

A solenoidal and monothetic minimally almost periodic group

by
J. W. Nienhuys (Utrecht)

A topological group G is called monothetic if it contains a dense infinite cyclic subgroup.

A topological group G is called *solenoidal* if there is a continuous injective homomorphism of the additive group of the real numbers with its usual interval topology into G, with dense image. For more details the reader is referred to [1] and [3], and the references cited there.

Clearly, there is a 1-1 correspondence between complete monothetic groups with given dense infinite cyclic subgroup on one hand and group topologies on Z on the other hand; likewise for complete solenoidal groups with given dense copy of R, and group topologies on R.

A monothetic and solenoidal group G is commutative hence its characters *separate points*, that is: for each $x \in G$, there is a homomorphism $\chi \colon G \to \mathbb{R}/\mathbb{Z}$ such that $\chi(x) \neq 0 \mod 1$.

If G is solenoidal or monothetic and G is locally compact, then the continuous characters separate points, too. We extend the idea of minimal almost periodicity, as defined in [2] as follows.

Definition. A topological group G is said to be *minimally almost periodic* if and only if the only continuous homomorphism of G into any compact group is the trivial homomorphism.

Apparently an abelian topological group is minimally almost periodic if and only if the only continuous character is the zero-character.

The theorem in this paper proves that there exists a metric solenoidal and monothetic group without continuous characters, equivalently, that there exists a topology on the real numbers, weaker than the usual topology by which it is a metrizable topological group without continuous characters.

Such a group cannot, of course, be locally compact.

S. Rolewicz in [3] has exhibited an example of a not locally compact metric monothetic group.

In fact, be proved that a certain subgroup G of the infinite-dimensional torus $T^{\infty} = (R/Z)^{\infty}$ is such, if endowed with a suitable metric.

Let $|\cdot|$ be the norm on R/Z defined by $|x+Z|=\min\{|x+z|: z\in Z\}$. Let G be the subgroup of T^{∞} consisting of all sequences $\{x_n\}$ such that $\lim |x_n|=0$ and define a norm on G by $\|\{x_n\}\|=\max\{|x_n|: n\in N\}$. G becomes then a complete not locally compact group which contains an element $\{\lambda_n+Z\}$ that generates a dense subgroup of G. G is solenoidal. To see this, define $\Lambda\colon R\to G$ by $\Lambda(r)=\{\lambda_nr+Z\}$. It is easy to check that Λ is continuous. We will prove

THEOREM. There exists a discrete infinite cyclic subgroup A of G, such that $A \cap A(\mathbf{R}) = \{0\}$ and such that G/A is minimally almost periodic and monothetic and soleroidal.

To prove this we will need the following

LEMMA. The natural injection $G \rightarrow T^{\infty}$ is the injection of G into its almost periodic compactification, or, equivalently, each continuous character on G is extendable to T^{∞} .

Firstly, we prove the lemma.

Let χ be a character on G, that is, a continuous homomorphism $G \to R/Z$. Restricted to the subgroup T_p of G consisting of all sequences $\{x_n\}$ such that $x_n = 0$ for $n \neq p$, it is of the form $R/Z \to R/Z$: $x \to N_p x$, with $N_p \in Z$.

Suppose there exists an infinite number of p such that $N_p \neq 0$. Because χ is continuous, there exists an $\varepsilon < 1/4$, such that $||\{x_n\}|| < \varepsilon$ implies $\chi(\{x_n\}) \in (-1/3, +1/3) + \mathbf{Z} \subset \mathbf{R}/\mathbf{Z}$. Let $p_1, p_2, ..., p_k \in \mathbf{N}$ be such that $N_{p_i} \neq 0$ for $1 \leqslant i \leqslant k$ and $k = [6/\varepsilon] + 1$. For each $i, 1 \leqslant i \leqslant k$ choose

$$z_i \in (-1/3, +1/3) + \mathbf{Z}$$
 such that $N_{pi}z_i = \varepsilon/2 + \mathbf{Z}$. Then $\sum_{i=1}^k N_{pi}z_i = \varepsilon k/2 + \mathbf{Z}$.

Now $6/\varepsilon \cdot \varepsilon/2 \leq \varepsilon k/2 < (6/\varepsilon + 1)\varepsilon/2$, hence $1/3 \leq \varepsilon k/2 < 1/3 + 1/8$, hence $\varepsilon k/2 + \mathbf{Z} \notin (-1/3, +1/3) + \mathbf{Z}$. If we define $\{x_n\} \in G$ by $x_{p_t} = z_i$ for $1 \leq i \leq k$ and $x_n = 0$ if $n \neq p_t$ for all i, we arrive at a contradiction.

Clearly every character of G is defined by its restriction to T_p , $p \in N$, because the union of all T_p generates a dense subgroup of G. This proves the lemma.

We turn now to the proof of the theorem.

Choose an infinite sequence t_n of rationally independent irrational numbers in the interval (1/4, 1/2). Define $a = \{x_n\}$ as follows: $x_n = t_n/n + \mathbb{Z} \in \mathbb{R}/\mathbb{Z}$. For any $n \in \mathbb{N}$ holds $||na|| \leq 1/4$. Hence a generates a discrete subgroup of G. We call this subgroup A. Let r be such that $A(r) \in A$, so let $k \in \mathbb{Z}$ be such that $\lambda_n r = kx_n$, for all $n \in \mathbb{N}$. To prove that r = 0, assume the contrary. Then $\lambda_n = k/r \cdot x_n$, for n large enough, hence $\lambda_n(\lambda_{n+1})^{-1} = |x_n|(|x_{n+1}|)^{-1}$. This contradicts the construction in [3] of the sequence λ_n , as $\lambda_n(\lambda_{n+1})^{-1}$ goes to infinity, whereas $|x_n|(|x_{n+1}|)^{-1} < 4$.

Let q denote the quotient map $G \rightarrow G/A$, and let χ be a character on G/A, then χq is a character on G that is zero on A. It has then a continu-

ous extension to T^{∞} , which likewise has A in its kernel, but A is dense in T^{∞} , hence $\chi q=0$ and hence $\chi=0$, because q is onto. So G/A is minimal almost periodic and, because qA is an injection and A(R) is dense in G, G/A is a solenoid. Clearly G/A is also monothetic. We have proved the theorem.

The theorem may give us some information about the structure of solenoidal groups, in the following sense. Let $\mathfrak T$ be a group topology on Z, with neighborhoodbasis at $0: \{V_i \colon i \in I\}$. Then we can define a group topology $\mathfrak T'$ on R, by taking as basis of neighborhoods at $0: \{rV_i + (-d, +d) \colon i \in I, d \in R, d > 0\}$, in which r is a fixed real number. Such a topology $\mathfrak T'$ on R we call a characteristic topology, relative r and $\mathfrak T$. One may ask: are all topologies on R that are weaker than the usual interval topology on R characteristic? (This question was first asked by K. H. Hofmann). The answer is no. Indeed, if $\mathfrak T$ is a characteristic topology on R, then R has a continuous character, with respect to $\mathfrak T$. Conversely, if R has a character $\mathfrak T$, continuous with respect to $\mathfrak T$, there is a local inverse to $\mathfrak T$, in other words, R with the topology $\mathfrak T$ is a fibre bundle over R/Z, with ker $\mathfrak T$ and the induced topology on ker $\mathfrak T$ as fibre (cf. [4], 7.4.), hence $\mathfrak T$ is characteristic.

Remark. If a group topology 8 is weaker than the usual topology on R, and R has no continuous characters with respect to 8, then $\{0\}$ and R are the only closed subgroups of R with respect to 8. To see this, let M be a closed subgroup of R with respect to 8. $M \neq \{0\}$, $M \neq R$. Then M is infinite cyclic and R/M = R/Z, algebraically, whereas the lefthand member carries a weaker topology than the usual compact topology of R/Z. So R/M is homeomorphic to R/Z and the quotient map is a continuous character, which is a contradiction.

References

- [1] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, New York 1963.
- [2] J. v. Neumann and E. P. Wigner, Minimally almost periodic groups, Ann. of Math. 41 (1940).
- [3] S. Rolewicz, Some remarks on monothetic groups, Coll. Math. 13 (1964), pp. 27-28.
- [4] N. Steenrod, The Topology of Fibre Bundles, Princeton 1951.

Recu par la Rédaction le 23, 7, 1970