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Shapes of compacta and ANR-systems
by
Sibe Mardes$ié and Jack Segai* (Zagreb and Seattle)

1. Introduction. It is well-known - that local difficulties prevent
a successful application of homotopy notions to arbitrary compacta.
In an attempt to remedy this K. Borsuk introduced a theory of
shapes of metric compacta [3, 4]. In this paper we give an alternate
description of shapes and at the same time we generalize the theory to
the non-metric case. Our approach is based on inverse systems of ANR’s,
one advantage of which is that it is more categorical. The actual proof
that the two approaches are equivalent on metric compacta is given in
a sequel to this paper [11]. As an application of our method we classify
2]l P-adic solenoids and all (n-sphere)-like continua as to their shape.
Tt is also shown that the shape classification of 0-dimensional compacta
agrees with their topological classification. The theory is presented in
detail only in the absolute case, while for the relative case, i.e. the case
of pairs of spaces, we content ourselves with indicating the appropriate
changes. )

2. Category of ANR-systems. A directed set (4, <) is said to be
closure-finite provided for every a e A the set of all predecessors of ais
finite. Note that the natural numbers N with the usual ordering form
a closure-finite directed set. Another example is the set F(£2) of all (non-
empty) finite subsets of a given set 2 ordered by inclusion (a < o if and
only if aC a'). For ae(4, <) we define the rank 7(z) as the maximal
cardinal of a chain (linearly ordered set) in 4 having o for its terminal
point. If (4, <) is closure-finite, each a has a finite number of predecessors
and therefore 7(a) is a well-defined natural number. Note that in the
case of F'(Q) the rank 7(a) is just the cardinal of o and in the case of the
integers IV the rank r(m) = n.

By an ANR in this paper we mean 2 compact absolute neighbor-
hood retract for metric spaces (see [2], p. 100). We shall now introduce

* During this research J. Segal was visiting ‘the University of Zagreb on a Ful-
bright grant.
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our basic notion of the category of ANR-gystems., The objects of the

category, called ANR-systems or just systems, are inverse systems

X = {X., Par, A} where all X, are ANR’s and 4 is a closure-finite
directed get of indices; the bonding maps Pew: Xo—>Xa, a < o', are
continuous maps (not necessarily onto). A morphism in this category
2 XX = {X5, ¢, B} called a map of ANR-systems or just a map
of systems, consists of an increasing function f: B->4 and a collection
{fs, B} of maps fs: Xys—>Y¥s such that for § < B’ we have

(1) Teprane = qos for
i.e, the diagram
P
Xy XLy
1p b4
Y;; <T Yp'

commutes up to homotopy‘

The identity map 1x: X-—>X is given by 1(a) = a, 1o = lx, The
composition of maps f: XY, g: X ~Z={Zy, "y, ¢} is the map
h=yg I: X —Z defined as follows. h: € -4 is the composition of g: ¢ B
with f: B—4. The function h is clearly increasing. For h,: Xy 2, we
take the composition ¢,fy,. The function k and the collection {h,, C}

form a mapping of systems h: X~>Z. Indeed, for g=g(y), f' = g(»'),
¥ < ¢, we have

Tiprorenr = ey a0d ¢y Gotiot) = Tuy Gy -
This implies

o oot D 1srtoty) = G Qoo Jaty) = Ty G/ oty »
which is
o by Py 2y by

It is readily seen that composition of maps of systems is associative
and that the map 1y acts as a unit. Therefore, we have the following

THEOREM 1. ANR - systems and maps of systems form a category.

In the relative case an ANR-system (X, X,) consists of an inverse
’SYS;BHI of pairs {(X, Xy)e, Pav, A} over a closure-finite directed set 4
and each (X, X)o = (X, Xoo) is & pair of ANR's, ie. both X, and Xoa
are ‘J;:NR 5 and Xo, C X,; the bonding maps per are maps of pairs, i.e.
1(]732;( o) C X?a. A morphism is defined as in the absolute case the only

dez;nce being thai.: the maps Tp are maps of pairs fp: (X, Xo)ya ~ (¥, Xolp
am e homotopy in (1) is & homotopy of pairs. Identity and compo-

sition are defined as in the absolute .
b case. We thus ot "
of ANR-systems for pairs, obtain the category

©
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3. Homotopy of maps of systems. Two maps of systems f, g: X »Y are
said to be homotopic, written f= g, provided for every peB there is an
index ae€ —A) a 2]’(/3), g(ﬁ)’ such that
1) ToD1e3a = GsPoipra -

The set of all such o’s is denoted by (f, g)(8). Clearly, if a(f, g)(8) and
o > a, then a e (f, 9)(f)-

THEOREM 2. The homotopy relation ~ on maps of systems is an
equivalence relation.

Only transitivity requires proof. Assmme that f,g,h: X ->Y are
maps of systems and that f ~ g, g~ h. Then for a  (f, g)(B)and o’ € (g, A)(B)
we have .

Jolren = gePope 204 GsDoae = BsDaiprer -
For o'’ = a, o/,
DotprePac” = Py’ Pa'a”
and we obtain
FeP1@ePas = I8 Py@raPac” = G8Poipra’ Pola’’ = heDupra Para
i.e.
JeDip = hePu@e 5

which proves the assertion.
TueoREM 3. Let f, f': XY and 9,9 Y —~Z be maps of systems.
If f~f" and g=¢', then gf=gf"
" Proof. First we show that gf=gf Since g~ ¢, for each y ¢ C there
is a f e B such that

(2) Oy lots = Gr e -

Since the maps fz form a map of systems we also have
(3) TonD oo = Qoafp

{4) TroP e = dowafe -

From (3), (2) and (4) we conclude that

'

, ,
Gofon D et = G Qoo = Gy downls = Gfo P 1o »

which proves that g [ g'f. )
Next we show that ¢'f~g'f" Since f~f', for each ye O there is

an ae A such that
TroPrroe = frmProwe -

Composing with g, on the left we obtain the desired homotopy ¢'f = gf-
The proof is completed by applying transitivity of =.
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In the relative case two maps L gs (X, X,)>(Y,Y,) are said to be
homotopic provided for every § there is an index > f(BY, g(B) such
that (1) holds with ~ denoting homotopy of pairs. Proofs of Theorems 2
and 3 remain valid in the relative case also.

4. Homotopy type of systems. We say that a map of systems f: X -¥ '

is a homotopy equivalence provided there is a map of systems g ¥Y>X
such that gf ~1x and fg ~1y. We say that the systems X and —:1{ are of
the same homotopy type, and we write X ~7¥, provided there exists
a homotopy equivalence f: X Y.

THEOREM 4. The relation =~

Proof. Reflexivity and symmetry obviously hold. To prove transi-
tivity assume that X ~¥ and ¥ ~Z. There are maps f: X ¥ and
g: ¥->X such that gf~1x, fg~1y, and there are maps h: Y —~Z and
k: Z-Y such that kh~1y, bk~1z. .

Consider the composite maps hf: X—-Z and gk: Z->X. By Theo-
rems 1, 2 and 3,

() gh)=h{fk~hk~1z,

which proves that X ~Z.
We define the homotopy type [X] of a system X as the equivalence
class of X with respect to the relation ~. '
The ‘notions of homotopy equivalence and homotopy type extend to
the relative case in the obvious way and Theorem 4 remains valid.
) Of special interest (especially in connection with metric compacta)
is the case of ANR-sequences. These are ANR-systems X = {Xy, Puw, N},
where the index set 4 = ¥ is the set of natural numbers. In this case
the sequence X is completely determined by the bonding maps pu,n+it
Xn+1+_x”, nelN. ,
,THEOBEM 5. Let X and X'= {Xn,puw, N} be ANR-sequences.
If Prnss = Punir for every e N, then X ~ X', .
Proof. Indeed, a map f: XX’ is obtained by taking f(n) ==,
\/ . - ’
n ;'Z\]; a*ndf’l: 1x,: -X.n Xy Gle&ﬂy: fn_’pn,n-i-l = Pn,n+1 = Pyt == p;z,'n—Hf'nr—Ha
Z ic til_mws (that J1is a map of systems. Similarly, we define g: X’ +X
y putting g(n) = u, go = 1x,: Xp—>X,. Since gf = 1y and fg = Ly, it
follows that Jl:l'j T _EZI‘ E R =i B
. THA]NEOEEM 6. Let X = {Xn, Pun, N} be an ANR-sequence and let ¥y
¢ aXN of the same homotopy type as X, for each n ¢ N. Then there is
an R-sequence ¥ = { ¥y, g, N} such that X ~Y.
; inOf{ ‘Let f’f: X7 ¥, and gn: ¥y X, be maps such that Infn~ 1x,,
;ngg{ = 1(’1- f." e define g ni1: Yoy i >, a8 the COMPOSILE g, s = FouPo,nt Gt
We deline gun, 2 < 2', a8 the cOMPOSItE G = G, pi1 .r oy, - Clearly,

on systems is am equivalence relation.

(gk)(bf) = g(kh) f~gf~1x,

©
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Y = {Yn,; g, N} is an ANR-sequence. Now consider the maps f: X »¥

and g: ¥ ~X defined by f(n) = n = g(n), and by the maps fo: X, ~¥, and

gn: ¥Yn—>Xn rvespectively. Then f and g are maps of ANR-sequences,

because .
Qn,n+1fn+1 = fn?n,?t+1gn+lfrz+1 :fnpmn+1

and

Prntrfnts = InfnPnni10ni1 = Gnln,nit-

Moreover, g f:l:s_; and j _g:;z, which proves the assertion.

5. Systems associated with spaces. Let X be a compact Hausdorff space.
We say that an ANR-system X i3 associated with the space X provided
X = Inv1limX.

THEOREM 7. With every compact Hausdorff space X is associated an
ANR-system X = {X,, par, A}. This system can be chosen in such a way
that oll the X, are polyhedra and the cardinal kA is not greater than the
weight of X. With every melric compact space X is associated an ANR-
sequence X. .

Proof. We can assume that X is of infinite cardinality, for otherwise,
X itself is a polyhedron and the assertion is obviously true. First note
that X can be considered as a subset of the cube I? = HD I,, where each

1, =TI is the unit segment and £ is a set of infinite cardinality equal
to the weight of X. Let 4 = F(Q) be the set of all (non-empty) finite
subsets a CQ ordered by inclusion. For a= {@,, .., s}, n €N, let I
=TIy X oo X Iy I a<< oy lot poort 1¥ > I° be the natural projection.
Cleaxly, {I° pow, A} is an inverse system whose limit is I°. The natural
projection I?-»I* is denoted by pa. .

For each a e A, we now define, by induction on the rank r(a), & se-
quence of open sets Ui, in I * such that:

(1) ) ’ _pa(.X) ——"—WON Uan X
(2) : Ui D ClUwD Vs D Uss D U D oov s
(3) Poar{ Uat) C U pray—r+1, @ <a.

Assume that we have already defined U for 7(a) <r and that r{a’)
=7 > 1. Then for every a < o' we have

puu’(_pu'(X)) = _pa(X) C Ua,r(u’)—r(a)+1 9

and since there are only finitely many such e’s, it is possible to find an
open neighborhood U of pe(X) for which (3) holds. Next, we define
Uws, Uus, ... in accordance with (1) and (2).
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Clearly, for each a e 4 one can find a polyhedron X, C I® such that

4 OlUCX,CUxy.
Note that
(5) pau'(Xa’) C X, a<d,

because, for a < o, (4), (3) and (2) imply -
paa’(X'l’) Cpau’(Utx’l) C U, 1@ r(a)+1 CUxCX,.

Therefore, {Xa, Par, A} is an inverse system of polyhedra and we need
only to show that its limit X equals X. .
For every y ¢ X and a < o we have

(6) Pallf) = PaatPer(Y) € Poc(Xor) C Ua,rigy—riay1

Since Q is infinite, one can find o’ > a of arbitrarily ].é,rge rank r(a’) so
that (6), (2) and (1) yield for each ae A

DoY) € Dol X) -

Consequently, y ¢ X, which shows that X,C X. Conversely, X C X
because for each a we have po(X)C U, C X,.

If X is metric, its weight is countable and so is 4. Therefore 4 admits
a cofinal sequence which yields an ANR-sequence associated with X,
This concludes the proof.

In the relative case Theorem 7 is also valid and asserts that a compact
pair (X, X,) is the limit of some ANR-system for pairs (X, X,)
= {(X, Xy)ay Par, 4}. The eonstruction follows exactly the one in the
absolute case. One has only to interpret (1)—(4) as statements about pairs.
Thus, we need for each a ¢ 4 and each n ¢ N a pair of open sets (U, Up)an
= (Uany Usen) and a pair of polyhedra (X, X,), = (X, Xo,) satisfying the
pair analogues of (1)~(4). For example, in addition to (2) we require that

UOal o001 U0u2 D UOuZ 2 UOaS DI

Remark 1. A‘simil.ar proof is sketched in ([15], p. 46). On the other
hand, the results given in ([5], p. 284) and ([14], Theorem VII.3, p. 303),

are inadequate for our purposes since the index set A given there iy not
closure-finite. ’ ’

6, Maps of systems associated with maps of spaces. Let X and ¥ be
ANR-systems associated with spaces X and ¥ respectively. We salyjahat
the ‘map of syste1s 2 X ¥ is associated with a map f: X —¥ provided
for every e B we have

L fepro =~ gof ’

icom®

©
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i.e. the diagram
XX
g l 7
Ype——Y
Q

commutes up to homotopy (p. and gz are natural projections).
THEOREM 8. Let X, Y, Z be systems associated with X,Y,Z re-

spectively and let f: XX, g: Y >Z be maps of systems assoctated with

maps f: X —+X, g2 Y2 respectively. Then gf: X —Z is associaled with

gf: X ~Z. The map of systems Lx: X ~X is associated with the map 1x: X —X.
Proof. By assumption .

(2) Tepre = 4F 4
® G2l =75
Therefore, for §= g(y), (2) and (3) yield

Ovfon Dot = Gy Qo f = 7,47 5

which is the desired result. The second assertion in the theorem follows
from the obvious relation

1x,Po= Palx. ‘

TemorEy 9. Let X and ¥ be ANR-systems associated with X and ¥
respectively, let f,g: X~¥ be homotopic maps of systems and f: X ¥
a map. If f is associated with f, then g is also associated with f.

Proof. By assumption for each f§eB

Foproy = s -
Moreover, f~ g implies the existence of an a > f(B), g(B) such that

foPrera ™ s Do -
Consequently,

0Pty = GpPa@aPe = SeD1@aDa = foDrey = o] »
which shows that ¢ is associated with f.

Tn the relative case we say that f: (X_,A;,)»(L}’E) is associated
with the map f: (X, X,)~(¥,¥,) provided (1) holds for the homotopy
of pairs. Theorems 8 and 9 remain. va_lid with the same proofs.

TasorEM 10. Let X and Y be ANR-systems associated with X (md. Y
respectively and let f: X ~Y be a mapping. Then there exists a- mapping
of systems f: XY associated with f. ‘

A
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7. Proof of Theorem 10. We first consider a space X* defined as the
disjoint union of X = InvlimX and of all X,, aeA. A Dbagis for the
topology of X* consists of all the open sets U, from X, and of the setg

U2 = U pa(Ua) © 92 (T) -
For every ae A we also define a map pd: X3 ->X., where
Xt=|JXo v XCX*Y,

a<a’

’

by putting p¥|X = pa, PilXe = por, a< @'

Lemma 1. X* is a Hausdorff paracompact space which contains X
and X, with their original topologies. For every open neighborhood U of X
in X* there is an ae A such that XiC U. The map p3: Xi—>X, is
continuous. .

Proof. The first two assertions follow from Theorems 2 and 3 of [9].
The third assertion follows from the fact that for any open set U,C X,
the set (p¥) Y U.)= UZ is open in X%.

Lemua 2. For every collection o of open sets in X* which covers X,
there is an a < A such that for o’ > a the maps px and 1x are w-near in X*
(.e. for every x € X both points po(x) and x belong to some member of w).

Proof. Refine w by a collection covering X and consisting of open
sets of the form UZ. Since X is compact, a finite collection U%,, ..., U¥,
suffices to cover X. Choose an oy > ay, ..., an. Let o’ > g, and let # < X.
Then « belongs to some U3, de{l,...,n}, and therefore, p, () = po po(®)
€ Uy. Consequently, pu() € PowUy)C Us,. Thus, both points # and
Dp(2) lie in any element of w containing U%.

LeMma 3. Let X be an ANR-system associated with X, let ¥ be an ANR
and f: XY a map. Then there exists an index o ¢ A and for every o' > a
there exist maps f*: Xz —~Y such that

1) Fefpe.

Proof. First note that X* is normal (Lemma 1) and therefore
f: XY admits an extension f*: U->Y to an open neighborhood U of X
in X* (see e.g. [7], Lemma, 5.1, p. 93). Next observe that there is an open
covering ¢ of Y such that any two maps from any space to ¥ are homotopie
in Y provided they are c-near (see e.g. [7], Theorem 11, p. 111). Now
apply Lemma 2 to the collection: w = f* 7 (¢). We can find an index a € 4
such that for each o’ > a the maps po and 1lx are w-near in X* and there-
fore, f*ps and f*|X = f are e-near in Y. Consequently, f*py~f in ¥,
a < a’. By Lemma 1, we can assume that o is so large that X, C U for
e<a'. Then f* is defined on the whole space X and we can. define

icm
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Y

2 map faI: XX a8 the restriction fa' ::f*!Xa', a< a. Cleal°ly, fa'p o
in ¥ for a << o and Lemma 3 is thus established.

LeMMA 4. Let X be an ANR-sysiem associated with X and let Y be
an ANR. For some aed let f,g: X,—+Y be two maps such that

(2) P gPa.

Then there is an o' ¢ 4, a < ¢/, such that

(3) FPoat 2 g Paer -

Proof. Consider the set Xi C X* and the map pf: X&—-X,. Notice
that the set 4d,= {a'| ¢’ € 4, a < a'} is cofinal in A and therefore, the
inverse system {Xu, pawr, 4o} also has X for its inverse limit. Consider
now the set

Z,= (Xt x0)w(XxI)uw (Xsx1),
which is closed in X% x I, where I=[0,1]. By assumption (2), there

is a homotopy h: X X I connecting fp. to gp.. We define a map H:
Z.-»Y by

(4) H(x,t)= hiz,t), zeX,tel,
(5) H(z,0) = fpi(z), ze X3,
() H(2,1) = gplla), oeXi.

Observe that (4) yields H(z,0) = h(®,0) = fpd@), which agrees with
the value obtained from (5) for # ¢ X; similarly, for (z, 1), ® ¢ X, (4) and (6)
agree. Therefore, H: Z,—Y is continuous.

Since Y is an ANR, H admits an extension H* to a neighborhood U
of Z, in X.*x I. From the compactness of X x I we may conclude that
there is an open set V in X,* such that XCV and VxICT. By Lemma 1
applied to X,* and V, there is an index ' ¢4, a < o, such that XsCV

and therefore XoxICVxI. Clearly, H*| X, x I is a homotopy con-

necting fpa t0 gpa because, for z e X, we have
H*(%,0) = fp.*(x) = Fpa(®)
H¥(®,1) = gp"(2) = gPar(®) -

Levma 5. Let (4, <) and (B, <) be two directed closure-finite s_ets
and let g: B->A be a function. Then there exists am increasing function
f: B>A such that g(B) < f(B) for all §<B. ‘

Proof. We define f: B4 by induction on the rank of the elements
of B. If r(8) = 1, we put f(B) = ¢(#). Assume now that we have already
defined f for all fe B of rank r(f) <n in such a way that g(f) <f(,f§)
and that f is increasing. If r(§) = n, consider the set consisting of q(ﬁ )
and of all f(B) for f < #’. Since this set is finite, one can choose f(B’) in

4
Fundamenta Mathematicae T LXXIL
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such a way that g(f') <f(f') and that f(f) <f(B') for all B < . The
function f defined in this way has the desired properties.

Levuma 6. Let X and Y be ANR-sysiems associated with X and Y
respectively and let f: X Y be a mapping. Then there is an mnereasing
funciion f: B->A and for each pe B a map fz: Xys—>Ys such that

(7 06f = fa 1 -
Moreover, for cach §' > B there is an o > f(B') such that
(8) Tsiow = qop for D1 -

Proof. For each feB, we apply Lemma 3 to ¥; and the map

gsf: X+,I’#. One obtains an index a = g(f) ¢ 4 and for every o > 9(B)

a map fz: Xy—>Y¥; such that

(9) QFf:f;/pa’ .

By Lemma 5, there is an increasing funection f: B4 such that g(B) <f(B)
for each f<B. Let fy: Xyp—>Tp be the map fy=ff, where o = f(g)
2 g(f). Then, by (9), 27 ~fspss, which is (7).

For < B we also have

@of ~fo e
which implies
of = o @o'f = Qoo for D 1oy -
This together with (7) implies

TepimnerPren = Gap o Pro

which enables us to apply Lemma 4 with a, Y, f, g replaced by f(8),
;75, fﬁpjﬁmf(p’),%ﬁ'fp' respectively. We then conclude that there is an
index a’ e 4, o > f(f’), such that

. Topranerpron ~ qo forDione
which is (8).

Levws 7. Let X and Y be ANR - systems,
Function and let for every B « B, ¢ :
there exisits an o — (8, 8') = p(p)

let o2 B—~A be an increasing
Koy >y be a map such that for f < §'
such that

(10) PePatpr = Qos Por Doy’ +

Then there emists a map of syst :

e e ap of systems f: X +¥ such that for every B e B, f(B)
(11)

PPy = D1y -

Shapes of compacta and ANR-systems 51

Proof. For each ' e B consider the set {p(8, ') B < #'}. Since B is
closure-finite, this set is finite and so one can choose an element
a = f(B) € 4, such that f(8') = ¢(8, #') for all g < f’. By Lemma 5 there
is no loss of generality in assuming that f: B4 is an increasing function.
For each feB we now define fp: Xy5—>Y¥s by putting fz = gsPenie -

' Composing on the right with pwyey in (10), we obtain

PoPod)ie) = Qos Po' Pela16) 5
i.e.
TJepronen = qaefos B<P.

This proves that f: B-+4 and {fs, B} form a map of systems f: X Y.
Finally, note that

Tsp10y = QsPotpriePiy = PaPoip) -

Proof of Theorem 10. To the maps f obtained in Lemma 6 apply
Lemma 7. We obtain a map of systems f: X »¥. By (7) and (11) we have
for every feB

Forey = qsf

which shows that f is associated with f.

Remark 2. A few obvious changes in the proof of Theorem 10
enable us to conclude that every collection of maps ff: X ¥, for which
fﬁ .'quﬁ’fﬁ’, B < f', admits a mapping of systems j: X —>Y such that
fevsp =f° tor every feB. Theorem 10 follows by taking P = -

Theorem 10 is also valid in the relative case. Only the proofs of
Lemmas 3 and 4 require modification.,

In Lemma 3 the map f: (X, X,)>(X,¥,) is extended to a map f*:
U-»Y of a neighborhood U of X in X* by first extending fo= flX, to
a map f: Uy—7Y, of a neighborhood U, of X, in X§= ({JXe)w Xy and
then extending simultaneously f and f to f*. By Lemma 1 there is an
aeA such that, for o >a, XvC U and f*(Xew) C Xy, e fa = ¥ Xw
is a map of the pair (X., Xor) into the pair (X, ¥,).

Since ¥ is an ANR, there is an open covering ¢ of Y such that for
any two e-near maps f,g: XY and any e-homotopy H: XX I—‘>17
connecting f, to g, = g|X,, there is a homotopy H: X x I +Y which
extends X, and connects f to gy (although X is"not necessarily metri(_},
the proof in [7], IV, Theorem 1.2, p. 112 applies). Moreover, since Y, is
also an ANR, there is an open covering & of ¥, such that if fy, g0 Xo —+I:0
are g-near maps, then one can find an e-homotopy H,: Xox{—{lo
connecting f, to gy (see [7], IV, Theorem 1.1, p. 111). Therefore, if the
maps f and g are ¢-near and their restrictions fo and g, are g-near, t]:}en
there is a homotopy H: (X, Xy x I—+(¥,¥,) connecting f to g. Applying
Lemma 2, one can achieve that for o' > a, §= f*pr and f are e-near,

4%
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while g, = f*pe|X, and f, are g-near and therefore, f*py and f are
homotopie as maps of pairs (X, Xo) (¥, Y). s

The only change in the proof of Lemma 4 for the relative case ig
‘that the extension of the map H: Z,—Y to a neighborhood of Z, in
Xt x I is done in two steps. One first extends the restriction H, = H|Zy,,
where Zgs = (X % 0) v (X, x I) v (X3 x1), to a map of a mneighbor-
hood of Zo, in X&x I to ¥, and then one extends to a neighborhood
of Z, in XixI to ¥.

8. Homotopy of associated maps and systems.

TaEoREM 11. Let X and ¥ be ANR-systems associated with compact
Hausdorff spaces X and Y respectively, and let fyg9: XX be maps . of
systems associated with maps f,g: X =Y respectﬁe@ Then f~g implies
I=g

Proof. By assumption, for each feB we have fzpyp=gf and
GsPoe =~ gpg. Since f~ g, it follows that

1) TePuo = gpPote) -
For a, > f(B),9(B), (1) can be written as

(2) TP 1@ Pas = 5 Po(61i0Pr0 5

and we can apply Lemma 4 to the maps [fiDseu, §sPuBrae: Kag—>Lp-
We conclude that there is an a; > ¢, such that

®3) T6Piwe = G Popar »
which shows that f~g.

THEOREM 12. Let X and ¥ be ANR-systems associated with compact
Hausdovff spaces X and Y respectively. If X and Y are of the same homotopy
type, then X and Y are also of the same homotopy type, X ~ Y.

Proof. By assumption, there are maps f XY, ¢: Y—->X such that
(4) gf:].x, fg:ly.

By Theorem 10, there exist maps of systems f: XY, ¢g: ¥ —X as-
so.ciated with f and g respectively. By Theorem 8, yf: X »X is associated
with gf: X>X and fg: ¥ Y is associated with fg: ¥ Y. Moreover,
1x: XX is associated with 1x: X >X and 1y: ¥ ¥ with 1y: ¥ »T.
Therefore, by Theorem 11, (4) implies B B

gf=1x,
which proves that X ~¥.°

COROLLARY 1. Let X and X' betwo ANR-systems associated with the
same compact Hausdorff space X. Then X ~X'.

_fﬁzl{7
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Ve see from Theorem 7 and Corollary 1 that every compact Haus-
dorff space X determines a homotopy type of ANR-systems, namel
the type which contains all systems X associated with X. Thiy type is
called the shape of X and is denoted by [X] or following K. Borsuk
by Sh(X). Theorem 12 implies that the shape of X is a homotopy in-
variant, i.e. X ~ Y implies [X]= [Y]. However, one can have spaces X
and Y of different homotopy type but of the same shape. The simplest

vexample is the cirele 8" and the “Warsaw circle” {the graph of the sin—]aic

curve closed by an arc). Also note that each class [X] is determined by
some space X, namely by InvlimX.

TreoREM 13. Let X and Y be ANR-systems associated with X and ¥
respectively, and let f: X —X be a map of systems. If ¥ is an ANR, then
there ewists a map f- XY such that f is associated with f.

Proof. Since ¥ is an ANR we can consider a special system as-
sociated with ¥. Tts index set 4 = {1} and its only coordinate space
Y, = ¥; we denote this system by {¥}. By Theorem 10, there are maps
of systems g: ¥ —>{¥} and h: {¥}—>¥ associated with 1y: Y Y. Since
gf: X —>{Y}_ is ‘a map of systems there is a map g fom: Xpo—~Y. We
now define f: X =Y by

= gfom Dot -

By definition, ¢f is associated with f. On the other hand, & is associated
with 1y: ¥ —7Y, so that (by Theorem 8) hgf: X is associated with
f: X +Y. By Theorem 11, hg~1y and so Theorem 3 and 9 imply that
f is associated with f. T

Remark 3. Let X be an ANR and {X} the special ANR-system
associated with X. A morphism f: {X} XY consists of a collection of
maps f: X Y5, BB, such that ggfy=fp for all f < p’. In general
one cannot find a map f: X —»Y such that fis associated with f.

TrporEM 14. Let X and Y be ANR's. If X and T are of the same
shape, then they are of the same homotopy type.

Proof. By Corollary 1, we can take as representatives of [X] and
[¥] the special ANR-systems {X} and {Y}. By assumption, there are
maps of systems f: {X}—>{¥} and g: {¥}~>{X} such that gf=~1x and
fg=1y. However,_in this case they reduce to maps f: X=X, g Y -X
such that gf~1x and fg=~1y.

All the proofs in this section earry over to the relative case after
the obvious modifications needed for pairs are made.

9. Cohomology groups. In this section we shall ghow that Cech co-
homology groups are shape invariants.
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TrEEOREM 15. Let X and Y be ANR-systems associated with X and Y
respectively, and let f: XX be o map of systems. Then f induces a homo-
morphism f*: HY(Y; §)—~HY(X; G) for every integer ¢ and Abelian group G-
Purthermore, (gf)* =f*¢", 1*=1, and f=g implies f* = ¢*.

Proof. The eohomology functor H? transforms the inverse systems
X = {Xo, Porr, A} and ¥ = {¥s, gsp» B} into divect systers of groups

BYX; @) = {H{(Xe; @), pary A}
HY(Y; 6) = {H(Yp; @), 639 B} -
Note that the continuity of Cech cohomology-implies. that the direct

limits of these systems are the groups HYX; @) and HYY; @) re-
spectively. The homotopy

Teprorren = Gowfy
induces the equality
Dreenfs = Fiaho -
Therefore, the mapping of systems f= {fg}: X Y induces a homo-
morphism {f§}: HYY; &) ~HYX; @) of direct systems of groups (see [5],
VIIT) and this homomorphism induces in the usual way ([5], VIII)

2 homomorphism of groups _)_‘*: HYY; G)~>HYX; @). It follows from the .

definition that the composite map of ANR-systems g f induces a composite
of homomorphisms of direct systems of cohomology groups and this
induces the composite homomorphism f*¢* of limit groups, so that
=1 - ,
Finally, let f~g. Then for every feB there is an a > 7B, 9(8)
such that fapee =~ fsPrpe and consequently
1 Plonfi = Paewds -
Composing with p¥ on the left, we conclude from (1) that
Diofi = Doy -
On the other hand, by the definition of f* and g*, we have
TG = piofs
9% = Daeds -
Consequently, for every B¢ B,
6 =g,
which implies f* = g*.

THEOREM 16. I]TX and Y are compact Hausdorff s
paces of the same
shape, then HY(X; @)~HYY; @) for each integer ¢ and Abelian group G.

icm
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Proof. Let X and ¥ be ANR-systems associated with X and ¥
respectively. Then there are maps of systems f: X »¥, g1 ¥ +X such
that gf~1x, fg~1y. It follows from Theorem 15 that f HY(Y; &)~
—HYX; G) is an isomorphism. B

In the relative case a map of systems f: (X, X,) (¥, Y,) induces
a homomorphism of the relative cohomology groups f*: HY Y, ¥, &)
~HYX,X,; §). The analogues of Theorems 15 and 16 remain valid.

Remark 4. Note that there exist compact Hausdorff spaces X which
are not of the shape of any compaet metric space. For example, consider
the Cartesian product X of an uncountable collection of 0-spheres
(discrete 2-point spaces). Since HYX; Z) is the group of all continuons
mappings f: X ~Z (see e.g. [5], p. 254), it is clear that H(X; Z) is an
uncountable group. On the other hand, every compact metric space Y is
the inverse limit of a sequence of polyhedra (Theorem 7) and therefore
HYY; Z) is » countable group for each ¢. Thus we may conclude from
Theorem 16 that X and ¥ are not of the same shape.

10. Shape classification of sphere-like continua. As an example of the
ANTR-system approach to shapes we will classify 8™-like continua. We
first clagsify P-adic solenoids Sp where P = (pi, Ps, ---) is a sequence of
primes. Spis defined as the limit of the inverse sequence 8p={Xn, %tn,nt1, N}
where X, = {z| |s| = 1} is the unit circle in the complex plane and the
map Apatr Xnt1—>Xn I given by T mai1(2) = #¥=. Two sequences of
primes P = (py, s, --.) and @ = (¢, €2, ..) are said to be equivalent,
written as P~@, provided it is possible to delete a finite number of terms
from each so that every prime occurs the same number of times in each
of the deleted sequences (see [1], p. 210).

TrEoREM 17. Let Sp and Sq be two solenoids. Then the following three
statements are equivalent:

(i) Sp and Sq are. of the same shape;

(ii) P~@Q;

(iiiy Sp and Sq are homeomorphic.

Proof. (i)=(ii). Let [Sr]=[Se]. Then by Theorem 16, H*Sp; Z)
~HYS8o; Z). From the continuity of Cech cohomology it follows that
HYS8p; Z) is isomorphic to the group Fp of P-adie rationals, i.e. rationals
of the form m/p,p, ... Ps, Where m ¢ Z. However, Fp~Fq implies P~Q
(see [13], p. 198). ‘

(ii) =-(iii) has been noted by R. H. Bing ([1], p- 210).

(ifi) = (i) follows from Theorem 12.

Remark 5. §. Godlewski has also obtained the results of Theo-
rem 17 [6].
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For every sequence of primes P = (p1, Py --) W& NOW consider the
inverse sequence S = {Xu, 7g,ns1, N}, Where each X, is the m-sphere 8™
and mynp1: 8™ 9™ is any map of degree pn. We denote the inverse limit
of §% by S%. By Theorem 5, the shape of S is completely determined.

TarorEM 18. Two spaces ST and 8§ are of the same shape if and only
if P~Q.

Proof. Consider the solenoid Sp and its expansion Sp. Applying
the (m—1)-fold suspension 8™ we obtain the inverse sequence

8" (8p) = {8" 8, 8", n41), N}

whose limit is 8™ Y8p). Let fo: Xn = 8™ +8"71(§") = 8™ be any mapping
of degree 1. Then the maps f, form a map of systems f: 8B —>8"""(8p)
because of the Hopf classification theorem for maps of spheres. In fact
fis a homotopy equivalence and thus 87 is of the same shape as 8™ Y(8p).
In this way the problem reduces to showing thab S™7Y(8p) and 8™ H8p)
are of the same shape if and only if P~¢.

Tf 8™ Sp) and 8™ (8g) are of the same shape, then by Theorem 16,
8] H™S™(8z); Z) ~H™S™ X (8q); 2).
However, the first group is isomorphic to H'(Sp; Z) and the second
group to HYS8g; Z) so that (1) implies HSp; Z)~HYSg; Z), which
again implies P~@. Conversely, if P~@Q, then Sp and Sy are homeo-
morphic and therefore so are 8™ *(Sp) and 8™ (Sg). This completes
the proof.

A metric continuum X is said to be 8™-like provided for each ¢ > 0
there is a mapping f.: X >8™ onto 8™ such that diam f *(y)< e for
any ye 8™

THEEOREM 19. Hvery S™-like continuum X has the shape of a point,
8™ or SP.

Proof. X admits an inverse sequence expansion {X,, wnn+1, N}
where all X, are m-spheres (see [10] or [8]). Let %k, be the degree of mp,pr1-
We can always assume that all k, > 0 (this can be achieved by omitting
a finite number of initial terms and by taking compositions of consecutive
bonding maps with an even number of negative degrees). If there are
infinitely many zeros among the degrees, then X is of the shape of
a point because the maps of degree 0 can be replaced by constant maps
without affeeting the shape (see Theorem 5). Thus, if X is not of the
shape of a point, we can assume that %, > 1. If there is an #, such that
kn=1 for m >y, then by replacing the bonding maps by identities,
we conclude that X is of the shape of 8™. Otherwise, we can assume that
all ks >2 (this can be achieved by taking suitable compositions of
consecutive bonding maps). We now decompose the bonding map n,n+1
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into a product of maps from 8™ into 8™ each of prime degree. This yields
a, limit space ST of the same shape as X and the proof is completed.

Theorems 18 and 19 classify all 8™-like continua with respect to
their shape.

11. Shapes-of O-dimensional compacta.

TrEoREM 20. Two 0-dimensional compact Hausdorff spaces are of
the same shape if and only if they are homeomorphie.

Proof. First notice that every 0-dimensional compact Hausdorff
space X is the inverse limit of an ANR-system X = {Xa, Pow, 4}, Where
all X, are finite sets. Indeed, X can be obtained by considering the
nerves X, of finite coverings a of X formed by disjoint open sets and
the natural projections pu uniquely determined by inelusion. Note that
for a given o ¢ A there are only finitely many aed refined by o' so
that (4, <) is closure-finite and X is an ANR-system associated with X
(see [16], Theorem 5, p: 459). :

Now assume that X and Y are compact Hausdorff spaces of the
same shape and that X and ¥ are associated ANR-systems with X.
and Y, finite sets. Then there exist maps of systems f: X —¥ and
g: ¥ >X such that gf~1x and fg~1y. Since the components of Y
are single points, the homotopy

fapionon = tesfe, B<§,
becomes an equality

Teprowey = Qe fo -
Therefore, {fs} is actually a map of inverse systems (in the sense of [5],
VIII) and so induces & map f: X Y such that for every fe B

(1) Teprny = f -
Similarly, we have a map g: ¥ X such that for every ae A
(2) - Jaota) = P«_zg .

Furthermore, the homotopy ¢f~1x implies that for every ae 4 there
is an o’ € 4, o' > a, fg(a), such that

(3) ol Prowe’ = Dea’ -
Consequently, for every ae4,

(4 JafgyPiotey = Pa -
By (1), (4) becomes

(5) 9aGgf = Pa 5
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which, by (2), gives

®)  pgf=1e-

Since (6) holds for every aeA, we conclude that
() ' of =1x.
Similarly, we obtain

{8) fg=1».

{(7) and (8) show that f: XY is a homeomorphism which completes
the proof. i

COROLLARY 2. Among countable metric compacta there are s, different
shapes.

Proof. Countable metric compacta are 0-dimensional and therefore
their shape classification coincides with their topological classification.
However, 8. Magurkiewicz and W. Sierpinski have shown ([12], Theorem 2,
P. 22) that there are s, different topologleal types among the countable
metric compacta.

Remark 6. K. Borsuk has shown that there are 2 different shapes
of plane compacta ([3], Theorem 10.7, p. 238). Corollary 2 shows that
already on the line there are uncountably many different shapes.
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