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terizing those continua which have ends about which they are irreducible,

One might then consider the possibility of obtaining interesting de-

compositions of such continua.
Of course, the work of Kuratowski (especially [2]), as well as that
of Thomas [7] are most suggestive. A future work dealing with those

ideas is planned.
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On criteria of Blumenthal for inner-product spaces
by
Joseph E. Valentine (Logan, Utah)

1. Introduction. The problem of characterizing generalized euclidean
spaces has been solved by various authors in many different ways. It is
the purpose of this paper to solve the problem along the lines exhibited
by Blumenthal [2]. At the same time g generalization of his criteria is
obtained and a question asked by Freese in [7] is answered.

2. Four point properties. The following six classes of metric quadruples
have been introduced by Wilson, Blumenthal and others.
A metric quadruple p,, Py, Ds, D4 belongs to class:

Oy if and only if p,, p,, ps, P, are pairwise distinet;

0, if and only if p,, p,, ps, p, are pairwise distinet and it containg
a linear triple;

O, if and only if p,, p,, ps, p, are pairwise distinet, p; is between
D2y Py 204 Popy = PyPy; ‘

) O, if and only if p,, p,, 95, p, are pairwise distinet, Doy Dgy Py aTE
linear and p,p, = P94

0, if and only if p,, p,, ps, p, are pairwise distinet, p; is between
D2y Pa A4 PoPy = PyPa, P1Ps= P1Ps;

0, if and only if p,, p,, ps, p, are pairwise distinet, p, is between Pas Py
while p,p; = 2pyp, and p,p, = p,p;-

DrrFINITION. A metric space has the euclidean, euclidean weak,
euclidean feeble, euclidean isosceles weak, euclidean isosceles feeble,
euclidean external isosceles feeble four-point property provided every
quadruple of its points of class G, 01, 0y, Cs, Cy, O, respectively, is
congruently embeddable in euclidean space.

It is known that in a complete, convex, externally convex metric
space the euclidean, euclidean weak, euclidean feeble, and the euclidean
external isosceles feeble four-point properties are all equivalent. See [9],
(13, 21 7. Moreover, each of these properties implies the euclidean
isosceles weak and the euclidean isosceles feeble four-point properties.
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Clearly the eunclidean isosceles weak four-point property implies the
euclidean isosceles feeble four-point property. In this paper we will show
that the euclidean isosceles feeble four-point property characterizes
generalized euclidean spacé among the class of complete, convex, ex-
ternally convex metric spaces. It follows then that all six of the four-point
properties are equivalent in a complete, convex, externally convex
metric space.

3. The euclidean isosceles feeble flour-point property. From [1] it is known
that the euclidean weak four-point property characterizes generalized
euclidean spaces among the clags of complete, convex, externally convex
metric spaces. In order to show that the euclidean igosceles feeble four-
point property effects such a characterization it suffices to show that
‘such a metric space possessing the euclidean isosceles feeble four-point
property also possesses the euclidean weak four-point property. In the
discussion that follows M will denote a complete, convex, externally
convex metric space that possesses the euclidean isosceles feeble four-
point property.

LeMva 1. Bach two distinet points of M are the endpoints of exacily
one metric segment.

Proof. Sinece M is complete and convex each two distinet points
of M are endpoints of at least one segment. Suppose there are points p, ¢
of M, p # g, such that p, g are endpoints of ab least two segments, say
Sdp, g) and Sy(p, q). Let r be a point of Sy(p, ¢)— Su(p, ¢). In traversing
Sy(p, q) from 7 to p a first point % of Sy(p, ¢) in encountered, while a first
point v of Syp, ¢) is similarly met in traversing Sy(p, ¢) from r to ¢. Let
my,m, be the midpoints of the subsegments of Si(p,q) and S, @)
respectively, that have only the endpoints u,v in common. It follows
from the euclidean isosceles feeble four-point property that «, v, my, m,
are congruently embeddable in the euclidean plane. But this is impossible,
for then there would be two points of the euclidean plane without a unigue
midpoint.

LemmA 2. Metric segments of M admit unigue prolongation.

Proof. Since M is externally convex, the segment S(s, t) may be
prolonged. If 8 (s, #) admits two prolongation, let p, » be points of different
prolongations such that stp, sir hold and st = pt = ¢r, and let ¢ denote
the midpoint of p and . By the euclidean isosceles feeble four-point
property, the quadruples %,p,q,7 and s,p,g,r are congruently em-
beddable in the euclidean plane and consequently

1) dstt = rst = gs?-t g2,
(2) St = 0% = 1+ gre.

icm
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It follows from the triangle inequality that

(3) gs2—qt2 < 2qt- st +st2.

Subtracting equation (2) from equation (1) and making use of (3)
yields

3st® = ¢s*>— g® < 2qt-st 452 < 3si2.

This contradiction proves the lemma.
Combining the results of Lemmas 1 and 2 we have the following
lemma.

Levna 3. Hach two distinet points of M are contained in exactly one line.

Lemwa 4. If p is a point of M and L is a line of M, then p has exactly
one foot on L.
. Proof. It is known that p has at least one foot say f on L. Suppose
there is another point f’ that is a foot of p on L. If ¢ is the midpoint of f, f’,
then p,f,q,f are congruently embeddable in the euclidean plane. It
follows that pg << ;pf contradicting the fact that f is the foot of p on I
unless f=f'= q, which completes the proof.

Levwa 5. If L is a line of M, p is a point of M not on L, f the foot
of p on L, and if q,r are points of L such that q is between r and f then pq is
less tham pr.

Proof. Suppose the contrary. If pa = pr for all z in S(g,r), let 2
denote the midpoint of g, 7. It follows from the euclidean isosceles feeble
four-point property that p, ¢q,z,r and congruently embeddable in the
euclidean plane. But then pz < pr, which is the desired contradiction.

If pz > pr for some 2 in §(g, ) then the function px assumes it ma-
ximum at some point s of S(g,r). Let pr < k < ps. Then there are first
points u, v of 8(s, f) and S(s, r), respectively, encountered (beginning at s)
such that pu= pv=="F% But if m is the midpoint of 4 and v, by the
euclidean isosceles feeble four-point property p, %, m, v are congruently
embeddable in the euclidean plane and pm < pu, contrary to u, v having
distance from p no greater than any point of S(u, v).

LeMmMa 6. If p is a point of M not on a line L of M, and if q,r are
points of L with pq = pr, then m, the midpoint of q and r is the foot of p
on L.

Proof. By Lemmas 4 and 5, the foot of p on. L lies between ¢ and 7.
If m is not the foot of p on I, assume the labeling such that the foot f
of p on L is between g and m. Since the function pz is continuous and
monotone increasing as x recedes along either half-line of L determined
by f, there is a point m’ between ¢ and m such that pm' = pm. If m* is
the midpoint of m and m’, then by the euclidean isosceles feeble four-point
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property the quadruples p,g,m,r and p,m,m* m' are congruently
embeddable in the euclidean plane. It follows that

(4) pre = pm*2-+-m*rt—2mr - mm*
and
(5) PE = pm*2 - qm*E - 2qm-mm* .

Subtracting equation (4) from equation (5) and making use of m*r
= m*m-4mr and mr= gm= gm*4mm* yields mm* =0 or m = m*
This contradiction completes the proof.

LemmA 7. The space M has the euclidean isosceles weak four-poing
property. .
Proof. Suppose p, g, r are points of M such that pg = pr and suppose
§ is any point on the line L(q, 7) through ¢ and r. If s = f, the foot of p
on L(g,r) the proof is complete by Lemma 6. Suppose then that s #f
and let p', ¢, 7" be points of the euclidean plane which are congruent
to p, ¢,r. It follows by Lemma 6 that pf= p'f’, where f' is the foot
of p’ on the line L(q’, 7). Let s’ denote the point corresponding to s under
the obvious congruence of L(g, ) with L(¢’,#’) and let ¢ be the point
of I(q, r), t + s, such that ps = pt. If follows from Lemma 6 that p, ¢, f, s
are congruently embeddable in the euclidean plane and consequently
8* = pfi+fst = p'f?+f's" = p's. Hence, the quadruple p,q,r,s is
congruent to the quadruple p’,¢’,+', s’ of the euclidean plane and the
proof is complete.

LeMwaA 8. The space M has the euclidean weak Sfour-point property.

Proof. Let p, ¢,r,s be any four points of M such that q,7,s are
linear and p is not on the line L that contains them. No generality is lost
in assuming ¢ is not the foot of p on L. Then there is a point % on L such
that pu = pg. By Lemma 7 points p’, ¢, ', 7" and P*, q*, u*, s* of the
ouclidean plane exist such that p,q,u, are congruent to p’, ¢’y u', "
and p, ¢, u, s are congruent to P* ¢*, u*, s*. Thus a motion of the eucli-
dean plane exists which sends p*, ¢, w* onto p’, ¢, 4, respectively, and
§* onto a point say ¢'. Let f,f’ denote the respective feet of p, p’ on
L(g,r) and L(g', '). Then by Lemma 6, pf = p’f’ and p's? = p'f2f's"
= P2+ fs% = ps2. Thus the quadruple p, ¢, 7, s is congruently embeddable
in the euclidean plane.

The crieria of Blumenthal [1] is now satisfied and we have the
following characterization.

THEOREM. A complete, convem,
lized euclidean if and only if it ha
property.

externally convem metric space is genera-
$ the euclidean isosceles feeble four-point
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