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Exact loop space sequences

by
F. H. Croom (Lexington, Ky.)

1. Introduction. Let (E,¢) and (B,b,) be topological spaces with
base points and p: (¥, ¢)—(B, by) a continuous map. The map p de-
termines an infinite sequence

Q"B Q"B 50" S QY E

where- Zp = {(e, a) e B XB": p(e) = a(0) and a(1) = b;} is the mapping
track of p, QF is the space of loops in B with base point ¢, and Q"H
= 0QQ"'B for n>2 with base point the degenerate loop c™(e,). This
sequence is exact up to homotopy and satisfies topological splitting
theorems analogous to the algebraic theorems for the splitting of sequences
of groups and homomorphisms.

If the fiber structure (H,p,B) has the weak covering homotopy
property, the loop space sequence of p determines the homotopy sequence
of the fibration. The homotopy sequence of a triplet is also obtained as
a special cage. The splitting theorems for loop space sequences give
generalizations of the standard direct sum theorems [3, pp. 150-153] for
triplets and weak Hurewicz fibrations.

2. Exact sequences.

DEFINITION. A pair (¥, p, B) and (¥, p’, B) of fiber structures over
the same base B have the same homotopy type or are homotopy equivalent
means that there is a homotopy equivalence f: E->E’ such that p’f~p
(homotopic).

DEFINITION. A sequence
ASESB
of topological sjmces with base points and continuous maps is exact
means that )
(1) the composition pg is null-homotopic (i.e. homotopic to the
constant map whose only value is the base point of B); and
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(2) for each space W and continuous map h: W —~E such that ph is
null-homotopic, there is a continuous map A': WA such that gh'~h.

DEFINITION. An H-group is a topological space X with a continuous
multiplication - which is associative up to homotopy and has a homotopy
unit and an inversion. ’

Note. The functions involved in this paper are not assumed to be
base point preserving unless specifically stated. All function spaces are
assigned the compact-open topology.

THEOREM 1. Suppose that the sequence

0-ASESB
is exact, p has @ right homotopy inverse y: B—~E, A and B are H-groups

with base points as homotopy uniis, and ¢: A>E is an H - homomorphism.
If the map g: E~B defined by

gle)=ple-jzple)) e<E,

where § is the inversion on B, is null-homotopic: and the map m: B XA ~B
defined by

m(b,a) =p(g(a) z(b)) (b,a) e BXA
is homotopic o the projection m; on the first component, then (E,p,B)
and (B XA, m, B) have the same homotopy type.

Proof. Define f: B—F by
fley=rejzple) eckE.

Then g = pf is null-homotopic so there is amap f': B->A such that qf’' ~f.
The exactness of the sequence implies that f'g~ida.
Define ¢: E+BxA and H: BxA4A->F by

G(e)= [ple),f'(e)), ecE
Hb,a)=q(a)-x(d), (b,a)eBx4.

The function H has been used by Hilton and is known to be a weak
homotopy equivalence [2, p. 104]. For the case being considered here,
@ and H are mutnal homotopy inverges. To see this, observe that

HG = ¢f"-yp~f yp~idg
and ‘
7, GH = pHr~m, .
If =, is the projection of Bx 4 on A, then

7 GH = ' H~f'qf H~f fH~f'(H-jym) ~f'qra~m, .
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Since @ = p, it follows that (E,p,B) and (B.x4,n;,B) have the
same homotopy type.

CoroLLARY. Let .
045858
be an exact sequence such that A, B and B are H-groups and p and q are
H-homomorphisms. If y: B-—>FE is a right homotopy inverse for p, then
(B,p,B) and (BxXA, m, B) are homotopy equivalent.

THEOREM 2. Under the hypotheses of Theorem 1 or its Corollary, it
follows that Q" and 2"Bx 2" A are H-isomorphic for each positive integer n.

Proof. Let G: E==B xA: H denote the homotopy equivalence pair
given in the proof of Theorem 1 and let a, denote the homotopy unit
of A. The map H induces an H-isomorphism QFH from (B x4) into
the space Q(E, H (b, ao)) of loops in # with base point H (b, a).

For e ¢ H, let [e] denote the path component to which e belongs.
Observe that

Leo] = [HG ()] = [4f (e0) 22 (€0)] = [aF'q(a) - (b0)]
= [g(ao) - (bo)] = [H (b0, )]
s0 that e, and H (b,, @) belong to the same path component of E.
YWe then have the following sequence of H-isomorphisms:

OBxQA~Q(BxA)~Q(E, Hb,, a,)) ~0QF .
An inductive application of this argument establishes the theorem.
DerINITION. For the given map p: (B, e) (B, b,), define ¢: QB
—Zp by
Q(ﬁ) = (607 ﬁ)!

The map p: B —B and the projection m,: Zp —F induce maps Op: QB —~0QB
and Qn;: 2%p ~0QF by composition. The resulting infinite sequence

BeRB.

" g TR "B—»> . QB Ip-2>E-2>B

LB or sy

is called the loop space sequence of the map p: (B, &) > (B, by)-

The essential ingredients for a proof of the following theorem are
given in [2, pp. 95-99].

THEOREM 3. The loop space sequence of a continuous map p: (B, e) -
(B, by) 1s exact.

3. Applications to weak Hurewicz fibrations. Throughout this section
we assume that the fiber structure (H,p,B) has the weak covering
homotopy property and basie fiber I = p~(b,). Since the natural map
U: F—-2Xp defined by

Ule) = (37 0(”0)}7

ecF, olb){I)=b
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is a homotopy equivalence, Zp may be replaced by F in the loop space
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Conversely, suppose that K: QF=QFEXxQB: L is a homotopy

sequence of p to obtain an exact sequence
B o L B TR "B .
w—0B- L7585 B.
Here 5 denotes inclusion maps and d: QB—F is defined by
d(By = Ales; H(1), BeLB

where 2 is & weak lifting function. The sequence obtained by taking the
induced maps on path components is the usual homotopy sequence of
the fibration. .

TerorEM 4. Let (B, p, B) be a weak Hurewicz fibration such that B
and B are H-groups, p is an H-homomorphism and the fiber F' is an H-sub-
group of B. Then (B, p, B) is fiber homotopy equivalent to (BXT, m, B)
provided that (B,p, B) has & base point preserving cross sectiomn.

Proof. Let y: B—~E be a cross section such that € = y(b,). Since
the sequence

oo %Fr-5 82 B
is exact and QpQy is the identity on QB, it follows that d is null-homo-
" topic. Hence (¥, p, B) and (B X F, n;, B) are homotopy equivalent. The
desired fiber homotopy equivalence follows from [1, Theorem 6.1].

THEOREM 5. If F is a retract of H, then

(a) (QE, Qp, OB) and (QB X QF, z;, QB) are homotopy equivalent, and

(b) Q' Ex~Q"BXQXF for n> 2. '

Proof. Since F is a retract of F, the inclusion maps i: F—E and
i: QF - QF have left homotopy inverses. Hence d and d, are null-homo-
topic. Since d is null-homotopic, there is a map y: 2B —+QF such that
Qpy~idop. The conclusions follow from the. Corollary and Theorem 2
respectively.

THEOREM 6. (a) The fiber structures (QF, i, QF) and (QF X 2*B, n,, OF)
are homotopy equivalent if and only if QF is deformable into QF.

{b) If B is deformable into F, then Q"F and O"Ex Q"B are homotopy
equivalent for # > 1 and H-isomorphic for n > 2.

Proof. (a) If QF is deformable into QF, the maps Qp: QF QB
and Q'p: Q°E->Q*B are null-homotopic. Hence the H-group sequence

0->Q*B>QF >QH >0
is- exact and splits up to homotopy type.

equivalence pair such that
mK~i, iL~m .
Define G: QF ~QF by
G(a):l}(a,oz(bo)) , ael.

Then
1G ~m K G ~idog

so that QF is deformable into QF.

(b) If B is deformable into ¥, then p, Qp and £° are null-homotopic
and the conclusion follows from Theorem 2.

THEOREM 7. (2) The fiber structures (2B, d,F) and (Fx QE, =, F)
are homotopy equivalent if and only if F is contractible in I.

(b) If F is comtractible in B, then @*V'B~QFX Q"B for n>1.

Proof. If F is contractible in ¥, then i: F>F and i: QF -QF are
null-homotopic. Hence the sequence

0— QB 0B L0

is exact. Although F may not be an H -group, the hypotheses of Theorem 1
are satisfied. This establishes (b) and half of (a).

Conversely, suppose that the indicated fiber structures have the
same homotopy type. Then d has a right homotopy inverse and hence
4: ¥ -FE is null-homotopie. :

4. Applications to triplets. Let (X, 4, ) be a triplet and i: A —>X
the inclusion. Then X% is the space (X, 4) of paths in X with initial
point in A and terminal point z,. The loop space sequence of the map
i: (4, 2o) (X, ®,) is the sequence

X 0T, A) s QA O — ..
00X, 4)- A5 X
where i denotes inclusion maps and &(a) = a(0) for each aeQ(X, A).
The sequence obtained by taking path components and induced maps
is the usual homotopy sequence of the triplet (X, A, &)

The splitting of the above loop space sequence is summarized in the
following theorems. The proofs are similar to those of the preceding
section.

THEEOREM 8. (a) The fiber structures (QA, i, OX) and (QX x (X, 4),
7y, QX) are homotopy equivalent if and only if QX is contractible in 2(X , 4).
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b) If X is deformable into A relative to @, then Q"4 and Q"X x
><Q“‘+1(_X',A) are homotopy equivalent for n=1 and H-isomorphic for
n>=2.

TezoREM 9. (a) The fiber structures (Q*(X,A4),0,04) and (QA4x
X QX , m,, QA) are homotopy equivalent if and only if QA is contractible
in RX.

(b) If A is contractible in X rvelative to &, then O"NX, A) and
Q™A X Q"X are homotopy equivalent for n 2> 1 and H -isomorphic for n > 2.

TEBOREM 10. () The fiber structures (@X,4, (X, A)) and (2(X, A)x
X DA, 7y, (X, A)) are homotopy equivalent if and only if &: 2(X, 4) >4
is aull-homotopic.

(b) If 4 is a retract of X, then Q"X and Q"X , A) x Q"4 are homotopy
equivalent for n =1 and H-isomorphic for n = 2.
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Topologies for probabilisﬁc metric spaces

by
R. Fritsche (Monroe, La.)

1. Introduction. The purpose of the present paper is fo generalize
some of the topological notions for probabilistic metric spaces introduced
by Schweizer and Sklar [4], and by Thorp [5]. The fundamental tool for
this task is the “profile function” a monotone non-decreasing function
defined on the non-negative half of the real line and having its values
in the closed unit interval. It will be shown that such & function gives
rise to a generalized topology [3] on any PM-space (8, F).

A condition sufficient to strengthen these ¢-topologies to topologies
is established but its non-necessity is shown by several examples which
are of some interest in their own right, with a view, perhaps, towards
possible applications. '

Finally, this approach to generalized topologies for PM-spaces is’
compared with that of Thorp [5] and a rather mild condition for the
equivalence of these two is demonstrated.

The only concepts required for an understanding of these results
are those of PM-space, triangular norm (f-norm) and Menger space.
These may be found in Schweizer and Sklar [4], among others.

The author wishes to thank Prof. Berthold Schweizer for his many
helpful suggestions in the preparation of this material.

2.

DEFINITION 2.1. A function @ is a profile function if Domg = [0, oo),
@ is non-decreasing and 0 < p(z) <1 for all # in [0, co).

DEFINITION 2.2. Let (8, &) be a PM-space, let ¢ be a profile function,
let p e, let AC S, and let &, 1> 0 be given. Then:

“a. The set Np(p; e, 1) = {ge8: Fpye) > @le)—A} is called the
(@; e, A)-neighborhood of p;

b. p is a @-accumulation point of A if (Nolgs &, y—{p}) " A+ O
for every s, 1> 0;

c. A is g-closed it g(4) C A, where p(A4) is the set of @-accumulation
points of 4.
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