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Concerning the unions
of absolute neighborhood retracts

having brick decompositions *
by‘
Steve Armentrout (Iowa City, Ia)

1. Introduction. In the study of retracts, one is interested in de-
termining those properties of polyhedra that are also possessed by
"compact metric absolute neighborhood retracts. A basic property of
polyhedra is that they can be decomposed into simplexes in such a way
that if any number of them meet, their intersection is a face of each
of them, and hence is a simplex. This property of polyhedra leads to the
notion of a brick decomposition of a space.

If X is a topological space, then a brick decomposition of X is a finite
collection. {X;, Xs, ..., X} of compact metric absolute retracts in X such
that (1) X=X, v X,u..vX, and (2) if any number of the sets
X,, X,, ..., and X, intersect, their intersection is an absolute retract.

Clearly, every polyhedron admits a brick decomposition. Further,
any metrie continuum admitting a brick decomposition is an absolute
neighborhood retract [4, page 178]. However, not every compact metrie
absolute neighborhood retract has a brick decomposition [4, page 178]. The
existence of compact metric absolute neighborhood retracts with no brick
decomposition is related to the existence of such retracts with the
singularity of Mazurkiewicz [4, page 152; 31

In [4, page 179], Borsuk mentions the following open question:
Tf X and ¥ are spaces such that X, ¥, and X ~ ¥ have brick decompo-
sitions, then does X v ¥ have a brick decomposition? The purpose of
this paper is to give a negative answer to this question. .

The example that we describe here is obtained by an easy modifi-
cation of the construction of [3]. A similar construction could be made
using toroidal upper semicontinuous decompositions and the tech-
niques of [2]. ‘

«

* Research supported in part by the National Science Foundation under Grant
No. GP-0641, and in part by the Institute for Advanced Study.
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¥ Mis a mémifold, then Bd M and Int M denote the boundary
and interior, respectively, of M.

A collection € of sets in a metric space is a null collection if and only
if for each positive number &, there exist at most finitely many sets of ¢
of diameter greater than e.

2. Tapered Antoine’s necklaces. Let D denote the disc{(w, ) = (z,y) < B
and (#—2)®+y? < 1} in the plane B”. Let T denote the solid torus obtained
by rotating D about the Y-axis. Let B denote the disc which is the
component of T' ~ B distinet from D. Let # and y denote the centers
of D and F, respectively. Let 4 and B denote the two 3-cells that are
the closures of the components of T—(D v B). ’

In the construction of the spaces to be studied in this paper, we
use sets related to the standard Antoine’s necklaces in B, and which we
shall call “tapered Antoine’s necklaces”. In Section 3, for each positive
integer r, we shall construct two such sets, one in 4 and one in B. In
this section we shall describe the construction for such sets in A, and
give notation to be used later. Corresponding sets in B will be obtained
by reflection through E?.

By a doubly infinite chain of sobid tori in A we shall mean a collection

ooy Togy Tty T, Ty, Ty, )

of mutually disjoint unknotted polyhedral solid tori in IntA such that
(1)if » and m are distinet integers, then T, and T, are linked if and
only if [n—m| = 1, (2) for any neighborhood U of z, there is an integer A
such that if 4> 4, T, C U, and (3) for any neighborhood V of Y, there
is an integer u such that if J >u, then T;CV. See Figure 1. Note that
the chain is a null collection. The mesh of the chain is max {diam T: 1 is
an integer}.

Fig. 1

©
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Suppose that r is a positive integer (fixed in this section). Let
{“-: TT(—2)7 TT(—1)7 Tfﬂ) T, Tﬂa }

be a doubly infinite chain of solid tori in 4. We suppose that this chain
has mesh at most one. For each integer 4, let {Tyir, Tris, = T,,:,,.,,.l} be
a chain of linked polyhedral unknotted solid tori m IntT,; circling T'y;
exactly twice; see Figure 2. We suppose that if j=1,2,..., or m,

Fig. 2
i 1 i j = i let {Tm"l T”jg, see
iam Trsy) < 1/2. I 4 1san1ntegerJfl,z,...,ormqt,,., 1
(dl@? ~~m)} be/a, chain of linked p(’)lyhedra,l solid tori in IntTy;;, each of
rifmei .
di;meter less than 1/4, circling T exactly once; see Flgurfa 3. i
Let this process be continued, with subsequent chains cireling

B S} o mri
Trs5
exactly once, and let My, My, Mys, ... denote ~:=L_,JQQ Ty i=L_Jm ig riis

0 mri

oc
mow Tyijkc, -, respectively. Let N, denote {m, 4} v (tngoM,.t);
jl\zT,_ cciJsjzL ta;;;'ed Antoine’s necklace in A No-te that N,—{z,y}CInt 4.
In the construetion of N,, the solid tori N
vy Trie2yy Trenys Troy Tr1y Tray o

the golid tori of the first stage of the construction of -N,, the solid

tor are the solid tori of the

tori Ty, where ¢ is an integer and 1 < i< my,
second stage, and $0 on.
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If » is any positive integer, then a« is a stage n index in the con-
struction of N, if and only if there exist integers 4, 4y, ..., and i, such
that 1<i, < Meiy,, 1< U5 < Mpiyiny ony and 1 <dp < Moerdy.niin- 9 and «
EX TN .

Clearly, if z ¢Int 4, N, may be constructed so that z e N,.

Fig. 3
For each integer 4, we construct an are A, lying in Int Ty just as

in section 2 of [3]. It is true that for each i, A, contains N, ~ T,;. The
collection

{'"a Ar(-—2), Ar(‘l)y Aro, -A-TI; Aﬂ: }
is a null collection of mutually disjoint ares.

3. Construction of certain decompositions. Let ., =, X3y ... be a count-
able dense subset of Int.A.

Let N; be a tapered Antoine’s necklace in A such thatb (1) o e Ny
and (2) each of the first stage solid tori used in describing ¥, has diameter
less .than 1.

) For' e‘axch positive integer 4, there is a first stage solid torus 74; used
in describing N,, and there is an are A;; in Int Ty, containing T'y; ~ N,
and constructed as described above. Let #, denote

{"-: A1(~2); Al(—l), Am, Au, 4, } ,

and let A4, denote {z,y} v ({{a: ae}). Then #, is a null collection
of mutually disjoint ares in IntA, each of diameter less than ons. ‘

Let 7, be the least positive integer ¢ such that #, ¢ 4,. Let N, be
@ tapered Antoine’s necklace in 4, containing #,,, and, except for # and y,

©
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disjoint from 4. Further, we required that each of the first stage solid
tori used in deseribing N, be disjoint from A; and have diameter less
than 1/2.

For each positive integer 7, there is a first stage solid torus T; used
in describing N, and there is an arc As; in IntTy;, containing N, ~ Ty,
and constructed as described above. Let 4, denote

{oey Asogyy Aeny; Aoyy Aoiy Ao, o}y
and let 4, denote {z,y} v ({J{a: ae4,}). Then #, is 5 null collection

of mutually disjoint ares in IntA, each of diameter less than 1/2.

Let this process be continued. There result a sequence N,, Ny, Ny, ...
of tapered Antoine’s necklaces in A, and a sequence #;, #4,, #4;, ... of null
collections of mutually disjoint arcs in Int A such that if for each positive

integer r, Ay = {z,y} v ({U{a: @ € #&}), the following hold: (1) N,C 4,.
@) m,et[) 4y. (3) For any integer 4, (diam Ay < 1/2%

Let ali denote the collection | j{#: r=1,2,3,..}. It is clear that
# is a null collection of mutually disjoint ares in IntA4.

Let C be the dise {(z,¥): (z,y) « F? 2| <2, and ly| <1} in the
plane E*. Then Cv D vy E is a dise in E® Let 4* denote 4 u C, and
let B* denote B u (.

Let H denote the collection consisting of all the arcs of the family #,
together with all singleton subsets of A™* not on ares of 4. Sinee # is a null
collection, it follows that H is an upper semicontinuous decomposition
of A*. Let X denote the associated decomposition space, and let & denote
the projection map from A* onto X. )

" B and B* are the images under reflection in the plane B? of 4 and 4%,
respectively. Let K denote the collection of images, under reflection in E?,
of sets of H. K is an upper semicontinuous decomposition of B*. Let ¥
denote the associated decomposition space. Clearly ¥ is homeo-
morphic to X.

Let @ denote H v K; it is easily verified that @ is an upper semi-
continuous decomposition of 4* v B*. Let Z denote the associated de-
composition space, and let g denote the projection map from A* v B*
onto Z.

It is clear that Z = X v Y. The remainder of the paper is devoted
to proving the following two facts: »

(1) X, ¥, and X ~ ¥ have brick decompositions.

(2) Z has no brick decomposition. )

4. Preliminary lemmas. We establish some preliminary lemmas in

this section. The first two are adaptations, to the situation described in
this paper, of Lemmas 2 and 4 of [3].
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Lemma 1. Suppose that r is a positive integer, i is an integer, and U is an
open subset of A* & B* such that (1) U is a union of elements of @ and (2)
U contains a singular disc 4 such that BAAC Ty and BdA+ 0 in T,,.
Then U contains loops y and i such that (1) y C Tyi—1y and y & 0 in. Tpy_y,
and (2) AC Tf(i.H) and A0 in Tr(i-(-l)-

Levma 2. Suppose that Uy, Uy, U, ... is a sequence of open subseis
of A% w B* such that for each j, Ujy1 C U; and each loop in Uy is homotopic

. . . *
10 0 in U;. Suppose V is open in A* © B*, V C["\ Uy, and for some integers &
§=0

and 1, Ay CV. Then there is a loop y in Uy~ Ty -such that ya0 in Ty.
LeMmA 3. Suppose the hypothesis of Lemma 2, and in addition, each
of .V, Uyy Uyy Usy - s @ union of elements of G. Suppose Uy and U, are
neighborkoods (in A* v B*) of o and y, respectively. Then there emist inte-
gers s and t such that (1) t<s, (2) Trs C Us, (3) Tie C. Uy, and (4) if i is
an inieger such that t < i< s, there is a loop v; in Uy~ Ty such that
Vi 0 in T ki
Proof. From the construction, there exist integers ¢ and s such
that t<s, T% C Uy, and Tk C U,. We may suppose that s—1I=[—¢;
let m denote s—1. : ’
.The sequence Um+ii, Umizy Umys, ... and the set V satisty the hypo-
thesm.of Lem¥na 2. Hence there is a loop 9 in Upii ~ Ty such that
Y1 0 in Tyq. Since each 1oop in Usyy is trivial in U, 3 bounds a singular
dmgl Atz hln U Then by Lemma 1, there exist (a) 100p y;4qin Um ~ Tz
sue ab yrya» 0 in Thgyy and (b) a loop 9y in - T, T
that *y_, + 0 in Tra—yy. e m 7 oo Sich
) After finitely many repetitions of this procedure, we obtain loops y,
in U1f\ Tss and 7t in U, ~ Ty such that yy» 0 in T4 and y~ 0 in Ty,
Smc;e for each j, U; C U,, then each of theloops y, 3 Yoly o
and y; lies in U,. * ’
A ILEM:MA 4. Suppose Q i:s a 3-cell in B, y and 1 are disjoinit linked loops
ufz Bﬁ%@,ﬂanﬂ A-bounds a singular disc A in B such that in o nesghborhood
0 » 4 is polyhedral. Then there is an arc B sm 4 jotni i
oy 1o point . B ~ Int@ joining a point
Proof. There is a 3-cell @, su
: . o such that @, CIntQ, y u 1 C IntQ,, 4 is
ioiy?edra.l in a nelghborhoc.)d,of BdQ, and in general,position with OJ’SdQ(,.
. :Ch be a map from i 2-simplex 4, onto 4 such that 0[Bddy] = 2 and
e Dcomponent of 67 [4BdQ,] is a simple closed curve in Int4,.
et D, be the component of 4,—37'[4 ~ BdQ,) containing Bd 4,. Then
O[D,] lies in @,, and hence in IntQ. "
We shall prove now that y intersects 6[D,
curv'e 7 gf D, distinet from Bd4,, 8[x]C Bag,.
tension 8* of 6|D, such that 8*[4,—D,] C BAQ,.

©1 YTy ey Vi1,

o] For each boundary
Hence there is an ex-
Since y and 1 are linked,

©
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y intersects 6°[4). Since y CInt@, and 6*[4e] ~ IntQ, C 8[D,], y inter-
sects 8[Dol.

Hence 6[D,] contains an arc f joining a point of y and a point of 4.
Clearly pC 4 ~IntQ.

5. Properties of X, Y, and Z.

TEvMA 5. Bach of X, Y, and Z is a compact absolute neighborhood
retract.

Proof. This follows immediately from Corollary 12.14 of Chapfer V
of [4] provided each of X, ¥, and Z has finite dimension. We shall prove
that Z has finite dimension.

7 is the space of a certain decomposition & of the set 4* v B*, and
A* U B* C BE®. Further, G has only a countable number of nondegenerate
elements, and each is an arc. Enlarge ¢ to a decomposition G* or E* by
adding to the sets of G all singletons in B*— (4% v B*); here we regard B°
as o subset of B Now each are of & lies in B® and hence by the Corollary
on page 337 of [5], each arc of & is céllular’in E*. Hehce G* is a cellular
(or pointlike) decomposition of E*. Further, if ¢ is the associated pro-
jection map sending B* onto the decomposition space B*G* associated
with G*, then p[4* v B*] is homeomorphic to Z.

By Corollary 2 of [1], B*/G* can be embedded in FP. Hence Z is finite
dimensional.

The following lemma is the main result of this section. Recall that
¢ is the projection map from A* U B* onto Z. ’

LEMMA 6. Suppose M is a compact absolule retract in Z such that for
some open subset A of g[Int 4] and some integers T and 1, g[4] C AC M.
Suppose W is any open set in Z containing M, and U and Uy are open
sets in A* w B* containing ® and y, respectively. Then there is an arc 0 in
g~ [W] ~Int A from a point of U, to o point of Uy.

Proof. By Lemma 5, Z is a compact absolute neighborhood retract.
Hence we may apply Lemma 7 of [3]} Let W, denote W. Hence there
exists a sequence W, Wy, Wa, ... of open sets in Z such that for each i,
M C Wi, Wit C Wy, and each loop in W4 is homotopic to 0 in Wi.

For each 4, let U; denote g~{W.]. Then for each i, U; is open in
A* U B* and a union of elements of G. Further, by Lemma 9 of [3], for
each 4, each lgop in Uy is homotopic to 0in Ui.

Let V denote g~ 14]. Since g[Int.A] isopenin Z, V' is open in A v B*.
Since M C (3 Wi, then ¥ C () Us. Since there exist integers k and [ such

1=0 =0
that g[Ad]C 4 it follows that 4uxCV. :
By Lemma 3, there exist integers sand ¢ with ¢ < s such Tﬁhat Ty C U.I,
T C Uy, and if ¢ is an integer such that ¢ < i < s, there is a loop y¢ In

U;~ Ty such that ys» 0 in T
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Now each loop in U, is trivial.in U,. Hence for each 4 such that
t <1< 8, ys bounds a singular dise 4; in U,.

8
Let 4, be a 3-cell in Int.4 such that | Jy; C Int4,. Since Bd 4, CInt 4,
it

=
we may, for each i such that i< i< s, adjust 4; in a neighborhood of

Bd 4, so that the adjusted A: is polyhedral and lies in U,. We assume
then that each 4; has these properties. -

Now by construction and the fact that for each i such that ¢ < i<,
y; lies in Tys and yi+ 0 in Tk, ib follows that if ¢ < 4 << s, ¥¢ and y;y, are
linked. Therefore, by Lemma 4, if ¢ < ¢ <, there is an are 8; in 4; ~ Int 4.

PRI - . 8 s—1 N
joining 2 point of y; to a point of yi4s. Then ( 'Utw) v (Utﬁi) is an arcwise
i= i=

8 8
connected continuum lying in (| J4:) » Int4, and since (Udy) C Uy, this
2 ) ¢

continuum lies in U, Im'uA.1 Since ysC Tws C Us anci ty; CTuwCU,,
there is an are § lying in U, ~ Int A joining a point of Uz and & point of U,.

In the construction of X, we made use of a countable dense subset
%y, @y, ... of IntA. The construction was done so that if r is any positive
integer, there exist integers k and ! such that @,e¢dwm. Note that
{g(z): r=1,2,8,..} is dense in g[TntA], and since Int 4 is a union of
elements of @, ¢g[IntA] is open in Z.

Tor each positive integer 7, let ¥, be the image, under reflection in B?,
ot x,, and for integers k and [, let By denote the image, under reflection
in B? 3 of Akla

Levma 7. Suppose M is a compact absolute retract in Z such that for
some open subset Q of g[Tnt B] and some integers m and 7, g[Bpa) C 2 C M.
Suppose Uy and U, are open sets in A* v B* containing x and y, respectively,
and W is any open set in Z containing M. Then there is an arc @ in g~ [ W] ~
~ IntB from a point of Uz to a point of Uy. . ’

LE]\S[M’A 8. Suppose M is a compact absolute retract in Z- such that for
some open subset A of g[IntA] and some integers k and 1, g[An] C A C M.
Then both = _and y belong to g~ [M]. -

) Proof. Since M is compact, so iy g~ [M]. We shall prove that if
U is any open set in A* « B* containing ¢~ [M], both # and y belong
to the closure of U. It then follows easily that # and y belong to g~[M].

Let U_ be any open_set in A* < B* containing ¢~ [M]. Since G is
upper semicontinuous, there is 'an open set V in 4* U B* such that
g“[.M} CVCU and V is a union of elements of G. Hence g[V] is open
in Z. Let Uz and U, be open sets in 4* u B* containing 2 and v, re-
spectively. 3

. ]zy Le.mma 6, there is an arc 6 in ¥V ~ IntA intersecting both Uz
2:: the,,(;lossluic: OVf'CU?T, U intersects U, and U,. Hence z and y belong

©
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TEvMA 9. Suppose M is a compact absolute reiract in Z such that for
some open subset Q of g[IntB] and some integers m and n, g[Bma] CRQC M.
Then both @ and y belong to g=*[M].

6. Existence of brick decompositions.

TEMMA 10. Bach of X, ¥, and X ~ Y has a brick decomposition.

Proof. It is easy to see that the disc ¢ D v E has a brick de-
composition € into dises, having D and E as elements, and such that
no dise of C intersects both D and B. Since X n ¥ is homeomorphic
to 0w Dwv B, then X n Y has a brick decomposition. .

Recall that X is the space associated with the decomposition H
of A*, and that h is the projection map from A* onto X. Now A is a 3-cell
and is a union of elements of H. By Corollary 12.14 of Chapter V of [4],
K[ A]is a compact absolute retract. The fact that k[ 4] is finite-dimensional
is a corollary of facts established in the proof of Lemma 5, and of the
fact that h[A] and g[4] are homeomorphic.

Tet ® consist of h[A] and each set k[c] where o is a disc of C distincet
trom D and E. Recall that no disc-of C intersects both D and E. It followsy
that % is a brick decomposition of X. Since Y is homeomorphic to X,
Y has a brick decomposition.

TEMMA 11. Z has mo brick decomposition. ‘

Proof. Suppose Z has & brick decomposition {Zy, Zs, ...; Zp}- Now
g[IntA] is an open subset of Z, and hence there exists an integer ¢ such
that Z, contains an open subset A of g[IntA]. Then since {gl@) =1
=1,2,..} is dense in g[IntA], there exists an integer i such that
g(@) € A. ’

By a similar argument, there exist integers r and j such that gy
lies in an open set 2 in g[IntB] and QC Z,.

Now it follows from Lemmas 8 and 9 that both Zg
g(») and g(y), and hence Z, and Z intersect. Since” {Zy, oy -y Zp} 18
a brick decomposition, Z; ~ Zr i8 & compact absolute retract, and there-
fore, by 2.9, Chapter V of (4], Zgw Zr is & compact absolute retracs.
Let M denote Zy Zr. We have shown that (1) there exist an open sub-
set A of g[Int 4]~ M and an integer ¢ such that g(ms) e A and (2) there
exist an open subset 2 of g[IntB] n M and an integer j such that glaz;) € Q.

It follows that there exist integers % and I such that glAm] = g(z4),
and integers m and m such that g{Bunl = g(y:). Hence g[A4u]C A and
g[Bma] C 2.

Since M is a compact abso
there is an open set W in Z such that M
homotopic to 0 in Z. By Lemma 9 of [8], each 100
to 0 in g~'Z], or in A*w B*. :

and Z, contain

lute retract in Z, then by Lemma 6 of [3],
M C WC Z and each loop in W is
pin g~ {W]is homotopic
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Since both z and y belong to ¢g—[M] and g [M]C g~ [W], there
exist disjoint open $-cells Uy and T, containing & and y, respectively,
and contained in ¢~ [W].

By Lemma 6, there is an arc g in (Int4) ~ g~ [W] from a point
of U, to a point of U,. By Lemma 7, there is an arc ¢ in (IntB) ~ g-1[W]
from a point of Uz to a point of Uy. Let y be a gimple closed curve formed
by joining 6 and ¢ by an arc in Uz and by an arc in Uy. Then y is a loop
in ¢g-[W] and it is clear that y+0 in 4* v B*. However, W has the
property that each loop in g~ [W] is homotopic to 0 in A* - B*. This
is a contradiction, and thus Z has no brick decomposition.

The following summarizes our results.

TueoreM. There exist compact meiric spaces X and Y such that (1)

X, Y, and X ~ Y have brick decompositions, but (2) X v Y has no brick

decomposition.
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Determinateness in the low projective hierarchy *

by
Harvey M. Friedman (Madison, Wisc.)

Introduction. This paper contains results on ¥} determinateness,
determinateness for certain fragments of the Boolean algebra generated
by the X} sets, and 4; determinateness. We use L for the class of con-
structible sets. In the first seetion, we use L, for the set of all sets of
level < ¢ in the constructible hierarchy, and L.(z) for the set of all sets
of level < @ in the constructible hierarchy starting from z. Tn Sections 2,
3, 4, however, we found it convenient to use, respectively, L{a) and L™a),
and to use L® for the ¢lass of sets constructible from z. (No confusion
will arise as to which of the possible notions of relative constructibility
is used.) By K determinateness, where K C (¥ xN¥), we mean that
(VA e K) (A is determined). By “4 is determined” we mean that the
game G4 has a winning strategy for either player I or player 11, where
@ is played as follows: players I, IT play alternately, starting with I.
Each move is an integer. The result of the game is an element x of ¥ ¥x N,
and T is deemed the winner if # < 4; 1T is deemed the winner otherwise.

In Section 1 we consider X; determinateness (a relativized version,
Theorem 1°, is stated in Section 4). Previonsly, there were two muain
results about X* determinateness. The first is the result of D. Martin [4]:
that 3¢ determinateness follows from (x) of Section 2, which in turn
follows from measurable cardinals. The second is that Zi(®) determi-
nateness implies that every uncountable Xi (¥3) subset of NV contains
a perfect subset (Davis [2], Theorems 4.1, 4.2). The former result sug-
gested that it would be worthwhile to find 5 consistency proof for oy
(3}) determinataness using the consistency of some currently formulated
axioms about sets. The latter result showed that, by Solovay [10], 1 (2)
determinateness . implies that N ~ L is countable (NN ~ L(x) is count-
able for all #C w), and so Zi determinateness cannot be proved from
the currently formulated axioms about sets, since they are all compatible

_ with (Vz)(z e L). But it was still possible that 51 determinateness was

* This research was partially supported by NSF GP-13335. This is a revised
version.
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