10 H.J. Charlton

for if not then p € Bdjla, b]. So every neighborhood of p meets B\ f[a, b].
Thus there is a p' ¢ E°\f[a, b] in the bounded complementary domain
of €. So there is an open set Up about p such that Up » fla, b]= 0.
Therefore there exists an # and map f, with corresponding partition
of I into subintervals such that for some subinterval of this partition,
say In,f(In)C Up. But then from the definition of ¢ and fu([a,d]),
I3, C[a, b] which is not possible. Therefore int(f[a, b]) is simply connected.

THEOREM 2. Let f: I—8 be the map for Moore’s Crinkly curve C* and
let {R}, i=1,2,..,p, be a finite disjoint sequence of closed iniervals
in I. Then

Cx

1R = 11U Ry

i =1

[
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Proof. By induction and repeated use of theorems such as 11.7,
Wilder [4], p. 31, and 4.42, Whyburn [3], p. 40, together with radial
extension of homeomorphisms on boundary of disks, it suffices to show
if f(R;) and f(Rj), 4 #j, are 2-cells which meet in their boundaries (by
the definition of f they do not meet in their interiors) then Bdf(R;) n
~ Bdf(R;) consists of at most two components. For suppose not,
Bdf(R)\(BAf(R:) ~ Bdf(Ry)) consists of open intervals, choose two of
these intervals in Bdf(R;) not accessible in Ez\( f(Ry) v f(.Rj)) from
unbounded complimentary domain of Bdjf(R;) v Bdf(R;). Choose two
corresponding closed intervals in Bdf(R;) which together with the open
intervals form two simple closed curves not accessible in the same sense.
These simple closed curves bound open disks not accessible as before
and which do not meet f(R;) v f(R;). Now there exists an n, f, and parti-
tion of I into 3°" intervals such that both disks contain a square in the
corresponding partition of 8. But as before it is easily seen that this is
not possible.
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Involutions on solenoidal spaces
by ‘ ,
James T. Rogers, Jr. and Jeffrey L. Tollefson (New Orleans, La.)

1. Introduction. A weak solenoidal sequence (solenoidal sequence) of
closed manifelds is an inverse limit sequence (X, f) such that each factor
space X, is a closed manifold and each bonding map fm: Xn—>Xpm i8
a covering map (regular covering map). The limit space X is called
a weak solenoidal space (solenoidal space).

In section 5, we present a general technique for constructing weak
solenoidal spaces from solenoidal spaces. Suppose that (X, f) is a solenoidal

. sequence such that each factor space X, admits a free involution that

commutes with the bonding maps. These involutions induce an involution
on the solenoidal space X.; moreover, if ¥ is the orbit space of this
free involution on X, then Y. is a weak solenoidal space.

The impeortance of this technigue is not only that we can construct
new examples of weak solenoidal spaces, but we can obtain a keen insight
into the internal structure of the spaces. Moreover, if we can construct
a weak solenoidal space in a geometric manner and then show that we can
obtain the same space as the orbit space of a known free involution on
a solenoidal space, then we have tools to investigate both the global and
local properties of the spaces.

We carry out this program in section 6, where we present a weak
solenoidal space Mo — lim(M,f) which has the following properties:
(1) each factor space M, is homeomorphic to the Klein bottle; (2) each
bonding map fn'' is regular (although compositions of bonding maps
are not regular); (3) the fundamental groups of any two path compenents ‘
of M, are isomorphic; (4) M is not homogeneous; (5) there are exactly
two different homeomorphism classes of path components, with only one
path component in the first class; and (6) Mo is double-covered by the
product of §* and the dyadic solenoid.

Tn section 3, we give a convenient characterization of the path
component of a weak solenoidal space; this characterization is a valuable
tool in the succeeding sections. In the process we obtain some interesting
regults (in the general theory of inverse limit spaces) concerning the
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problem of when an arc in the limit space is induced by arcs in the
factor spaces. :

M. C. McCord [3] and R. M. Schori [6] previously studied solenoidal
spaces. McCord investigated the structure of solenoidal spaces and showed
that they have some of the properties of the classical solenoids; in particular,
they are homogeneous. Schori constructed an example of a nonhomo-
geneous wealk solenoidal space. Our example is stronger than Schori’s;
in particular, no two of the factor spaces of his example were homeo-
morphic, and none of his bonding maps were regular. Furthermore, the
homeomorphism types of any of the path components were not determined.

2. Notation. We follow the notation on inverse limibt systems in [1}
and restrict our discussion t6 inverse limit sequences (the directed set of
indices is the positive integers). We let (X, f) denote the inverge limit
sequence with facior spaces X, and bonding maps fam: Xn—>Xm (m < n).
The limit space, lim (X, f), is denoted by Xe. A point # € X, is represented
by @ = (#,, %, ...), and we let fy: Xoo—>X, be the projection fu(w) = @y.

In this paper, all (weak) solenoidal sequences will be sequences of
closed manifolds, that is, compact manifclds without boundary. We
further assume that all (weak) solenoidal sequences are nontrivial, i.e.,
each bonding map is at least a 2-fold covering map.

If (X,f) and (Y,g) are two inverse sequences and Pry Pay e 18
& sequence of maps gn: Xp—¥, such that gnfam = ghmea (all m < n), then
$15 P2y - Indlices & MAP G0t Xoo— Yoo defined by poo(w) = (pula), gola), ...).

If P = (p,, ps, ...) is & sequence of prime numbers (different from 1),
the P-adic solenoid Zp is the limit of the inverse sequence (X, f), where
each X, = {2: |2] = 1} (the unit circle in the complex plane), and each
bonding map f3*: X, X, is defined by £ (e) = " Zp is a sole-
noidal space.

An involution on M, h: M —M, is a homeomorphism of period two
(R* = 131). The orbit space of I is the quotient space M[{z~h(x)}. A free
involution is an involution without fixed points. The antipodal map on
the n-sphere is a free involution. The orbit space of this involution is
real projective n-space Py, and the projection =: §*—P, is a double-
covering map.

The connected sum, M + M ', of two connected, triangulated, closed
n-manifolds M and M’ is obtained by removing the interior of a polyhedral
n-cell from each, and then matching the resulting (n—1)-sphere bound-
aries by a piecewise-linear homeomorphism (orientation reversing if both
manifolds are oriented). The n-sphere serves as the identity element
of this operation, that is, M # §" ~ M. If fis a map with domain X and
A C X, then f|4 denotes the map which is the restriction of f to A. We
refer the reader to [7] for the theory and terminology of covering maps.

©
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3. Characterization of path components of M... The goal of this section
is to characterize the path components of a weak solenoidal space M.
In order to do this, we first investigate a problem in the general theory
of inverse limit spaces and prove a theorem (of considerable interest in
itself) about ares in M.

Let X =1lim(X, f) be an arbitrary inverse limit space, and let 4 be
an arc in X. When does there exist a positive integer n such that m > n
implies that fm(4) is an arc? The answer is sometimes negative, as Fort
and Segal [2] have shown that an arc can be represented as the inverse
limit of 2-cells with onto bonding maps. The following example shows
that even if each fu(4) is one-dimensional, the question has no positive
answer in general. For each positive integer n, let X, be the union of
the unit interval I = [0, 1] and a perpendicular segment S, of length 1/n
which intersects I at the midpoint of [1/n+1, 1/n]. Let 2+ X, —X,
be a map which collapses 841 to a point, maps (1/n-+1,1/n) onto
(1/n+1,1/n) v 8y, and is the identity elsewhere. If X, is the inverse
limit of (X, f), then (0,0,..) and (1,1, ..} are the only nonseparating
points of Xo; therefore X is an arc. However, f,(X) is never an are.

It X is a weak solenoidal space, then the question has a positive
answer. We precede the proof of this statement with two lemmas; the
first is well known and the second is a special case of Theorem 3 of [4].

Lemwa 1. Let M be a compact manifold with metric d. There exists
&> 0 such that if « and B are paths in M and d(a, f) < ¢, then a= B.

- LeMMA 2. Let Xoo = Hm (X, f) be an inverse limit space, let v: T-»Xo
be an embedding, and let ¢ > 0. Then there exists an integer n and a map
Wi faov(I)—I such that d(fT] faov(I), fiovoy) <e. .

Proof. Represent I as the trivial inverse limit T = lim (7, g), where
each I = I and each bonding map g7 is the identity. Let v, = f, o v o g7
= fiev. As in the proof of [4], Theorem 3, there exists an integer = and
a map y: faor(I)—I; such that d{f7|fscr(I),nop)<e O

THEOREM 1. Let Moo= lm(M,f) be a weak solenoidal space, and
let A be an arcin M. Then there exists a positive integer n such that m > n
implies that fm(A) is an are.

Proof. Let » be a homeomorphism of I onto 4. For each i, v, =f; o v
is a path in M;.

For each 4,9 contains no contractible loop, since a contractible
loop would lift to & loop in each factor space Mz, k >4, and hence to -
a loop in M. However », lifts to », which contains no loops.

Let ¢ be a positive number such that if o and B are paths in M,
then d(a, f) < ¢ implies that e~ . Lemma 2 implies that there exist an
integer n and a map p: fu(4)-—I such that d(f7/fa(4),w oy) < e Hence

dviopom,flom)<e and s0 v opowvy =~ flom,. Because v oyeow,
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factors through I, it is homotopic to a constant, and hence fiown is also’

homotopic to @ constant. Since fi" has the homotopy lifting property,
v, is homotopic to a constant. Therefore », contains no noncontractible
loops. Thus », is & embedding and fa(4) an are. Since fu(4) covers fu(4)
for m > n, fm(4) is also an are. O

We use Theorem 1 and the next definition to obtain a useful charac-
terization of path components in M.

DEFINITION. Let M, = lim (M, f) be a weak solenoidal space, and
let 2 = (2, 2, -..) belong t0 M. Let 4 € My andlet v (I, 0, 1) (M3, 21, y)
be an embedding of I in M;. For each j> i, » lifts to an embedding
w2 (I, 0,1) (M, 23, %5(1)). The sequence {»i(1)}7=: is called an endpoint
sequence induced by z and y.

THEOREM 2. Let Mo = lim(M,f) be a weak solenoidal space. Let

= (2, 2y ---) € Moo, and let K be the path component of Me which con-

tains z. Then K = {(@y, s, ...) € Mt for some i, &i, Biyq, ... 18 an endpoint
sequence determined by z and x:}.

Proof. Suppose x = (%, Ty, ...
i1, .. 1S an endpoint sequence determined by z and ;. Then there
exists an embedding »;: (I, 0, 1) —(M;, 21, ;) which lifts, for j > ¢, to an
embedding »s: (1,0,1)— (Mj, 25, 27) and hence to a path »: (I,0,1)
> (M, 2, Z). Therefore # belongs to K.

On the other hand, let x = (2, o,, ...) be a.point of K, and let 4 be
an arc from 2 to «. Let »: (I,0,1)—>(4, 2, z) be a homeomorphism. For
each positive integer 7, »; = fi o » is a path in M; from 2; to ;. By Theo-
rem 1 we can find an integer n such that »,(I) is an arc. Hence &y, Zpt1, ..
is an endpoint sequence determined by @, and 2. 0O

4. Path component models. Weak solenoidal spaces have a very com-
plicated structure in general, making it difficult to distingnish between
homeomorphism classes of path components. It is often useful to construct
“untangled” models of the path components. In certain cases, these
models will enable us to distingnish between homeomorphism classes of
the path components.

Let (M, f) be a weak solenoidal sequence and let b ¢ M. Denote
by K, the path component of M. containing the point b= (b, by, ...).
Let b; be a basepoint for M;, and consider the descending chain of sub-
groups of m(My,by),

wy( My, by) O ff )x 7y Mz: by) 2 fg Jem( My, by) D ..

Let o,: (Kp, b)—(M,, b;) be the covering space determmed by the

subgroup ﬂ (D) s M, ba) of (M, b)) (see Theorem 2.5.13 of [7]). For

) is a point of M. such that ai,
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each n (n ) there is a unique covering map gn1: (Kj, b)
such that fn On+1= gn. The sequence p,, g,, ...
(MEO, b), where ¢(x) = ( 1), 0s7), }

Kp will be our model for the path component K. In this connection,
it is convenient to consider a second topology on K. Let B be a basis
for the topology of Kp induced by that of M. Let le-B be the set of
path component of elements of $. Then le-B forms a basis for a topology
for K. We call this the lc-topology (local connectivity topology) for K.
Notice that the le-topology is independent of the choice of the
basis B.

Lemma 3. The map p: (Ko, b)—(Mw, b) is one-to-one and onto the
path component K. If Ky is given the le-topology, then g is a homeomorphism.

Proof. Let o « K. Theorem 2 shows that there is an arc 4 from b
to # and an index n such that fu(4) is an arc from b, to z,. Lift fu(4
to an arc A beginning at 5. Let % be the endpoint of A. Then
o(Z) = . _

Now let » be a path in K, between two points, say Z and ¥, such
that o(Z) = o(¥).

Since (o,), 7y (Kp, b)-= D () s My, bs), we must have T = 7.

(M1, bnya}
induces the map g: (Kp, )

Hence g is one-to-one. Finally, p is a map if K, is given the lc-topology.
To see that p is open, it is sufficient to notice that a small open cell € in
K, is mapped onto a component of fi'(e,(0)). O

COROLLARY. If the path components K, and K, are homeomorphie,
then K, is homeomorphic to K.

COROLLARY. gy4: 7,(Kp, b)—>m{Kp, b) is an isomorphism.

Proof. Since p is a fibration with unique path-lifting and multi-
plicity 1, this follows from {7], Theorem 2.3.9.

CoROLLARY. Fach path component of M is dense in M.

Proof. Represent K, as the trivial inverse limit Ko = lim(Ks, g),
where each bonding map is the identity. The sequence gy, gz, ... of maps
induces the map go = 0: Koo>Me. Since each gn o gn = gn is surjective,
oK) = ¢(Kp) = K is dense in M ([5], Theorem 2.5, p. 430).

5. Imvolutions on weak solenoidal spaces. The purpose. of this section
is to introduce a technique for construeting examples of weak solenoidal
spaces. We use these results in section 6.

Let (A4,f) be a (weak) solenoidal sequence such that there is an
involution a;: A;—4,, for each 4, with a nonempty set of isolated fixed
points. We require that the involutions commute with the bonding maps;
that is, for each 4, agfi" = fi"* a;11. Let B be any closed manifold ad-
mitting an involution B with isolated fixed points (possibly fixed point


GUEST


16 J.T. Rogers, Jr. and J. L. Tollefson

free). Then a; x § is an involution on 4; X B, and we have the commutative
diagram
%
A¢xB <« A1, XB
]MXB 141 a1 p
fi X1
AyXB «———— A;11XB

Let C; denote the orbit space of a; x § and let ps: Ay X B0, denote
the projection map. Since fi'* maps each fiber of piy. onto a single fiber
of p4, it is easily seen that the covering map ﬁ“xl.i?duces a unique
covering map ¢t Ciy1~Cs such that pi(fiT' x1) = gi" P

Let Ao = lim(4,f) and Cx = 1lim(C, g). The sequence (a;x ) of
involutions induces the involution o, X f on the (weak) solenoidal space
A X B. Clearly the orbit space of aw X § 18 Ceo, and the sequence py, p,, ...
of double-covering maps induces the projection Pe: Ao X B—0x, where
Pos(goo X f) = Peo- X A )

The next result follows directly from the preceding discussion.

THEOREM 3. The (weak) solenoidal space AeX B admits an involution
o X f whose orbit space is the weak solenoidal space Cw. Furthermore,
o X B fizes a path component K X B of Aw X B if and only if K is a path
component fived by 0.

Remark. In particular, if be A is a fixed point of aw. then
oo K p) = Ko
‘When we restrict our attention to the case where the 4; are circles,

“‘we can describe more precisely the action of @ X f on the path components.

LevyA 4. Let A;={s: 2| =1} (the unit circle in the compler
plane), fi*(2) = 2, and af2) =% (2 denotes the conjugate of z) for each i.
Then exactly one path component of A is fized by ao, namely that
path component containing the single fiwed point @ = (1,1, ..) of e.

Proof. We need only to observe that any other path component K
of 4 is mapped onto a distinet path comaponent by ac, that is au(K ) Ea)
~K=0ifa¢K. Let K be a path component such that, for some # ¢ K,
eo{®) = y also belongs to K. Then by Theorem 2, for » sufficiently large,
Yns Yni1, - 18 a0 endpoint sequence determined by « and y,. Let wy, he
an arc with endpoints @, and Yn, a0d let wayr be the lifting of w, with
endpoints #nyx and Ypix. Since each o is a reflection, it is not difficult
b0 see that waix ' dair(@nsir) must contain the point 1 € Ayppr for each
k> 1. If we denotes the arc from z to y determined by the sequence (w;),
then oo v ax{we) must contain the point = (1,1, ...). Therefore K
must be the unique path component containing . 0

©
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6. Examples. In this section we apply the preceding results to construct
the weak solenoidal space promised in the introduction. We also indicate
the construction of similar examples for the higher dimensions.

First we describe the unique manner in which P, # P, covers itself
k times (for any integer k > 1) [8]. Observe that P, 3 P, is homeomorphic
to the sum P(k) = P, 3 8" 3 ... # 8" 4 P,, where 8™ occurs k—1 times
a8 a summand.

0006

\f

@X2)

Let ¢g: P(k)—>Pn 4 Pn be the k-fold covering map in which the
sphere summands 8" of P (k) alternately double-cover the P, summands
of the base space, in which the first P, of P(k) covers the left half of
Py 3f P, and in which the last P, of P(k) covers the left (right) half
of P, 4 P, if k is even (odd). C

Consider the free involution aX #: 8 x 8" 8 x 87, where a(2) =2
and § is the antipodal map on S™. Then the orbit space of axp is
homeomorphic to Py 3 Pp. Let p: S'x8"—P, 4 P, denote the
projection.

- Let f: 8'— 8" be the k-fold covering map f(2) = 2%, and let g: P, = Py
~>Pp 3 Pp be the k-fold covering map described above. Then one can
check that the following diagram is commutative:

Sx 8T e
g »
Pt Py <P, +* Py
Exawrre 1. Let Mo, = lim (3, g) be the weak solenoidal space where

each M;= P, 4t P, and each gi™": M., M is the regular 2-fold covering
map g desecribed above.

THEOREM 4. The nonhomogeneous weak solenoidal space Mo, has the

Sfollowing properties:

(1) The fundamental growp of each path component is isomorphic to Z;

(2) There are exactly two distinct homeomorphism classes of path
components, and one class contains only a single path component;

(8) M is double-covered by /tﬁ.&homogeneous space Szxﬁ'f,_where
X, is the dyadic solenoid. - .

Fundamenta Mathematicae, T. LXXIIT 2


GUEST


18 . J.T. Rogers, Jr. and J.L. Tollefson

Proof. We have the commutative diagram

2
X1

Bl @S e e S
F21 P2 Poa
N
Pz#Pze———l—-——P2#Pg<—...<—Mw

where fiT!(z) = 2* for 2z ¢ §' and p; is the projection of §'x 8" onto the
orbit space of the free involution a;xf: §'x 8 -8 X 8 defined by
afe) =% and f(2) = —2z. The sequence p,,P,,... of double-covering
projections induces a double-covering map pe. Moreover, if aw is induced
by ¢, @y, ..., then the free involution aw X is a nontrivial covering
transformation of Pe.

According to Theorem 3, awx f fixes one and only one path com-
ponent of X, x 8, say K,. This means that p. restricted to any of the
remaining path components is a homeomorphism. Therefore, every path
component K of Mu/po(K,) is homeomorphic under the lc-topology
to a path component of X,%x 8. The model for each of these path com-
ponents is then the same as the model for the path components of 2, x &,
namely Rx 8* (R denotes the real line). Clearly =, (K) = Z, for each of
these path components.

Now consider the exceptional path component K,. Let @ denote
the fixed point of ae. Then ae X f(&X 8') = & x S*. The set @x §* sepa-
rates K, into two path components, and p. restricted to either one of
these is a homeomorphism. Hence the model for the path component
Pl Ky) is BXSY|(t, 2)~(—1, p(2))}. Therefore po(K,) is not homeo-
morphic to any other path component of Mu; however m, (po(K,)) == Z. O

Examere 2. Consider the weak solenoidal space M, = lim(M,q),
where each M;= Py, # P, and each gi™ M;y,—~M; is a regular 2-fold
covering projection. Then M is an #-dimensional example having all
the properties of example 2 except that the fundamental group of the
exceptional path component is of order two while the other path com-
ponents are simply conmected.

Rg;{mrk. Other examples can be constructed similarly by letting
each ¢i"" be a k;-fold covering map. Then M., would be double-covered
by Zpx 8, where P = {k, k,, ...}. Moreover, in some cases Mo, will have

more than one exceptional path component.
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