Approximating the standard model of analysis
by
H. B. Enderton (Los Angeles, Cal.) and Harvey Friedman (Madison, Wis.)

§ 1. Introduction. The class of # models of analysis has been introduced
by Mostowski ([6], [7]). These can be characterized as the models of
analysis absolute for one-function-quantifier statements about sets in
the model. (A more eareful definition is given below.) About 1963
Putnam [8] and Gandy independently proved a conjecture of Cohen,
that there is a smallest 4 model, and that it coincided with the class of
ramified analytical sets ([3], p. 60). (In contrast, there is no smallest
w-model of analysis.) This result is helpful in indicating the extent and
the bhoundary of the theory of § models.

Let a f3, model of analysis [10] be one which is absolute for n-function-
quantifier statements about its sets. In 1968 J. Shilleto proved that there
was a smallest g, model, and that one could construct it by a procedure
similar to the ramified analytical construction, but adding at each stage
a segment of the sets A3 in sets already obtained [11].

In this paper we first give a simple argument which shows that
there is a smallest 8, model. It gives a characterization of this smallest
model in terms of the hierarchy of constructible sets. (For comparison,
the smallest § model can be characterized as the class of subsets of the
natural numbers which are constructible with order less than «, where
@ is the first ordinal for which this class forms a f model.) Next we give
a different construction of the smallest 3, model which is similar to the
construction of the ramified analytical sets. It is simpler than Shilleto’s
construction in that at each stage all sets A; in those already obtained
are added. In §3 we extend these results to f, models for 2 <7 < o,
assuming that a eertain basis property holds.

TWe now attempt to explain our notation. In this paper a set is always
a subset of the set N of natural numbers. An  model is identified with
its clags of sets, and so is considered to be a subclass of TN. (See [4] for
a discussion of w models. In particular we demand that a model of analysis
satisfy the full comprehension schema.) The standard model of analysis
is of course T itself. If 4 and B are subclasses of §, say that £-<3,% if
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and only if £ C B and for any X, sentence ¢ with parameters for mem.
bers of 4 :

Eap =l -

(This condition, that X, statements relativize downward, is clearly
equivalent to saying that I, statements relativize downward. ) 4 is defined
to be & B, model if and only if # satisfies comprehension and #£-<; FN.
Finally a 8 model is a §, model.

By a well-known argument ([15], Theorem 1.10, p. 87) we can also

say that £ {}, 9N if and only if # is a basis for classes which are I3 relative
to members of 4. In particular an « model is a 8, model if and only if it
is closed under relative A3-ness.

Let £ be the class of constructible sets, and £. those of order less
than a. We will use several results from [1]. The standard X3 definition
of £ defines over & class 4G of sets the class £/, If U6 is a f model, then
£ — £,, where u is the least ordinal not represented in JC. £ is a B, model.
{See [13]; this fact is generalized in the theorem below.) If £-<J¢L (i.e.,
#<35 € for all n) then # is also a 8, model. This happens for example if
# i3 the class of constructibly analytical sets, and it happens if #£=1¢,
for certain uncountably many countable ordinals o.

One last preliminary comment: Observe that a set belonging to a f,
model M is Ay in M if and only if it is really A5.

§ 2. B, models. We first have the following result, which is based
on Shoenfield’s absoluteness theorem [13].

X THEOREM 1. Let M be a B, model of analysis. Then Y (N A,
£ % K, and ¢ is o B, model.

Proof. Since £ is a 25 class, we have gk C £ A U for any B model A,
and £ ~ 4 Ct* for any §, model. Now consider a % sentence HaV B0
with parameters for members of £,

[=aHaV B = |=gnTLaV pO
= |=gn(@a cLYVA0 Dby [18]
> =T e £)V B0 »
= |l=p(Ha e L) (VA L) b
= | MH VG .
Finally £ satisties comprehension since a set definable over £/ is definable
also over J, and 80 is in J6 as well as being in L. W

Hence any f, model A includes a B, model [ which. equals £, for

some u. We get the smallest 8, model by simply choosing  as small as
possible. Thus we have:
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CorOLLARY 2. There is a smallest p, model, namely £, for the first a for
which £, is a fs model.

The « referred to in this corollary is of course countable; in fact
we can say much more. Carry out the above proof within the constructibles.
The class of well-orderings W such that Ly is a 8, model is 773 and non-
empty, 50 it contains a 43 element. Since anything which is constructibly
a f, model is really one {by the last preliminary comment), we conclude
that there is a constructibly A; (and hence really 43) ordinal a such
that £, is a 3, model. Similarly there is a constructibly 45 set which encodes
(in a natural way) a f, model.

A “ramified analytical” style construction of the smallest §, model
can be given as follows: For a class ot of sets, let D# be the class of sets
which are definable over £ by a formula containing parameters for
members of #4. Define by transfinite recursion:

Fo= 0.
Far1= the class of sets A3 relative to members of DF,.
Fi= UA.‘FG for limit ordinals .
a<.

This construction stabilizes at some ordinal, say y, at which a 8, model
is first obtained. (Clearly F,= Fo., iff F, is a f, model of analysis.)
Let F = F2.

THEEOREM 3. & is the smallest fi, model of analysis.

Proof. First we claim that for every a < y, L. C F.. Any class £ C L
which is closed under A:-ness must equal £, for some a. Hence 5, = £y4
for some function f, and f is strictly increasing helow y. Since F, = £,
we have the a < f(a) for a <y, thus establishing the claim.

Now let G be a f, model, and x the least ordiral not represented
in A Then by the above theorem-t‘m’{—_— £.) is a B, model. The least
ordinal » not represented in g may be smaller than u, but

£,—=f as defined within £

=tntt=c,.

Sinece A3-ness is a property absolute for f, models, F, coincides with the
result of carrying out the constrnction of ¥ inside gk (This is intuitively
clear; the full details are in § 3.) Thus
F,Ce=L,.

If » < y then £, C F,, whence equality holds and » = y. Thus in any case
y<v<pand FCLC A =

These methiods do not extend (within ZF) to g, models for n > 2.
For if there is a measurable cardinal, then £, is never a f, model for any q,

Fundamenta Mathematicae, T. LXXII 12
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by a result of Solovay [14]. We can instead consider submodels of €. The
above results generalize to ﬁ,r; models, but in uninteresting ways. Let 6
be a /32 model, > 2. Then 6= e — £,, where u is the least ordinal
not represented in AG. The smallest % model is £, for the least possible a.
Everything in this smallest B model is constructibly Anii. The 5,
construction still works, but Ar-ness must be interpreted in the sense
of £. The union (over n) of the smallest ﬂ,% models is the class of constructibly
analytical sets, and this is the smallest class # such that £ < €.

§ 3. B, models. Although the methods of the preceding section do
not extend to B, models for n > 2, there are other methods which, as-
suming some basis properties, let us generalize the 5, construction. These
methods are similar to those used in the n = 1 case by Gandy and Putnam.
Throughout this section, n is a fixed natural number, n > 2. Again we
define the class F, by recursion; this time it will be slightly more con-
venient to begin with ¢ = —1.

F_,=0;

Fao1 = the class of sets A, relative to members of DF,;

Fi= |J ¥, for limif ordinals 2.
a<i

Let = | Fao. Thus F = F, where y is the least ordinal at which
ae0On

Fpo1= F,, the ordinal of closure.

THEOREM 4. Assumne that for any set A, the class of sets Ay, in A forms
a basis for the classes which are Xrin A. Then & is the smallest B, model
of analysis.

Tt is elear that in any case F is a model of analysis, since DF C F,41
— F (where y is the ordinal of closure). And by the basis assumption,
F {}, $N. It is the minimality that remains to be shown. The idea of
the proof is as follows: Let At be another f, model. Then 5 M5 uy Where
u is the least ordinal not represented in AG. Then inside ¥, (indeed inside F,
for any limit ordinal ) we can define a well-ordering of the class and
the construction of the ¥, sets. This would, if comprehension failed in 5,
permit us to define over F, a well-ordering of type u (see Lemma 6),
which would then have to belong to Jt. The heart of the proof consists
of verifying that the construction is correctly definable within F;.

First we want to show how the construction of the class & can
be deseribed in second-order arithmetic, where W is a well-ordering
and | W] is its order type. We initially set up a language involving ordinals;
later the ordinals will be replaced by numbers in the field of W. The
symbols are: .

Numerical variables: Denumerably many; in what follows @, #,, %, -
are number variables.
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Set variables: Denumerably many; in what follows X, X;, X,, ... are
set variables.

Function symbols: O, S, 4, -,

EBquality: .

Sentential conneclives and numerical guantifiers: As usual.

Sel quantifier symbols: V, for an ordinal a.

Operator symbols: 4, A.

The numerical terms are defined as usual. The set terms and the
formulas are defined simultaneously:

1. Any set variable X is a set term. All the other set terms will be
closed, i.e., no variables will occur free in them.

2. For numerical terms t,f, and a set term T, { ~t, and T% are
formulas.

3. The sentential connective symbols and numerical quantifier
symbols can be applied to formulas to form new formulas.

4. V. X¢ is a formula, where ¢ is a formula such that (a) all set
quantifier symbols inside set term$ oceumrring in ¢ are subscripted by
ordinals strictly less than a, and (b) all other set guantifier symbols in ¢
are subscripted a.

5. Az is a (closed) set term, where ¢ is a formula in which no variable
other than x occurs free. (This term is read, “the set of all  such that ¢”.)

6. Az X, ... Xaqu is a (closed) set term, where ¢ and y are arithmetical
formulas (i.e., formulas without set quantifiers except as may oceur
inside closed set terms).in which no variables occur free other than
2, X,, ..., Xp. (This term is to denote a relatively A5 set if possible, and
is to denote @ otherwise.)

We now proceed to give a (basically syntactical) definition of truth.
The essential feature is that the definition is not relative to some universe
for the set variables; but instead the set variables range over the de-
notations of closed set terms.

For a closed numerical term ¢, let ¢* be the number it denotes. Truth
for sentences is defined by recursion on the maximum subseript of
a quantifier symbol, and, within one such maximum subscript a, on the
number of places at which V,, 4, or 4 oceur.

1. |=t,~t, iff t#=1. The sentential connective symbols and
numerical quantifier symbols are treated in the natural way.

9. |=Axgt iff |= ¢f, where ¢ is the result of replacing in ¢ by the
closed term t wherever z occurs free. :

3. |=V.Xp iff |= ga% for every closed set term T containing only
quantifiers subscripted by ordinals strictly smaller than a.

12%
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4, Finally we come to the case of Ax X, ... Xppy.. Nothing is lost
if we impose, for some large but fixed %, the additional restriction on set
terms of this form that the arithmetical formula ¢ must be of the form

Voo, Hwy ... Var 6

where 0 has no quantifiers aside from those inside closed set terms [9].
On v we impose the same restriction. Then we define:

l‘—f Ale e
(1) t*ed;
(ii) A natural number n belongs to A iff for every B, there emists
some B, such that for every B;... we have Va,Ha, ...Va

Xupyt iff there is a set A such thab

fEELLR Tk
}— nayas...ar

when Xyu (for a numerical term u) is replaced by O~O0 if u* € By, and
b‘y 0#0 if u*;’Bg.
(iii) [The dual to (ii), using X form and v.]

The English-language set quantifiers above have been italicized; '

we will later need to consider restricting them to classes smaller than TN.
For a closed set term 7T, define its denotation T* by

= {n: |=Tn}.

We can then correlate set terms with the ¥, classes. A set is definable
over F, iff it is of the form

(Amg)*

where the sef quantifier symbols inside set terms occuiring in ¢ are sub-
scripted by ordinals less than «, and all other set quantifier symbols in ¢
are subscripted a. And

Fp= {T*: T is a closed set term in which all set quantifier
symbols are subscripted by ordinals less than g}

These two statements are easily verified (together) by induction.

As things now stand, formulas and terms may involve ordinal
numbers. Ordinals themselves are lacking in analysis, but consider a well-
ordering W of some subset of the natural numbers. Then W provides
notations for the ordinals less than |[W|. We obtain W-formulas and
W-terms by using these notafions in place of the ordinals themselves.
And now we can assign Godel numbers to these, or better yet take the
W-formulas and W-terms to be themselves natural numbers. The de-
iIi:ition of truth applies as well to W-expressions as to the original kind.

t

Vw = the set of true W-sentences .
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Then Vy is & set of natural numbers, and is definable (from W) in analysis.
For if we take the inductive definition of truth, and replace “ |= ¢” by
«p ¢ V¥ and replace ordinals by notations, we get a formula (V) having
the free set variable ¥V and a name for W. For a well ordering W, Vi is
the unique set which satisfies = (over JN).

Now assume that AG {}, $N and W is a well-ordering in J. First
we claim that over J, T can be satisfied by no set other than V. This
requires verifying the absoluteness of everything in clause 4 of the de-
finition of truth. The A quantifier can be restricted to 4G since the desired
set will be AL in V and hence will belong o 6. (The fact that 4 {,, N
implies that A is closed under relative A}-ness. ) The B; quantifiers can
also  be restricted to 6 because Ao {,, FN. The same argument shows
that if Vi e M, then it satisfies = over J.

If we further assume that A satisfies comprehension, then we can
conclude that Ve M. This can be seen by induction on |W|. If |W] is
3 limit ordinal then we can define V- as the union of the sets Vi), where
Wia is the restriction of W to points smaller (in the sense of W) than a.
By applying the inductive hypothesis we obtain Vi € DM = 6. For the
suceessor ordinal case, we use the following lemmas:

Tmvma 5. Assume that Mo <z SN, W is a well-ordering in Mo, and
Vw 48 in Mo Let W™ be obtained from W by adding one new largest point
to the ordering. Then V- is explicity definable over M from W.

Proof. Sinee Vi is definable over A; from W (as the unigue solution
to 7w), it suffices to show that Vip+ is definable from W and V. Let m be
the new la.rgest point in W*. Then V- is the union of Vi and the seb
of true WT-sentences which contain m. The idea of the proof is that
because ‘M;ﬁ.,, JN, the definition of true sentences containing m per-
forms correctly in AG. Consider then a W-sentence § containing .

Cage 1. 8 does not contain set terms of the form AzX, ... Xagpy
with Vp in @ or y. By the usual “truth is hyperarithmetical” argument,
the set of true sentences of this form is A} in W and V. So the set is in 46
and is definable in A6 from W and V.

Case 2. 0is Ale . Xnqyi, where @ and vy are as in Case 1. We need
to formalize clause 4 of the definition of truth, with the set quantifiers
relativized to 6. The quantifier on 4 can be restricted to ., since the
only possible solution for 4 is a set A% in the denotations of the set terms
in p and y (and hence A% in V). The B; quantifiers can be restricted
to J6 because Ab-~<SiTN. And then truth of ¢ and v is definable as in
Case 1.

Case 3. Other sentences, for example those obtained from Case 2
sentences by numerical quantification or iteration of the A operation,
are reducible to Case 2 by the transitivity of Ay -ness. B
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We now can see the full details necessary to establish the claim

made in the proof of Theorem 3. Let AG be a f, model, and u the least
ordinal not represented in AG. The claim is that & S 5 »- The definition
of ¥ in analysis is:

A e F iff there is a well-ordering W and a truth set V

such that tw(V), and for some closed W-term T, a natural

" number » belongs to 4 iff Tne7.

When the W quantifier is restricted to 4 we obtain &,, and nothing is
lost when the ¥V quantifier is also restricted to AG.

In order to prove the minimality of &, it will be helpful to know that
over 5, we can define an ordering of type 4, for A less than the ordinal
of closure. Our strategy is to take the least ordinal for which this fails,
and to show that closure has occurred by that ordinal.

LevmA 6. For each a less than the ordinal of closure, there is a well-
ordering of type a in DF,. For any such well-ordering W in DF ., we have
Vw in DF,pq. (We assume here that the basis property stated in Theorem 4
holds.)

Proof. Let y be the least ordinal such that in DF,, there is no well-
ordering of type y. We will show that &, satisfies comprehension, whence
y i8 at least as large as the ordinal of closure. (It then follows that equality
holds. If & contained a well-ordering W of order type greater than the
ordinal of closure, we could diagonalize to construct a set in DF—F.)

For any a < y then, we have some ordering W in DF, of type a
We first show that for any ordering W of type a in F,.1, we have Vi
in D¥F;y; (where a < y).

Case 1. a = $-+1 and the ordering in question is W* where W ¢ 7,
= Fp+1. Then by inductive hypothesis Vi e DFpii. Apply Lemma 5
with M= Fpye to obtain Vi e DFpyo = DF4iq.

Case 2. a = f+1 and the ordering in question is W¥ (in F...) but
W ¢ Fgr1. We have in Fp,, another ordering U of type g. There is a unique
isomorphisma  between W¥ and U*. The isomorphism is implicitly
arithmetically definable from the orderings, and so also belongs t0 Fpia.
And Vip: is recursive in Py« and the isomorphism (since the isomorphism
induces a truth preserving map from W*-sentences to U*-sentences).
By Case 1, Vp+ is in DFgy,, and Vyp+ must also be in this class.

) Case 3. a is a limit ordinal. For any segment W[a of the ordering W
in .11, there is a well-ordering U in Fluw+1 With Vy in & jalw+2. Thus

In Foy1 we have: Wha, U, the isomorphism between W[a and U, Vv,
and hence Vippq. Then '

[ Vi <= FaAV [1ip1oV) & V]
and the 17 quantifier ean be restricted to F er1- Thus Vo is in DFgya.

"
&)
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To prove Lemma 6, it remains to show that &, satisfies comprehension.
TFor that we use Lemma 7, below, with 6 = y and #,= F,. We must
verify that the hypotheses of that lemma are satistied. Clearly y is a limit
ordinal and hypotheses (1) and (2) are met. Hypothesis (3) holds, since
for any a, F. is closed under Ay -ness. Hypothesis (4) follows at once
from the definition of y.

As for hypothesis (5), recall that a set A belongs to Fy iff it is of
the form 7™ where all set quantifier symbols in T are subscripted by
ordinals less than |W|. Thus we can let (i, z, W) be: % is a W-term
beginning with 4 and for someV for which v(V), the sentence ix is in ¥”.

Finally for hypothesis (6) we need a definable well-ordering of ¥,.
Tirst well-order the closed set terms, ordering first according to the
largest ordinal subseript, then by length, and then lexicographically.
{(Actually any reasonable well-ordering eould be employed here.) Then
define:

A < B<+= A i3 denoted by some closed term which is
smaller than any closed term denoting B.

This relation well-orders &; we claim that on &, it is definable over F,.
This is because:

A < B <= There is a well-ordering W and a set ¥ such

that 7w(V) and a W-term ¢, denoting A such that for

any W-term ¢, denoting B we have {ia, &) € L,
where Ly is the well-ordering (arithmetical in W) induced on W-terms
by our ordering on terms. Here “¢ denotes A” means “Vi(ned <=ineV)".
The existential quantifier on W can be restricted to &, (for 4 in &,).
Furthermore the existential quantifier on ¥ can be restricted to ¥F,, as
observed above. This completes the proof of Lemma 6, except for verify-
ing Lemma 7.

Leava 7. Let 8 be a limit ordinal, and assume that for a < 6 we have

classes #, of sets such that the following conditions hold:

1. For a< f < 6, 4, C s C TN. For limit ordinals A< 8, # = | #q.

a<k
2. D#, C #aya, for a< 9.
3. #; <1 9.
4. Any ordinal a< & is represented in #s. Any ordinal represented
in D#; is strictly less than 9.
" 5. There is a formula ¢ which, given a well-ordering W, defines over A5
an enumeration of #pp. That is,

Ay = {{@: [l @, Wi te N}
Jor a well-ordering W.
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6. There is a well-ordering of #s definable over #s.

Then #; satisfies comprehension.

Proof: We will define, by recursion on the prenex formula g,
a function f, mapping 6 into ¢ such that:

(i) f, is non-decreasing and continuous, and o< fola) for a< 6.

(ii) For any a < ¢, any string B of sets from #,, and string # of
natural numbers

1=d€j¢(a)¢['ﬁ7 E] <= =g, B] .

(iif) f, is definable over #, in the sense that the relation which holds
between A and B iff both are well-orderings in #£; and f,(}4[) = |B|, is
definable over ;.

Once we have such functions, it easy to see that the comprehension
axioms are satisfied. For

{n: =[N, Bl} € Dty C 4o

by using assumption 2.

For arithmetical (i.e., elementary) formulas ¢ we take f, to be the
identity function on 4. This is definable over #; by assumption 3. For
the negation “jp of ¢ we simply take f—, = f,. The only other case is
that of the gquantified formula HXg. Here we simply take:

Faxola) = the least §>
from #,, any #,

(*) (=48 X7, B] <= |=4,8Xp[7, B] .

a such that for any string B

_There are such f’s, e.g. §= 0. But we will first show that (for fixed
T, B}, we can find a f satisfying (*) which is defma.ble over #; and hence
is less than 4. (Later the dependence on # and B will be eliminated.)

Case A.:Suppose I=A,,EX¢[{£,§]. Thus for some C in #& = |J#,,
»<d
[0l B, C].

Choose such a € in some :£,; by assumption 1 we may suppose » > a.
Then we may simply take g = f,(v), for

1=ftjw(,)?’[';':7 B » 01
and hence
=y, 8 X[, B].
Case B. Suppose on the other hand

not =4, A Xg[7, B] .
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Then let f = 1im fy{a), Where fi(a) = a and f3*(a) = f,(f&(a)). Assuming

for the moment that § < &, we then have f,(8) = 8. (In any case g < (8
the other inequality holds since f, is non-decreasing and continuous.)
For any set ¢ in #g, from the fact that ¢4, B C1] is false in #4; we con-
clude that it is false in Az, i.6., &5 ... TXep[4, Blisfalsein Az, as desired.
To complete this argument we must verify that in fact 8 < 6. The idea
is that we can define over #; a well-ordering of type f. We begin with
an ordering W, of type o, assured by assumption 4. Then we use the
definability of f,. Say Wi is the kth ordering iff for some chain
(Wo, ..., Wx) we have Wiy, equal to the least set in #; (in the ordering
of assumption 6) such that fo(|Wi|) = |[Wiyi]. Then an ordering < for
which

a, 1y < <b,j)y iff ¢ <j and a ethe ith ordering and be
the 4th ordering and (i = j =a < b there)

is definable over +; from W, and has length at least f. This concludes
the case B argument.

But to obtain fax,(a) < é we still need a second fact: There is some
B < & which satisfies (x) simultaneously for all % and all B in #,. Observe
that (%) is a definable condition on B. That is, the condition on #, B and
awell-ordering W that

| =ty A1, B] <= |, A X[, B]

hold, is a definable condition over #£,. For by assumption 5 we can define
from W a set of integers encoding yp;. Then by the “truth is hyper-
arithmetical” argument and assumption 3, we can define truth in
‘fth['

‘We now proceed to manufacture a uniform p. Begin with a fixed
ordering W of type «. By assumption 5 we can define from W an (integer-
indexed) enumeration of the k-tuples of sets in #,. Then for each 7 and B
we can take the least ordering V such that

I BX [, B) == -4 Xp[i, B]

as in the preceding paragraph. Again we string these orderings together
to obtain a definable ordering longer than any one. Its order type is less
than § and is the uniform £ desired.

Finally we must verify that fay, meets conditions (i}-{iii). That
fax, is non-decreasing follows from its definition and the fact that the
classes -, are non-decreasing as « increases. Its continuiby similarly follows
from the fact that 4, equals UZ.&,, for a limit ordinal A. And fax.{a)> a

a<
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by definition. Condition (ii) is obviously satisfied. For condition (iii) we
must show that fyx, is definable over #s;. We have

Faxo(|4]) = [O] iff C is a well-ordering of the lowest order
type such that |4| < |C| and for any string B of sets from
.7%] Al and any i

o AXplit, B] <= =g, WXLt B] .

By using (primarily) assumption 5, this condition on 4 and C (in #;)
is definable over #;. W ) )

Pinally we are able to conclude that ¥ is included in any othe.r B
model 6. Let x be the least ordinal not represented in 6. As explained
above, Fh— 7 . If u were less than the ordinal of closure, thgre Woul.d
be an ordering of type x definable over ¥, (by Lemma 6). But since ¥, is
a definable class in J6, the ordering would be definable over .G, and
hence in AG6. This completes the proof of Theorem 4. W

TaEoREM 8. Continue to assume that for any A, the class of sets A,
in A forms a basis for the classes Zy in A. Then for any set in F, there is
a formula (without set parameters) which corrvectly defines that set over
any fPn model M.

Proof. Consider the set A « F. It suffices to show that A is definable
over . For ¥ = 5% is a definable class over ..

The set A is definable over & from the set Vi for all sufficiently
large well-orderings W. And Vy is definable over & from W. So it suffices
to show that for every ordinal less than the ordinal of closure, there is
a well-ordering of that type definable over .

Let 4 be the least ordinal not represented by a well-ordering definable
in § We claim that F; <&. For suppose 4, ..., 4, are in F; and

=5 Xyl Ay, ..., 4] .

Then the least (in our definable ordering of ¥) well-ordering W such
that for some B in F,

=7 y[4;, -, An, B}

is definable in F from A4,, ..., 4,. But since 4, is in F 1, A is definable;
so the W above is definable. Hence |W| < A and there is some B in 5,
which works. Hence F; < 7.

Consequently ¥, satisfies compréehension and so equals . So 1is
the ordinal of closure. m

The cenclusion of this theorem can also be stated: A sef is strongly
representable (binumerable) in the theory of g, models iff it belongs to F.
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§ 4. Further comments. In the preceding section » was a fixed number
greater than one. If the basis hypothesis used there (that for a set A,
the class of sets 4, in 4 forms a basis for classes Z% in 4) holds for infinitely
many values of n, then the class 4 of analytical sets is a basis for any
analytical class; In this case (in fact equivalently) we have 4 <N since
for analytical B,

HA =gn 0[4, B]=>(TA e ) |g 6[ 4, B].

And it is clear {without basis assumptions) that - must be included in
any elementary submodel of §¥. Thus we have the simple result:

THEOREM 9. If the class 4 of analytical sets is a basis Jor analytical
classes, then + is the smallest elementary submodel of TN,

This is the analog to Theorem 4 for 2 = w, but its proof is vastly
simpler. Also it is obvious for this class that if 4 ~<S §N then each element
of -t is definable (without set parameters) over .

The basis assumption of section 3 is a well-known consequence of
the axiom of construetibility [1]. On the other hand, it has been shown
that projective determinateness implies that for odd values of n, Ay is
not a basis for X3; ([5], [2]). Martin and Solovay have conjectured that
projective determinateness implies that the basis hypothesis does hold
for even n; see [5], p. 156. In this event our results would at least hold
for n even and n= w.

If we turn from truth to consistency, we have the following result.
by Silver (see [12]; ef. also Martin and Solovay [5]): If “ZF -+ there
is a measurable cardinal” is consistent, then it remains consistent with
the additional axioms:

1. 437 is a basis for T4 for each set ACN.

2. There is a 43 well-ordering of §¥ in the order type of the least
uncountable ordinal.

The second of these implies that our basis hypothesis holds for
all »>3 (cf. [1], pp. 350-351).
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