(2") = s™4@) A" Then there exists
a mgﬁp 8’ squeezing o omo 8(C) and satzsfymg 0 v (B*—T) =s|0' v

( — .

Proof Lt K be a 3-cell in s(U) obtained by thickening s(C); that is,
K is obtained so that there ex1sts a homeomorphls'm of (4y, 4;) onto
(X, s(O))

Since s~'|BAK is 1-1, sY(B4K) must ‘be a 2-sphere. App ying
1, Theorem 1] we find a homeomorphlsm @ of B® onto itself taking s~1(K)
onto K and satisfying @ls—Y(E*— K) = ss~ Y{E*—K). For simplicity we

suppress the homeomorphlqm G and assume that K = s— (K) and s|B*—K
= identity. I . . : 2o
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It follows from [9, 12] that BdC’ is loeally tame modulo {e1, es}.
(For applications of this section this argument can be avoided by hypo-
thesizing that BdC’ be locally tame modulo {e,, e,}.) Thus, it is easy to
construct a map f of E® onto itself such that .

1) f squeezes O’ to an are,

(2) f|B®*— K = identity,

(3) there exists a homeomorphism g of 4; onto f(C’) such that
g17= [s-

Note that the arc f(C) is locally tame modulo its endpoints e; and e,
[5, Theorem 1]. The crucial fact to be established is that the pair (K, f(C")
is homeomorphic to the standard pair (4;, 4,).

In this paragraph we prove that :ml(K —f (0’)) is infinite cyclic. Note
that 7, (K — 0) is infinite cyclic; therefore, a loop in K — C is null homo-
topic if and only if it is null homologous. First, let L be a loop in K—C
that is null homotopic in K— C'. It is a simple matter to show that L is
null homotopic in K-IntC, and it then follows from [4, Theorem 6.3]
that I is homologous in K —C to the sum of finitely many small loops
near Bd C. Since C is a cell, these small loops can be obtained to be homo-
logously trivial in K— C. As a consequence, L is both null homologous
and null homotopic in K— . Secondly, let L be a loop in K—('. Then
L can be deformed in K — O’ to a loop in K-Int , and afterwards it can
be pushed off BdC to a loop in K— C. These two properties imply that
m(KE—C") is isomorphic to m(K—C). But K—f(C") and K— ¢ are
homeomorphie, so g (K —f(C") is infinite cyelic.

Now we show that f(C’) can be straightened in K at its endpoints.
Let H be an embedding of K in the 3-sphere §° such that the closnre K*
of 88— H(K) is a 3-cell. Extend H(f(0’ )) to a simple closed curve J such
that J ~ K* is a tame, unknotted spanning arc of K*. Using an argument
like the one given in the preceding paragraph, we find that $—J haf
uniformly abelian local fundamental groups at the points J ~n BdK*
Hence, J is tame [14, Corollary to Theorem 1].

Finally, it follows from [17, Theorem 2] that J v BAK* is tame.
In particular, H(f(0")v Bd K) is tame. As a consequence, the’ pau‘
(K,f(C") is homeomorphic to (s, 4;), and, therefore, (%(,f (0) is
homeomorphic to (K, s(C)). It is now a simple matter to obtain a homeo-
morphism f' of E® onto itself such that

(4) f'[Es—If = identity,

(8) f/(f10) = s(C), . el

(6) f'fIC" = s|C". IEERRR IS
The required map s is defined as &' = fifuii . 1w mndy ons wieg
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Lemna 2. Let O be a 3-cellin B* and s o map of B® onto iiself squeezing ¢
to an arc s{C) that is locally tame modulo an interior point p. Then there
exisis a 3-cell O contained in O and there exisis a map t of B onto itself
squeezing €' onto s(C) such that BAC’ is locally tame modulo BA €' ~ ¢™(p),

Proof. Let h, denote the homeomorphism of A, onto € and hy the
homeomorphism of 4; onto s(C) such that Az = sh;. Define a homeo-
morphisin gs of 4; into hy(4; v Intds) © s~(p) such that ga(4;) containg
s7Yp) v hg(4;) and bz = sg,.

Since the disk s~*(p) is cellular [16, Lemma 6], there exists & map w
of E® onto itself whose only inverse set is s~1(p). The map sw—? transforms
each of the two maximal 3-cells in wgy(4;) onto a subare of s(C) having p
as an endpoint. Hence, it follows from two applications of Lemma 1 thas
there exists a map s’ squeezing the set wgy(4;) onto s(C). Define £ as s'w.
The 3-cell (' = gy(d,) is locally tame modulo gy(Bd4,) v s—(p) (see the
proof of Lemma 1). By hypothesis, however, B*—s(C) is 1—LC at each
endpoint of s(C), so both’ B*— C and F°— (¢’ are 1—LOC at the points
hy(Bd 4,) = gi(Bd 4,). Consequently, Theorem 6 of [3] implies that Bd ("
is locally tame modulo Bd ¢’ ~ t7'(p).

3. Isolating the bad point. Tt would be interesting to know whether
the hypothesis LEG(s(C),p) < co in the following lemma is truly
necessary. If not, the corresponding hypothesis about the local enveloping
genus could be eliminated from each of the results stated in Section 5.

Lienvmaa 3. Suppose C is a 3-cell in E®, s a map of E* onto tself squeezing ¢
to an arc, and p an interior point of s(C) such that BAC is locally tame
modulo the simple closed curve J =BdC ~sYp) and LEG(s(C), )
= n < oo. Then there exists a point b e J such that for each neighborhood U
of J there ewists an open set V' containing J —{b} such that every loop in
V—C is null homotopic in U— (. .

Proof. The argument parallels that of [6, Theorems 2 and 3]. Let W be
2 neighborhood of p. By hypothesis there exists a sphere with n handles H
such that H separates p from B*—W and H intersects §(0) in two points 2
and 2,. Thus, the set s—Y(H) intersects C in the disks §7Y(zy) and s1(2).
Note that s~*(H) may fail to be a 2-manifold at points of Bds~%(z)
(=1,2).

Because s(0) is locally tame away from p, we can perform isotopies
only moving points near s(C) to show that if A4 is a subare of Ints(C)
containing p in its interior and W is a neighborhood of s—(4), then there
exists a sphere with n handles H such that H ~ 8(C)=BdA and
W2 s Y{H).

Using the above we can reapply the techniques of [6, Theorem 2],
in spite of the fact that the sets s} H) are not exactly closed 2-manifolds,
to prove that there exists a finite set @ in J such that, for each neighbor-
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hood U of J, each point of J—¢ has a neighborhood ¥ such that every
Joop in ¥ — C is null homotopic in U— C. The preimages under s of these
spheres with handles provide the means for shrinking near J, without
allowing the image to stretch out towards s=1(Bds(C)).

Let U be a neighborhood of J. Since s~3(p) is eellular [16, Lemma 6],
(¢ is cellular [19]; hence, J contains at most one point b such that BdC
fails to be pierced by a tame arc at b [15, Theorem 2]. Find a neighbor-
hood V of J—{b} such that each loop in ¥— ¢ is null homotopic in
U—({b} w IntC). With this, the argument of [6, Theorem 3] can be
applied to finish the proof.

Remark. If the arc s(0) of Lemma 8 is locally peripherally unknotted,
then one can show by appealing to [6, Theorem 6] that the exceptional
point b can be deposed. Accordingly, the conclusion of the lemma mush
be changed to read: Then, for each neighborhood U of J, each point of
J has a neighborhood N such that every loop in N— C is null homoiopic
in U—C.

4. Obtaining the disk. The proof of the following lemma could be
shortened considerably if the simple closed curve J pierced a disk at
some point, for in that case we could readily produce a disk D attached
to O such that the image s(D) has the desired properties.

Luna 4. Suppose C is a 3-cell in EP, s is a map of B onto itself
squeezing C to an are, and p is an interior point of s(C) such that BAC is
locally tame modulo J = BdC ~ s~ p). Suppose further thai there exisls
an interval T in J such that for each neighborhood U of J there ewists a neighbor-
hood V of T such that every loop in V—C is null homotopic in U—C.
Then 5(C) lies in the boundary of a disk in E°.

Proof. Let Wy,..., Wg,... be a decreasing sequence of open sets
whose intersection equals J. Let B denote an (abstract) disk, R a subare
of BdB, and R’ the closure of BdB—E. .

Use Theorem 6.3 of [4] to obtain a map f of B into E* such that

(1) sf|R is & homeomorphism of B onto s(C),

(2) f(B-R)C T v (B*—0),

(8) fT ~ #(B)) is a O-dimensional subset X of B,

(1) f|B—X is one-one.

Tt follows from standard methods in plane topology that there exists
a null sequence of disks D, ..., D, ... in IntB such thab

(5) BAD: ~ X = @,

(6) f(Dy) C Wi,

(7) Dy ~ Dyyy is & subare of BdD; ~ Bd D,
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8) DinDy=@ if [i—j|> 1,

(9 (X~ R)v (UDy) is a disk,

(10) X C CL{{JDy).
Extend the disk D, so that D, ~ BdB is a subarc of BdB—R. Define
F = (1f(B— \JD;). Then F is the union of two disks F, and ¥, whose
only intersection is the point f(X ~ R)C T.

Now we begin to replace the sets f(D:) with disks. Let U, be
a neighborhood of 7 such that each simple closed curve in U; ~ F; bounds
a disk in W; ~nFy (i =1, 2). According to the hypothesis of this lemma,
we can redefine the map f|D, on very small subdisks of D, containing
D, ~ X, thereby obtaining a map f': D,~E® such that

11) f(D) ~ (C Uf(R’)) =

(12) f'(Dy) Cf(Dy) v Uy,

(13) f1BaD, = f|BdD,,

(14) f’ is a homeomorphism in a neighborhood of Bd.D;. °
Thus, it follows from Dehn’s Lemma [18] that there exists a disk E,
such that

(15) BdE, = f(Bd.D,),

(16) E1‘Cf(D1) v Uy,

(A7) IntE, ~ (C v f(R')) = O.

The only undesirable property is that Int F, may meet F, so we adjust B
slightly to produce 1-manifolds as the components of IntE, ~ F, and
then we either trade disks or perform isotopies on ares of intersection,
pushing the latter towards the hole between the components of F, to
rémove all intersections. This leaves us with a disk F, such that

(15") BdE, = f(BA.D,),

(16"y B, Cf(D,) v Wy,

A7) B, 0=,

(18) B, nFCBAE, ~ BdF.

From Conditions 6 and 17’ we see that B, intersects only finitely
many of the sets f(Di). We could collect the associated D;’s in a larger
disk, but to prevent notational complications, we simply assume that
B, ~f(Di) =0 (i>2). This implies that IntE, ~ f(BdD,) = @. Adjust
JInt D, slightly so that the components of B, ~ f(IntD,) are simple cloged
curves, and define ¥, as the union of the disks of D, bounded by the
préimages of these curves. We redefine f on Y, so that f(Dy) ~ B, =0,
Fl{D:—(X—Y,)) is one-one, and (X)) CW,.

Let U, be a neighborhood of 7' such that each simple closed curve
in Uy~ ¥y bounds a disk in W, ~ F, (¢=1,2). Cover the points of
X~ (Dy—TY,) with pairwise disjoint disks Gn, ey Goy in IntD,—¥,.

©
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According to the hypothesis of this lemma, we can redefine the map f on
very small subsets of G, thereby obtaining a map f’: D,->E® such that

(19) f1Dy— v Goi = fIDy— v Gy,

(20) f'(G2a) ~ (C v By v fIR) O f(Dy— v Gog)) = O,

(21) F(Ga) Cf(Gas) v Ty

(22) fIBA Gy = ledGzi:

(23) f’is a homeomorphism in a neighborhood of Bd Gs; (¢ = 1,..,n).
Thus, it folows from Dehn’s Lemma [18] that f|D, can be replaced with

& homeomorphism f*: D,—B* such that f* has the same properties as f’
listed in Conditions 1923 above.

By removing intersections between F and f*(Ds) as before, we obtain
a disk F, such that

(24) BB, = f(BAD,),
5) B, Cf(Dy) v Wy,
(26) B, C =0,
(27) By, ~ FCBAFE, ~ B4F,
(28) Hy ~ f(D:) (4> 2) is contained in the union of subdlsks of E,,
each of which is contained in W,.

Repeating the procedure outlined 111 the three preceding paragraphs,
making certain to use the disks of Condition 28 in the initial step of each
repetition, we obtain disks P, ..., B, ... such that

(29) BdEy = f(Bd Dg),

(30) Bx Cf(Dr) v Wi,
31) BExn C=4,
(32) By ~n FCBAE; ~BdF.

To complete the proof, let F* = F u (| JEg). Although F* itgelf may
fail to be compact, the construction guarantees that s(F*) is the de-
sired disk.

S. The main results.

THEOREM 1. Suppose the arc A in E° can be realized by squeezing
a 3-cell, A is locally tame modulo an interior point p, and LEG(4, p) < oo.
Then A lies in the boundary of a disk in E°.

Proof. By Lemma 2 there exist a 3-cell 0 in B° and a map s squeez-
ing ¢ to A such that Bd O is locally tame modulo BdC ~ s-3(p). Since
LEG(4,p) < oo, it follows from Lemmas 3 and 4 that A lies in the
boundary of a disk.

COROLLARY 1. Suppose A is the union of two ares 4, and A, in B
that intersect only in a common endpoint p, A is locally tame modulo p,
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A, is tame, LEG (A, p) < oo, and A can be realized by squeezing some
3-cell. Then A is tame. .

Proof. Theorem 1 implies that 4 is contained in the boundary of
a disk D. It follows from [2, Theorem 8] that D can be amended so that
it is locally tame modulo p. Since D is locally tame modulo the tame
arc 4, D is tame [8, Theorem 1], and this implies that 4 is tame.

COROLLARY 2. Let A be an arc in EP locally tame modulo an interior
point p. Then A is tame if and only if A can be realized by squeezing a 3-cel]
and A is locally peripherally wnknotied at p.

Proof. One implication is obvious, and the other is an immediate
consequence of Theorem 1 and the characterization of tame arcs given
by Theorem VI of [11].

COROLLARY 3. No Wilder arc (see[10]) in BB can be realized by squeezing
a 3-cell. :

THEOREM 2. If the arc A in E® can be realized by squeezing o 3-cell
and p is an isolated wild point of A such that LEG(4,p) < oo, then A is
locally unknotied at p.

Proof. If p is an endpoint of A4, the theorem is a rather widely
known piece of folklore, which we have already presumed in the proot
of Lemma 1, and which we do not prove.

If p is an interior point of 4, let B be a subarc of ‘A such that B is
locally tame modulo p. With the methods of [1] used to establish Lemma 2,
one can find a 3-cell that squeezes onto B, in which case Theorem 2 follows
from Theorem 1.

THEOREM 3. Suppose the arc A in E* can be realiced by squeezing
a 3-cell and A is locally tame modulo a finite set of points py, ..., pn such
that LEG (A, pi) < co for those po’s in Int A. Then A les in the boundary
of a disk in E°.

Proof. Simply piece together those local digks promised by Theorem 2
to determine the required disk.
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