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"Tf M is a null set, then not even the measurability of 7, can be
guaranteed. This follows easily from the examples 1, 2 using the well-
known fact that to every real function h: <{a, b>—H, there exists a func-
tion f: <a,b)y—>HE, with the Darboux property such that {z e {a,b);
fl@) # h(z)} is a nuil set (cf. [4]).
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An unfinitizability proof
by means of restricted reduced power

by
Andrzej Grzegorczyk (Warszawa)

In this paper I try to make some progress in solving the problem
of the unfinitizability of theories containing the arithmetic of natural
numbers. This problem remained open after Ryll-Nardzewski’s paper [6]
proving the infinitizability of the rule of induction in eleméntary arithme-
tic. The method of the present paper consists of constructing a kind of
reduced power restricted to functions and sets definable by means of
n-quantifiers. The main observation (Theorem 1) is that in this case
only the sentences confaining n-quantifiers which are true in the basic
model M remain true in the reduced ultra power M*. Finding a theorem
which is not preserved, we get the unfinitizability proof. Dividing by
a filter cut up to sets definable by n-quantitiers may be conceived ‘as
adding new “defective” objects having only 7-quantifier properties.
It might be presumed that these new objects preserve only #-quantifier
statesments.

The result obtained in this way was independently obtained also by
Ryll-Nardzewski by means of the method of his old paper [6]. It is
probably not the strongest one. The problem remains open for theories
containing arithmetic and dealing with two kinds of objects: natural
numbers and the other objects (sets, classes efe.). A partial result in this
domain was obtained by A. Mostowski in [4]. The main contribution of
this paper is an outline of a new method.

1. Restricted filters, functions and ultrapower. Let C be an arbitrary
family of subsets of a given set M; we shall consider the following notion
of ultrafilter restricted to O:

1) DeUt(0) «=1. DCCO,
2.0¢D,
3. X,YeDrXnYec(~>X n YeD,
4. X e DNXCYNT e (Y eD,
5. X uYeDAX,Ye(0~>XeDvYeD.
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In the applications M will be the set of natural numbers (also non-
standard) and O the class X of Kleene-Mostowslki hierarchy. ¢ C P(M)
and <, > is a fixed pairing function: M XM ->M. We shall consider
a class of restricted funetions Fu(D, O).

(2) feFu(D,0)<«=1.fCM,
2. @, y,2e MALE, y) efAL D, ) ef>Y =2,
3. {m: Hylz,y>efteD,
4. feC.

Now suppose M = (M, R) to be a relational system. Having a pair-
ing funetion, we can assume that R C M. We shall consider the restricted
wltrapower B(M, D, 0):

| B, D, 0)= W* = CM*, B*)
where
(3) M* = {[f1: feFu(D, O)}
and [f]= {g «Fu(D, 0): {i: Hy G,y><fg}eD},
() B = {([f), [9): {&: Ty, 2(<i, y> € fACE; 2> e gAY, 2> € R)} € D} .
LemMA 1. If D e U(C) and C satisfies the conditions:

) | X, YeCoXnTYeC,
6 X e O{i: Hydi, gy e X} e O,
XeC—{<z,y>:y,ad e X} e C,
(7) XeOs{Kz,yy: e X}el,
XeO—{<z, Y, > La, 9>, eX}e O,
®) ReC

then the relation

feges it yd,ydefrgleD
is a congruence in Fu(D, ), and the relation R* is correctly defined.

Proof. Reflexivity by (2) 3. Symmetry logicaly true. Proving transi-
tivity we need first (3) in order to prove that {i: Bydi,y>efr gt
~{i: Hyd,y>eg nh}eD according to (1) 3. Hence by (2)2 we
have {i: Hydi,y>efngnhleD. Of course {i: My {yydefng nh}
C{i: "y (i, y> ef n R}, but to infer that the last set belongs to D we
must show by (1) 4 that it belongs to ¢. For this ‘we need also () and (6)

©
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To verify the correctness of (4) we prove the implication
T2fing =g n{is By, 2(<6, 9> e fACE, 2> e gAY, 2> € R)} e D
—={i: Uy, 2(0, y> e firi, 2y e ALY, 2> e R}y e D .
This last set contains by (2) 2 the set
{i: Hy<i, y> ef nfi} o {i: @i, 2y egngid n
~{is Ty, 2(<, 4 e fACE, 2> e gAY, 2> e R)},

which belongs to D according to (5), (7) and (1)3. But to prove the
implication we need according to (1) 4 the premise

{02 Hy,2(0, 9> e fin i, > e un Y, 2> e R)} € G

This we get by means of (5)~(8).

Now we shall consider a first order language containing the variables
Vi Vs, ..., the identity and the predicate R (corresponding to the re-
lations R(R*) of our systems (M, R> ({(M*, B*))), logical connectives
and quantifiers \/ A.

In this language there are some operators, ie. structures
&8(Vs)(ps, ps, V) with two propositional free places p¢, p;, one individual
free variable ¥; and one bound individual variable ¥; such that, taking
a formula @(V, 1y, ..., tx) containing neither ¥; nor V;, we get by sub-
stitution a meaningful expression &§(V;)(®, V;) of the form
(E) &(Vs) (@(V/Vh By, ooy ta), ¢(V/VJ‘: by ey n), Vi) ’
in which V; is bound and Vj, ¢, ..., t» are free variables. (Eg.: according
to our. definition, a p — operator is the formula &(Vy)(p., ps, Vs) of the
shape Apy (V1 < Vo= T1p1) ADs.

We shall say that &§(Vi)(ps:, pj, V;) is an &-operator on the ground

of the set S of sentences it for every formula &(V, 1, ..., %) containing
neither V; nor Vy, Vi we have

(10) TP, VAS(V) (D, Vi) Vs = Vil « OnS
(A1) TNV R®V[Vi, by ey ) =\ (8V)(@, V) AD V[V, by ooy ) | €On S

The class ¢ will be called semantically closed on the &-operator
applied to the formulas of the set X if, for every formula @ ¢ X,

(12) {<z, 4>t M= 8(V)(D(V[Vs,2), Py, 2), )} e O ().

TaroREM 1. (Fo§’s restricted satisfaction theorem for ultrapower).
If D e Uf(C) and C satisfies conditions (5)—(8) and @ e C, ® is a formula

(') This manner of writing satisfaction does not lead to confusion if we make
a distinction between variables of the object language and the meta language.
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of the form

O(...)= Vml(Vy...)
and ’

(13) if @' is subformula of 2(Vy...), then @' and —iD' define in M sets
of the class C;

moreover, if 8(Vi)(p1, Py, V1) is an &-operator on the ground of the set Tr(IN)

5}- sentences true in M, and the class C is semantically closed on the &-oper-

ation applied to subformulas of 2(Vy ...), then for every fi, ..., fa e Fu(D, ()

the following equivalence holds: ;

14) M= (A s [fa))
<= it Whay vy Ya(<Ey Y1) € fih e A, Un € fa A= B (Y, oy Ym))) € D
The last formula will also be written shortly as
{ir M= B(fuld), .., fuli))} €D or {i: M|=0D}eD.

Proof by induction with respect to subformulas of &: For atomic
formulas directly from the definition (4) of RB* and Lemma 1 we gét the
equivalence

W |= R([f1, [g]) == {i: Ty, 2{<, > € fA G, 2> e gAM = R(y, 2)}} € D.
Also from lemma 1 and definition (3) we get
W = [fl]=[g] == f2g <= {i: Yyi, 9> efr gl D
== {6 Eyata(<i, 42y € FALE, 9> € gA M |=yy = y5)} € D.

Now suppose (14) for @' and @' subformulas of Q(V,); we shall
prove (14) for ¢’A®” and T1¢'. By the inductive hypothesis and ac-

cording to the properties of the relation of satisfaction, we have the
equivalences

(15) WM [= (P'AD") <= M |= B'AM |= ¢
<={i: M|= D'} e DAfi: M= D"} e D.
Hence if M |= (@'([f], [g])AD"([f], [k])), then by (1), (5), and (2) 2
(16) I = {i: "y, w, 2, y) efAG, w)e gALE, 2> e LA
=Dy, w) A M |= 0" (y, z))} e D,

This means that I = {i: M |= &'AP""} e D. Conversely, if {i: I |= &' AD"'}
€D, then we have (16). Hence the following inclusions are evident:

IC{i: Tyw(<i, y> e fAG, wy e gA M |= D'y, w)} = {i: M|= 0,
IC{i: Hyz(<, 9> efa 2> e bAM = B"(y, 2))} = {i: M |= &"}.
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The right-hand sets in these inclusions belong to ¢ according to (13)
and (5)-(8). Hence by (1) 4 and (16) they belong to D. This according:
to (15) completes the proof for the conjunction.

For negation, we have first, by the inductive hypothesis,

(1) W= T == I = (it By (i, y> « fAM|= '(y))] ¢ D.
Of course, by (13) and (5)—8): I « C. On the other hand, also by means.
of (13) and (5)—(8) we obtain
= lis @y (G, > efAM = T10(y))} ¢ C.
Now we note that
Ivd={i: Hyli,y>efteD
according to (2) 3 because fe Fu(D, C). Hence, by (1) 3 if I¢ D, then

J € D. Of course, I nJ = @ ¢ D; then by (13) and (1) 2ifJ ¢ D, then I ¢ D.
Thus by (17) we get

P = 1@ <=>JeD,
which completes the proof for the negation.
Now consider the operation of the existential quantifier. Let ¥ be

a subformula of Q(V,). This comprises also the case ¥ = Q(¥,). Of course;
we have the equivalence

W |= VrE(V, [f]) == Hg e Fu(D, C) MW" |= ¥([g1, [f]) .
Hence, by the inductive hypothesis,
W = VrP(V,[f]) == "g < Fu(D, 0),
I={i: M= ¥(g(5), &)} « D.

. (18)

Consider the set
(19) I = {i: By, 2(<, 2 e fAM |= Py, 2)} -

According to (13) and (5)—(8): J € 0; on the other hand, the inclusion
ICJ is evident. Hence, if IeD, then by (1) 4 JeD. Of course,
J = (it G, 2 < fAM = V' ®(Vy, 20} = {i: M|= V¥ (73, f(0))}. Con-
versely, if J e D, then we define first a function ¢:

(20) G yyeg == M= 8(Vy) (P (V1,2), ¥(y, 2),)
and another function g: ’
(21) $byy> eg == (i, 2> e fALe, Yy € ) -

According to the assumption of our theorem and formula (12), we
get g' ¢ 0. Hence, by (21) and (5)—8), also

(22) ge0.
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From implication (11) for §= Tr(M) we get

(23) @y (M = P(y,2) > Uy(M = 8(V) (¥ (Vs, 2), ¥(,2),9) A P(y, 2)) N

Hence
Ly, z(("‘; & efadlt|= ¥y, z))
<=y, 2(<0, 2 fAD = §(V) (F(V1, 2), P(4,2), 4) A\ M= P(y,2)) .
Thus, according to (19), (20) and (21),
(24) J = {i: "y, 2(<i,2) efAG, y> egnM|= ¥y, 2))} .

We need only to prove that g ¢ Fu(D, (). Condition (2) 1 is evident.

(2) 2 follows from (10), (20) and (21). Formula (24) implies the inclusion
JC{i: Hyd,ydegy=G.

Formulas (22) and (6) imply that @ ¢ 0. Hence, if J e D, then also
G €D, which completes the prpof that g e Fu(D, 0). Thus if J ¢ D, then
there is a g e Fu(D, 0) such that the set J of the form (24) belongs to D,
and this implies by (18) that IM* |= V7 ¥ (V, [f])-

CorOLLARY 1. If the assumplions of Theorem 1 are satisfied, the
identity function I belongs to C, and the function feFu(D, 0) is definable
in M by the formula S(V,,V,) (this means that
(25) > ef<e=>M=>D(i,y) for every i,y e M),
then the element [f1e M is the value of the function defined in IR* by the
Jormula &(Vy, Vy) for the argument [I].

This means that we ought to prove that

(1) M |= @(a, HAM* |= B(a, ¢) b = ¢, for every a,b, c e M*,

(it) M |= @{(11, [f])

Proof- .of (1). Suppose that a=[f], b= [g¢], ¢ = [A]. By Theorem 1
‘the suppositions of (i) mean that
(26) A= {i: Ty, 9(<5, 9> € FACE, 90> cgAM |= By, )} € D,

@) B =iz yi, 4al<5, 91> € GACG, 90>  hAM = By, y))} € D .

He'nce, by (25) (5)~(7) and (1), A A B eD. According to (25)-(27)
and using (2) 2 we get
Hence AnBC{i: Y95y 41> € FAYYa> € FAKT, 4> € g ~ B)} .

A nBC{i: Ty i, y>egnh}.

The set {i: Hy<i, yd>eg n h} belongs to ¢ accordi ‘
! ing to (5 .
it belongs to D. This means that g~h: b=c § 10 (8) and (6). s
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Proof af (ii). If Ie O, then, of course, I ¢ Fu(D, () if Fu(D, C)
is not empty. Hence, according to Theorem 1, assertion (ii) is equivalent to

{7:: H?/i?/z((”:’ Yo € ING, Yo e FADY |= DYy, ?/2))} eD.

But this set, according to (25), is identical with {i: Ty,{i, y»> e f}. Hence
it belongs to D by (2) 3 if feFu(D, C).

2. Unfnitizability of the induction schema in arithmetical extensions of
Peano’s arithmetic. Let Ar be the set of theorems of Peano’s elementary
arithmetic. For the purpose of our argument it is convenient to imagine
Ar as having the primitive notions 0, 8, +,- and also a few other ad-
ditional recursive notions, of course definable in Ar by means of 0, §, +,-,
which will be specified later. The axioms of Ar are:

1. 0287V, 2. S(V=8W->V=T, 3. 04+V=7T, 4 SWLV
= 8(W+V), 5.0.V=0, 6. SW.-¥ = W.-V+V, the definitions of the
additional recursive notions and the schema of induetion

(28) Ind. (2(0) A Ar(@ (1) >B(ST))) > Ar & (V)

for every formula @ built by means of primitive notions, connectives
and quantifiers.

A theory E will be called an arithmetical extension of Ar iff B is
a theory formalized in first order functional ealeulus, the set of primitive
notions of F is finite and embraces the set of primitive notions of Ar,
the axioms of Ar belong to the axioms of F and the axioms of E contain
all instances of schema (28) for all formulas @ built from the primitives
of BE.

Let 8 be the set of all sentences and S, the set of all sentences having
at most #n-quantifiers. Of course §= {J Sn.

THE UNFINITIZABILITY THEOREM. If ¥ is a consistent arithmetical
extension of Ar, then for every n e N there is a theorem T ¢ E such that

T¢Cn(E ~ 8y .

(Cn means the operation of logical consequence).

Proof. Suppose that our arithmetic Ar has the primitive notions
0,8, +, -, 0%, (®)y, py being the z power of the prime number py, and
{#)y = exp(z, y) being the biggest exponent with which the prime
number p, occurs in the development in primes of the number 2.

The well known property of the Kleene-Mostowski hierarchy may
be written as the following syntactical property of the extensions of Ar:
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LeMuMA 2. For every odd natural number w there is a formula
@(V,, V1, Vs) of the form

(29) ©(Vy, V1, V)
= Ve Avieer VP AV (Vn+3 < Vut2—>6(Vy, ... 7Vn+3))

(D has exactly n—+1 quantifiers with the first and the penultimate ewistentials,
o contains no quantifiers), which is universal for formulas ¥ (Vy, V) of the
same kind. This means that for every ¥ there is such a p e N, that

(30) T AR (P (72, V) <=0 (p, V3, V)
This lemma is & little stronger than the familiar theorem on the existence

of a universal X, functional; therefore I shall skech the proof.

Proof of the lemma. Consider the following notion @ ‘of a function
universal for functions which are primitive recursive in Py, ..., Py. The
axioms for ¢ may be the following:

Q(0,2,y) = 0 <= P(2,9),
Q0,2,y) =1 <= TPy, y),

Q(k—1,2,y) = 0 <= Pz, Y),
Qk—1,2,y) =1 <= T1Pu(@, y) ,

Qk,2z,y) =u,
Q(k+1,m,y)=8w,
Qu(k+2,2,y) =
Qk+3,2,y) = pi,
Qk+4,2,9) = (z)y,
Qk+5,2,y) =2y,
QE+6,2,9)=a+y.

For n > k--6:
Q((”)n; Y, '”) y When (n)y=0,
Q(‘n+17m;y)= Q(('”)ua$:m): when (), = 1,

(o, 2, Q((mhy 2,9)),  when ()= 2
when (n), > 3:

Q(n+1,0,y) =Q((“)oay7?/)a
Q(?’L-{—l, z+1,y) = Q((n)H {z, Y2, Q(n‘l‘l) Z, 'y)) - (3)
() <@, 9> = 273"

©
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These a,x10ms, for heuristic reasons, are written in variables » B, Y
instead of the orlgmal variables V,,V,,V; of our object Iang1mge.

It is well known that such an inductive definition may be reduced
to a normal one. Hence @ is definable in E.

Further, we realize that the definition of @ in E may have the
following shape:

Qn, z,y) =2<=>\p, /\Vg(Vz < V=0V, Vs, ny 2,9, z))

where ¢’ does not contain any quantifier.

‘We do not introduce the notion @ in the system E. Q is useful only
for finding the formula 4 of the ahove equivalence which satisfies all
inductive postulates for the function Q. Having this ¢’ and the postulates
for @, we prove our lemma in the following steps:

1. For every name formula ¢(V,, V) there is a number p such that
/\V1 Vz( Vi, Vo) = Q(p, Vy, Vz))_l

{by induction with respect to ¢).
2. For every sentential formula A(V,,V,) without quantifiers there
is such a p that
CArm{d(V, Vo) <= Q(p, V1, Vo) = 0) e B.

3. For every sentential formula 4(Vy,V,, ..., Vx) without quantifiers
there is a p such that

CAs a4V Vay ooy Vi) == Q(p, Viy (Vs o n>>) =0 'eE.

4. Using pairing functions, we construct from ¢’ a formula ¢ without
quantifiers and such that for every formula A(V;,V,, V,) without quanti-
fiers there is a p such that

CAV(VrAn(Ve < Vi—4(V5, Vs, Vo))
== VrAr(Va< Vasd(p, V1, Vs, Vo)) e B

5. Using 3 we generalize 4 for more quantifiers.
Now, if F is consistent, then there is a model M= (M, R,, ...
.y Bri1y gy ..., ) such that

(31) ‘ ECTr (MY,

Ry, ..., Ry being interpretations of Py, ..., Px and @, ..., a; being inter-
pretations of arithmetical notions.

Let O be the class of sets Zp in R, ..., Rk, i.e. the class of subsets
of M which are definable by formulas with at most n quantifiers, the
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first of them existential and the last general but limited. An exact
definition of the class ¢ may be the following. If X C M then

(32) X e C += there exists a formula ¥(V) with one free wvariable of
the shape (29) and such that

Vmeﬂ[(meX<::>9ﬁ[= ’f’(w))

Let F be a proper non-principal ultrafilter over the set M. Let D = ¢ ~ 7.,
Hence D e Uf(C) according to (1).

From the well-known facts about hierarchy it follows that 0 satisfies
conditions (3)—(8) of lemma 1.

Let & be the u-operator:

8(Vi)(p1, P2y Vo) = Am(VeVa~>T104) ADs .

Provided the theory F contains the schema of induection (28), this
u-operator satisfies conditions (10) and (11) for 8§ = E. Hence it does
so also for 8 = Tr(M).

TFinally, it is easy to show that the class € is semantically closed
on this operator applied to formulas @ having fewer than - quantifiers.
Indeed, consider the set X defined as follows:

={<&, 9> M= (V) (@(V[Vi,2), Dy, 2), )} ;
hence

{(’%?/) M= /\/\Vf(viq/—*—@(vi, )”

Thus, if @ has fewer than n-quantifiers, then the only non-trivial case
is that of @ having n—1 quantifiers, the first of them being general.
Hence T1®(V4,2) in the normal prenex form has n—1 quantifiers, the
first of them being existential. But in E we have the theorem:

ARl < V=BV, Vi, ..0)
<= \/Vl/\m(Vi->V—+k”(V¢, exp(Vy, Vi), )) .

Hence this equivalence is true in 9, and thus the formula AVi(V:<y
—71®D(Vi, 2)) is equivalent to another formula which has n quantifiers
the first of them being existential. Hence the set X belongs to the class C.

For every formula &(..)=\/y,Q(V,,..) such that 9 has fewer
a n-quantifiers the assumptlons of Theorem 1 are therefore matisfied.
Thus if @ has no free variable, we infer from theorem 1 that:

(33) @ is true in M ==& is true in M.

Hence the same is also true for the negation of @. Hence, according
to the De Morgan rules, we get equivalence (33) also for du&l sentences
(with a dual prenex form). Thus equivalence (33) holds for all sentences

©
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having at most n-quantifiers. Hence by (31) we have the inclusions:
(34) B~ 8 CTr(M) A Sy C Tr(Wi¥) .

There are perhaps many methods of proving that for sentences
having more quantifiers this inclusion fails. Here, to construet & counter-
example, I shall imitate the argument of A. Ehrenfeucht from [1]. First
let us consider the formula

(88) £(V3, Vo) = Vs Arara (7 < VuA V5 < V)

- (vVaQs(VM VS’ VG)")'eXp (Trs, (Vu V5>) # 0) A
A (exp(Vsy (Vay Vd) # 058 (V,, Vs, exp(Va, (Vs Vid)—1))1

A Ay (VS<BXP (Vay Vi Vid) =1 =18V, Vs, Vﬁ))) A
CAVe=14 3 3 exp(V, Vi, Vi) =1) .
'V;<V1 Vs<ly

The last member of the conjunction may be considered as an ad-
ditional primitive notion = (Vy, V,, V3), of courss recursive. The intuitive
sense of &(V,,V,) is the following:

Vo= 14 D D uVeT, Vs, 7).
Vi<V V5<F

Now consider the sentences
(36) Ar N7 £V, Vo)
BT Arar({Vo< Vi Avare(@(Vo, Vi, V) AB(Vo, Vi, Vi) Vs = V)

S A7 (B Vo, Vi, VIAE(V,, Vi) Vs < Vi) -

Sentences (36) and (37) are both theorems of H.
The proof of (36) proceeds by induction. The number ¥, constitutes
a two-dimentional diagram of the values of the function V& (V,, Vs, V)
for all V,,V;< V,. Hence Vi for V,+1 is obtained from V; (for V) by
adding to the diagram the new values
— V.. pV¢(V4 171+1 vy, yV@frV1+sl Vs, V)
3 Vg)paﬁ 1+1) ng+ip(71 LVs>

where

wVOV.)+1  if for some VO(V...),

The number V, is recursively defined by V.
The proof of (37) in E presents no difficulty.
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Now we shall show that the conjunction of (36) and (37) is not true
in 9R*. Suppose that both are true in 9N*. Take the element [7]e M*.
From (36) we get for some b= [f]e M*

{38) - (I, LFD) -

For feC, according to (32), (30) and (31), there exists a natural
number p € N such that

{39) Vz,VEM(<w7y> 5f¢°ml= (b(p;wy'y)) .

‘Consider the constant funetion p () = p, where p is the standard number p
of the model 9N*. Of course [p]e M*, and

{(40) m* |=[pl< 1],

because [I] is a non-standard element of M*. On the other hand, from (39)
and the corollary 1 we get

(41) M |= Ararar[(p, Vo VIAS(D, T, Vo) >V, = T7y)
and
(42) W = B(p, (1, 11]) -

Of course, for p e N and every formula ¥ the following equivalence
holds:

{43) - M = ¥([p]..) == D |=P(p...).

From (43) and (41), (42) we get
{44) WM |= Arws((P[2], 11, Vo) AB([p], [1], Vo) =Ve = V)
{45) M |= &([p], (11, [f]) -

Now, supposing that (37) is true in 9", consider the valuation:
[p] for Vy, [I] for V,, and [f] for both ¥, and V in the second part of the
implication. Hence by (40), (44), (45) and (38) we get a false conclusion:

M =[f1<[f]. ‘

Let T' be the conjunction of (36) and (37). Hence T ¢ Tr(Mt*). From
this and (34) we conclude that T ¢ Cn (& ~ 8,).

Of course, if E with definable notions is not finitizable, then B with
any other choice of primitive notions is not finitizable either.

Strictly speaking, we deal here with a property a. little stronger
than unfinitizability as it is familiarly understood in the literature.
Having a pairing function as a primitive arithmetical notion, we get
@ theory Ar or T in which the set 5 of senténces with n quantifiers is
-essentially infinite. (There are infinitely many non-equivalent arithmetical
sentences with n quantifiers Cnf [5]).

©
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Instead of adding a pairing function as a primitive notion, we can
change-the definition of Sy:

8y is the set of all sentences which have at most # block of similar
quantifiers.

Every block may have arbitrarily many quantifiers of the same
kind (all existential or all general). Hence Ar may he limited to the
primitives 0 §4-; and axioms 1-6 and Ind. schema. The unfinitizability
theorem remains true for this new notion of 8, for Ar as described above
and for every theory 7' containing Ar containing some new notions
Py, ..., Py and the Ind. schema (28) for all formulas. This result is stronger
that the similar ones published in the papers [6], [3], [2]

This method can be applied also to proofs of unfinitizability (in
this stronger sense) for other theories admitting models with an &-oper-
ator. (B.g. IT order arithmetic, and set theory.)
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