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- for all integers i and j, and so that
{01y @ay o3 C vy Bz, @y By 8y, By o0}
and
{@1y @y o 3 Closy Yooy Yoty Yos Y1y Yoy oo} -
Hence each of the two sets {..., #_s, 2_1, Doy &1y Loy oo} A0 {on) Yoy, Y1,
Yoy Y1y Y2y ---) s dense in U. We now define ¢: U—U by
¢(z)) =y, for any integer .

‘On the other points of U we define ¢ by
p(limz,) = lime(w,)
i->00 i~>00

‘Where {@n;}i>: i any Cauchy sequence taken from {...,z_s, x_q, %y, &y,
Ly, ...} It is easy to see that ¢ is one to one, maps U onto U, and preserves
distances. O

Urysohn [1] gave an example of two bounded isometric subsets A
and B of U with the property that no isometry from 4 onto B can be
extended to an isometry from U onto. itself. By considering countable
dense subsets of A and B we can show that neither Theorem 4 nor
‘Theorem 5 can be extended to arbitrary bounded sequences.
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C-scattered and paracompact spaces*

by
Rastislav Telgarsky (Wroctaw)

0. Introduction. The main problem considered in this paper is the
problem of the topological produet of paracompact spaces (Section 2).
O-scattered spaces, which play an important réle in this problem, are
studied in Section 1 and some strong covering properties of C-scattered
paracompact spaces are proved in Section 3. The results from this paper
were partially announced in [25].

Each topological space considered in this paper is assumed to be
completely regular.

The problem in a general setting reads as follows: what kind of
separation and covering properties are preserved by the Cartesian product
of finitely many spaces?

The Cartesian produet of two normal (even paracompact) spaces
need not be mormal ([11], [19]). But, as J. Dieudonné [1] proved, the
product 8 x T of a paracompact space S and a compact space T is always
paracompact and hence normal. An excellent result of H. Tamano [23]
reads: a completely regular space S is paracompact iff §x 8§ is normal.
K. Morita [13] proved that if § is paracompact and such that each point
has & nbd basis of the cardinality <<m and 7' is an m-compact normal
space, then 8 X7 is normal. This phenomenon appeared earlier also in
the product of two N,-compact spaces, as is explicitly stated in the
following Theorem of C. Ryll-Nardzewski [17]: if § is ®,-compact and
such that each point has a nbd basis of the cardinality <m and T is
m-compact, then §XT is ¥,-compact. An assumption eoncerning the
cardinality of a basis plaiys an essential role also in the Product Theorem
of K. Morita [13]: S is a normal m-paracompact space iff S§x[0,1]™ is

* This is an essential part of my doctoral dissertation finished in June 1969
written under the supervision of Professor Czestaw Ryll-Nardzewski. This work was
supported by the Educational Ministry of the USSR during my doctoral studies at the
Mathematical Institute of the Polish Academy of Sciences, 1967-1970.
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- normal. H. Tamano [23] stated the following problem: to give an intrinsic
topological description of the spaces § such that the product §x7 ig
paracompact for any paracompact space 7. Let us denote by I7 the class
of such §’s. K. Morita [14] proved that if § is metrizable and 8 ¢ II, then
8 is o-locally compact; he also proved that if 8 is paracompact and
o-locally compact, then § eII. However, T. Ishii [5] has shown that

there is a space in II with one limit point only which it not o-locally .

compact. The following Theorem of Z. Frolik [3] is very strange: the
product of countably many paracompact spaces which are complete in
the sense of Cech is paracompact and complete in the sense of Cech. On
the other hand, from a theorem of K. Morita [14] it follows that if 8 is
complete in the sense of Cech and § I7, then S is o-locally compact.
But every space that is complete in the sense of Cech and a-locally
compact must be C-seattered; this easily follows from the Baire Category
Theorem. C-scattered spaces coincide with resolvable sets in compact
Hausdorff spaces (Theorem 1.2). The class of all (-scattered spaces is
perfect (Theorem 1.3) and it contains all locally compact and all scattered
spaces. K -scattered spaces, where K is a class of spaces, were considered
by A. H. Stone [21]. Product Theorem 2.1 implies also a result of J. Su-
zuki [22], Theorem 3 (here: Corollary 2.1) and Product Théeorem 2.4
generalizes all known results concerning IT (Corollary 2.3, 2.4, 2.5 and
Theorem of Katuta), but it is not yet a final solution of the problem
of H. Tamano [23]. Every paracompact C-scattered space is absolutely
paracompact (Theorem 3.1); however, the space of all rationals is not
absolutely paracompact [7].

I wish to express my deep gratitude to R. Duda, R. Engelking,
Z. Frolik, A. Lelek and C. Ryll-Nardzewski for their discussions with
me and their criticism.

1. C-scattered spaces. The are several important hierarchies of sets
in a given basie topological space (e.g. Borelian, analytic and projective),
Here a hierarchy of C-secattered spaces is investigated; the concept of
& O-scattered space is a natural generalization of g locally compact and
scattered space. The idea of a classification of scattered-type spaces
belongs to G. Cantor and it is deseribed in F. Hausdorff [4] and in
A. H. Stone [21].

A space § is said to be scattered (see [8], p. 78) if every closed sub-
space B 5= 0 has an isolated point r e R. A space § is said to be C-scatlered
i every closed subspace E + 0 has a point r € R with g compact nbd in E,
Clearly, every scattered space is C-scattered and every locally compact
space also is C-scattered. The C-derivative R* of a cloged subset R
of § is the set of all 7 ¢ R without a compact nbd in R. Clearly, R* is closed
in R, and also in 8. Hence the derivative operation x has’we]l-defined

©
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transfinite iterations:

EY=R, R“— (RO ana R— N @

a<<i

for the ordinal limit number 7.

The set B = ﬂR(") is said to be the C-kernel of R. The rank d(p)

of a point p in a C-scattered space § is defined by the following con-
dition: d(p) = a iff p e §9 — gD,

It is easy to verify that the following statements are equivalent:
(1) 8 is C-scattered,
(2) 8 = 0 for some ordinal a,
(3) 8 =0,
(4) B=0 for every closed set RC §,
(8) B* is nowhere-dense in R for every closed set R in 8,
(6) there is a transfinite decreasing sequence {Fy: &< a} of closed
sets in § such that F,= 8, F,= 0 and F; = Q;Ff for the ordinal limit

number 1 < a, and Fr—Fy; is locally compact for each £ < a.

In the proof of the former equivalences it is useful to have the
following property: if B, CR,C 8 and R, and R, are closed in 8§, then
R C RY for each a and, in particular, if R, is C-scattered, then R, is
also C-scattered.

Let us remark that every open and obviously every closed subspace
of a O-scattered space is C-scattered too. This fact is a consequence of
% more general

TEEOREM 1.1. The family of all C-scaitered subspaces of a space S is
a ring (with the usual set-theoretical addition and subtraction).

The proof follows from the following two lemmas:

Leyma 1.1. If T= R v 8, where R and 8 are C-scattered, then T is
C - scattered.

Proof. Suppose F' is a closed subspace of T and F*= F. Without
loss of generality we can assume that # = T, because F ~n R and Fr §
are C-scattered as closed subspaces in R and 8, respectively, and F
= (FnR)v (F~8). If R0, then there is an open set U in T such
that U n R is compact and non-void. So U ~ R is nowhere-dense in T,
because T = T. Hence V = U— (U ~ R) is open in T and V == 0. But
¥ C8, so ¥V is open also in § and therefore ¥ contains points of loeal
compactness, because § is C-scattered. This contradicts T™ = T.

Levma 1.2. If T = S—R, where B and 8 are O-scatiered, then T is
C-scattered.
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Proof. Let F be a closed subspace of T and H the closure of F in §.
Then F=HA~T=Hn(8—R) =(Hn8)—R = (H~8)—(H ~ R),
where H ~ 8 and H ~ R are (-scattered as closed subspaces of 8 and R,
respectively. So, without loss of generality we can assume that ' =T
and H=4S. It §—8*CT, then T has points of local compactness,
because then S—8* is locally compact and open in 7. Let (§—8%) ~
~(8§—T) + 0. Since S— T = §—(§—R) = R, then (§—8*) ~ R is open
in R. Since R is C-scattered, then (§—8%) ~ B contains a point p such
that there is 'an open set U in 8 such that p ¢ U and U ~ E is compac.
Sinee p e 8— 8%, then there is an open nbd ¥ of p in S such that V is
compact. Let us put W= U ~ V. Then W and W ~ K are both compact.
Clearly, WnT=W—R=W— (WA R CT. Tt W—R =0, then WCT
and hence T has points of local compactness. If W—R s 0, then
W— (W ~ R) is a locally compact non-void open subset of 7' and § too.
Thus T has points of local compactness.

CororLARY 1.1. If 8 is a C-scattered space, then the family of all
C-scattered subspaces of S is a Boolean Algebra (with the usual set-theoretical
addition and complementation).

A set R in a space T is said to be resolvable (see [8], p. 96), if there
is a decreasing transfinite sequence {F.: « < f} of closed sets in T such
that R = (Fy— 1) v (Fy— Fy) © ...

If R is a resolvable set in some compact space T, then R is C-scattered.
Indeed, if ' is a closed subset in R, then ' = 0 or there is a minimal «
such that # n (Fo— Fay1) # 0. Clearly, every p ¢ F n (F,—Fayq) is a point
of local compactness of F. The converse statement is in the following

TuEoREM 1.2. If R is a C-scattered set in a space 8 and T is a com- -

pactification of S, then R is resolvable in T, as well as being resolvable in 8.
Proof. Tt suffices to prove that R iz resolvable in 8. Let R® De
the ath iteration of the (-derivative of R in R. Since R is O-scattered,

we have B = | (B¥—R"™) for some ordinal p. Tt is easy to verify
a<f

the following equality -

RO o) — RO REFI_(F@_ RE_ (RO RetY)) |

Let us put Fo= B—R** and H,= R¥— R (R®_ R}, Since

BY— R i3 lceally compact, then it is locally closed in § (for locally

closed sets see [8], p. 65). Hence H, is closed in § (see [8], p. 65, Corollary)-

Now we have R = Uﬂ(F.,—Ha). From the definition of 7, and H, we see
a<

that H,CF.. To see that F,.a CH,, we will prove at first that

B~ (R9— RB™*Y) = 0. If there were a point p such that p e B A
~ R and p ¢ B**Y, then for each open nbd T of 9 in 8 we would have

©
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U ~ RV 3£ 0. But R is a closed set in R, and so U ~ B ~ R 2 o
and p e R®CR imply that p e R**Y, which gives a contradiction. Now
we have H, = R(ﬂ) i R(a+1) _ (R(a)__ R(ﬂ+1)) — R(ﬂ)_ (R(ﬂ) . R(ﬂ'l-l))
D B (RO glet) . REFD _ p@_ pare _ F.+1, because of the
proved equality. Tf 1 < § is a limit ordinal, then F; = R?—R* — R®
= R¥C ‘Ql B9 = R9—_Ret Q;. F,= QA H,. Hence the trans-

a<d a<<d
finite sequence

Fo,Hyy Fiy Hyy ooy Fo, Hoy ... (a < f)

is decreasing; so R is resolvable in 8. The proof is finished.

Remark. Theorem 1.1 now follows also from Theorem 1.2 and
a known fact that the family of all resolvable subsets in a given space-
is a ring (see [8], p. 100, Theorem 1).

A space R is said to be absoluiely resolvable if R is resolvable in each
space § such that R is embedded in S. So we can say that a space is.
absclutely resolvable iff it is C-scattered.

CoROLLARY 1.2. If 8 is a compactification of a scatiered (or C-scattered):
space R, then the remainder S—R is C-scattered.

ProprEM 1.1. If R is a C-scattered space with indR = 0, then is-
there a compactification S of R such that the remainder S— R is scattered?

From a positive solution of the former problem follows a positive
solution of the main problem of Z. Semadeni [18]: does there exist for-
every scattered space a compactification which is also scattered?

- A mapping f from § into 7T is said to be perfect if it is continuous..
and closed and if f7'(t) is compact for each te f(8).

"THEOREM 1.3. If f is a perfect mapping from S onto T, then 8 is
C-scattered iff T is C-scattered. In other words: the class of all C-scattered
spaces 18 perfect.

Proof. (=) Let S be O-scattered and 4 a non-void closed subset
of T. Then there is an irreducible closed subset B of § such that f(B) = 4.
Without loss of generality we can assume that B= § and 4 = T. Let U
be an open set in § such that U is compact and non-void. Then 77— f(S—T)
is open in I and T—f(S—U)Cf(U)Cf(U), whence T—f(8—T) has
a compact closure in 7. If T'— f(§—U) were void, then we would have
T = f(8—TU), which is impossible, because S— U is closed and different
from § and § is irreducible. Hence the points of 7—f(S—U) are some.
points of local compactness of 7.

(=) If T is C-scattered and A is a non-void closed subset of §, then
f(4) is a closed subset of 7. Without loss of generality we can assume:
that A = § and f(4)= T. There is an open non-void get U in T such


GUEST


64 R. Telgarsky

that T is compact. But f7(U) Cf(U) and f(T) is compact. So the
points of f{U) are some points of local compactness of S.

The proof is complete.

COROLLARY 1.3. If T = f(8), where T is a scattered space and f is
a perfect mapping, then 8 is a C-scattered space.

Remark. It can be proved by the same arguments as in the proof
of Theorem 1.3 that (a) if f is a perfect mapping from a scattered space §
onto & space T, then T is also scattered, and (b) if f ifla pfarfect mapping
from a space § onto a seattered space T' such that f77(f) is scattered for
each t e T, then § is also a scattered space.

CoROLLARY 1.4. If S is a C-scattered space and T' is a compact space,
then 8 X T is C-scattered.

Proof. The projection f: §xT—~8 is a perfect mapping, because
T is compact. Hence by Theorem 1.3 the space 8xT is C-scattered.

TaeoreM 1.4. If § and T are C-scattered spaces, then S X T is also
-C-scattered.

Proof. Let R be any non-void closed subspace of §xT. Let P be
the projection of R to 8. Then @ = P is O-scattered as a closed subspace
of 8. Without loss of generality we can assume that @ = §. Since §* is
closed and nowhere-dense in §, then §— §* is open and dense in S. Hence
P~ (8—8%) # 0, because P is dense in 8. Let us take p eP (8- 8%
and an open nbd U of p in § such that U is compact and U ~ §* = 0.
Now (UXT)~R #0 and UXT is C-scattered by Corollary 1.4. Since
0= (UXT)~n RC(UXT)~R,(UxT) ~Risopenin Rand (U XT)~R
is a C-scattered closed subset in R, then (UXT)~ R contains some
point of loeal compactness of R, because (U xT) ~ R)* is nowhere-dense
in (U xT) ~ R. The proof is finished.

PrROBLEM 1.2. What are the conditions under which a C-scattered
space S with ind8 = 0 has a perfect mapping onto a scattered space?

The condition indS = 0 is necessary, because the real line has no
perfect mapping onto a scattered space. Some additional condition is
necessary even for locally compact spaces; it is shown by the following

THEOREM 1.5. Let m > 2%, p e {0,1)™ and 8 = {0, 1}"— {p}, where
{0, 1Y™ is the generalized Cantor space of weight m. If f is a perfect mapping
Jrom 8 onto T, then T is mot scattered.

Proof. Suppose there is a perfect mapping ffrom § onto a scattered
space T. Let T, be the set of all isolated points of T. Then {(FHt): te Ty
is a family of open sets of 7 which are pairwise disjoint. Since § is open
in {0,1}", f7(#) is open also in {0, 1}™ for every ¢ e 7T,. So T, is count-
-able, because {0,1}™ has the Souslin property: every family of pairwise
disjoint open sets is countable. Now we claim that w(7T) < 2¥°. Since T is
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locally compact and seattered, then by [24], Corollary 3, p. 569 ind T = 0.
Hence the family $ of all clopen subsets of T is g basis of topology of 7.
It is easy to see that the mapping g from B into the power set 9T, of T,
defined by putting g(B) = B n T,, where Be B is one-to-one, because
Ty is dense in T. 8o |B| < 2%, and hence the weight w(T) < 2®. To
obtain a contradiction let us remark that {0,1}™ contains a one-point-
compactification of some isolated set 8, of cardinality m, with {p} as
& remainder. 8o §, is a closed and isolated set in &. Hence f(8,) is also
a closed and isolated set in 7. The cardinality of f(8,) is m, because f is
perfect. Hence w(T) > w(f(8y) = w(8y) = m > o™ which yields the
desired contradiction. The proof is complete.

K. Morita [12] proved that if f is a closed continuous mapping from
a paracompact locally compact space S onto a space T, then the set of
all points of local incompactness of 7T is isolated and closed in T hence
the (-derivative T* of T is an isolated set, so T iy C-scattered.

PrOBLEM 1.3. Is a closed continuous i mage of a C-scatiered (or scattered)
space C-soatfered (resp. scattered)?

THREOREM 1.6. Lei 8 be a paracompact C-scattered space. If 8 = o,
then there is a locally finite closed covering {Si: i e I} of 8 such that 8 is
compact for each i eI. If 8 =0 and a is a limit ordinal, then there is
a locally finite closed covering {Si: i eI} of 8 such that for each i e I there
8 & B < a such that S‘f)z 0.

Proof. Tf 8" =0, then 8 is locally compact and hence for
each p « 8 there is an open nbd Uy in § such that Tp ~ 89 is compact.
Now {Up: p eS8} w {§—8“} is an open covering of S. The desired
covering. is its refinement. Tt 8 = 0 and « is the limit, then the family
{§—89: p<a} is an open covering of S. The desired covering of
8 is its refinement. The proof is complete by Theorem 4 in [2], p. 210.

THEOREM 1.7. If B is a melrizable space, thew R is C-scatiered iff R is
an Fy- and Gs-absolute space.

Proof. (=) From Theorem 4’ of A. H. Stone [21] it follows that
if B is a metrizable C-scattered space, then R is o-locally compact.
Hence, by Theorem 2 of [20], B is F,-absolute. Tt remains to prove that
R is G5-absolute. We prove this by transfinite induction using Theorem 1.6.
If BV =0, then R is locally compact and hence it is G,-absolute. If
B =0, then B is locally compact. Since R— R® is locally Gs-abso-
lute by the inductive assumption, then B—R® is also G-absolute,
because it is paracompact. Hence R, as the union of two G;-absolute
sets R and B—R®, is G;-absolute. Tf R® = 0 for limit a, then R has
by Theorem 1.6 a locally finite closed covering {R:: i« I} such that for
each 4 ¢ I there is a f <.« such that R = 0. So every R; is Gs-absolute
by the inductive assumption. Hence R is also Gs-absolute.

Fundamenta Mathematicae, T, LXXIII “ 5
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(<) If R i ¥,-absolute, then it is o-locally compact, i.e. B= |JR,;

i<
where Ry’s are locally compact, by Theorem 2 of [20]. Since B is @;-abso-
lute, then B fulfils the Baire Category Theorem.. Lg’ﬁ F b(:;' 2 closeq. sub-
space of R. It is clear that F has also the former properhe;s. .So v\m.;hom
loos of generality we can assume that F = E. Hence there is an i < o
such that Int(R;) # 0. So R has points of local compactness.
The proof is complete.

2. The topological product of paracompact spaces. It is well known that
the topological product of two paracompact spaces need pot be nqrma.l,
and henee it need not be paracompact. Thus the fo}lowmg question is
reasonable: what kind of intrinsic topological properties have the spaces
from I, i.e. the class of all paracompact spaces § such thatb S XTI is
paracompact for each paracompact space T? H. Tamano [23] raised the
following problem: find a topological property ,rela,ted. to the plass '12'.
Here this problem is not. yet solved, but we shall define a very wide
class contained in I7 which we suspect to be equal to II (see Theorem

.5 below).
e bWZ D)OW claim that connectedness plays no réle in the problem’ of
the product of paracompact spaces. We apply to produ.cts'the fo.llowmg
theorem of K. Nagami [16]: S is paracompact iff-there is a perfectly
zero-dimensional space § and a perfect mapping from & onto & (Qerfectly
zero-dimensional means such that every open covering has a refinement
by pairwise disjoint open sets). Hence we have a

REDUOTION PRINCIPLE. 8 X T is paracompact iff Sx T is paracom-
pact iff 8% T is paracompact iff 8 T is paracompact.

The proof follows from the fact that fx g is a perfect mapping if f
and g are perfect (see [3]), and from the invariance of paracompactness
by perfect mappings. A

A space 8 is said to be locally IT if every point p e § has an open
nbd U such that U belongs to IT.

TerorBM 2.1. The class II has the following properties:

(2.11) If Sell and R is a F,-sel in 8, then R ell.

(2.1.2) If Sell and T eIl, then 8 X T e II.

(2.1.3) If 8 is paracompact and locally IT, then S e II.

(2.14) IT is a perfect class; in particular: § ¢ IT iff § e IT.

(2.1.5) If R C 8, R is compact, 8 is paracompact and 8— R is locally IT,
then 8 ell.

(2.1.6) If R is a closed o-locally compact Gs-set in a paracompact
space 8 and 8— R is locally II, then S e IT. :
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Proof. (2.1.1) Since R is a Fy-s¢t in 8, then BRx T is a Fy-set in
8 T. Hence, if §x T is Paracompact, then so is B x 7T, because paracom-
pactness is F,-hereditary.

(2.12) I Sell, T¢I and R is a Pparacompact space, then B x § is

paracompact, because § eI7. Further, Rx 8x T is also paracompact,
because T ell. Hence Sx T e IT.

(2.1.3) Let {Si: ieI} be a locally finite closed covering of § such
that S;ell and let T be a paracompact space: Then {S;x T: i eI} is
a locally finite closed covering of § x T by Pparacompact sets. Then 8§ x T
is paracompact by a theorem of K. Morita [13].

(2.1.4) If f is a perfect mapping from a paracompact space B onto
& paracompact space § and 7 is g baracompact space, then fx ids is
a perfect mapping from B x 7T onto § x T, by a theorem of Z. Frolik [3].
Hence Rx T is baracompact iff §x 7' is paracompact, because the clags
of all paracompact Spaces is perfect.

(2.1.5) Let T be any paracompact space. According to (2.1.4) and
to the Reduction Principle we can assume that § and T are perfectly
zero-dimensional. Let # be any open covering of §x 7. For each te T
the set B x {t} is compact, whence there is a clopen nbd U; of R in 8 and
a clopen nbd V; of ¢ in T such that B x {t} C Uy XV C | A, where #; is
some finite subfamily of . Now {Vi: teT} is an open covering of T,
whence there is a diserete clopen covering B of T which refines {V;: ¢ ¢ .
For each Be% we pick a tge T such that BC Viy Clearly, {Usz x B:
B e %} is a clopen discrete refinement of {UexV3: te T}, and it covers
R x T. But also {(§— Uiz) X B: B e B} is a clopen discrete family in § x 7.
Since (§8—TUy) "R =0 and S— U, is closed, S— Ui, is paracompact
and locally I7. Hence, by (2.1.8), S— Uy, belongs to IT and so 4 has a locally
finite open refinement 4z in 8x T such that U #As= (8— Ui,) X B, for
every B e®. Finally,

U fts: BeB} v (U xB) ~ A: A ey, and B e B}

is an open locally finite refinement of 4 and it covers AXT. So 8xTis
paracompact and hence S e I7.

(2.1.6) Let 4 be any open covering of 8 x T, where T iy a paracompact
space. At first we will construct an open refinement of 4, ¢-locally finite
in § X T, which covers R x T, and further an open refinement of #, ¢-lo-
cally finite in § X 7, which covers (§— R)yx T.

Since R is closed in § and o-locally compact, there is a family
{Bs: ¢ e In and n < o} of compact sets such that for each 7 < w the family
{B: i eIy} is locally finite in § and R = U URi. For each n< o

n<wo teln

we take a locally finite family {Q;: ieln} of open sets in 8 such that
5%
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Q:D R for each ¢ el,. For each teT and ie | JIn the set Ryx {f} is .

n<o
compact and so there is an open nbd Uy, of Biin § and an open nbd V;,
of tin T such that U;;C Qs and Ry X {1} C Uy XV C [ £z, Where #;,
is some finite subfamily of #. For each ¢¢ {JI, the family {Vi: te T}

n<e
is an open covering of T. Hence it has an open locally finite refinement 3.
For each B eB; we pick a {5 e T such that BC Vyy,. Clearly, for each
ielJI, the family {(Uy, X B) n A: A ey, and Be®} is an open

ref;;gment of #, locally finite in 8x T, which covers E;x T. But the
family {(Usy X B) ~ A: A e &4y, B e By and de Iy} is also locally finite
for each n < w, because we have chosen @;’s for this reason. Hence we
have a o-locally finite refinement of 4, open in 8 X T, which covers B x T.

Since R is & Gs-set in 8, S—R is an F,-set and s0 S—RB = (T,

n<w

F, are closed in 8 and F, ~ R =0 for each n < w. Since § ,,E normal,
for each F, there is an open set Wy in 8 such that Fn C Wy C W, C S—R.
But then W, € IT and so £ has a locally finite refinement Gy, open in § x T
which covers Fn X T. So # has a o-locally finite open refinement (G,

n<o

which covers (S—R)x T.

The proof of Theorem 2.1 is complete.

From (2.1.3) and (2.1.5) follows the following:

CoroLLARY 2.1 (J. Suzuki [22], Theorem 3). If I is a locally compact
closed subset of a paracompact space S such that 8S— R is locally IT, then S € IT.

DBFINITION. A set R is said to be well-situated in a space 8, if for
every paracompact space T, every open covering of Ex 7 in § X I hag
an open locally finite refinement in 8 x T which covers R x 7. By II* we
will denote the class of all spaces R which are well-situated in every
paracompact space S such that B is embedded in S as a closed subset.

Putting R = 8, we see that I7* CII. Using the example of B. Mi-
chael [11] we can assert that the space of all rational numbers does not
belong to JT*. However, it belongs to II; this follows from (2.1.6) for R = §.
Hence II*  II. Although IT* is not F,-hereditary, it is F-hereditary;
the proof is analogical to the proof that paracompactness is I'- hereditary.

ProBLEM 2.1. Is the class II* perfect?

A space S is said to be locally IT* if every point p ¢ § has an open

nhd U in 8 such that U is in IT*.
TEEOREM 2.2. If R is paracompact and locally IT*, then R e IT*.
Proof. Let 8 be a paracompact space such that R is a closed subset
of 8. There is a closed covering {R;: i eI} of R, and locally finite in B
such that Ry e IT*, because R is paracompact and I7* is F-hereditary.
Since § is paracompact and R is closed in 8, there is a locally finite open
family {Us: ¢ e I} in 8 such that U; D R; for each i e I. Since R; is closed

f
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also in &, then E; is well-situated in 8. Let 7 be any paracompact space
and -t be any open covering of R X T in § x 7. Then -+, a8 an open covering
of E;x T, has an open refinement +£; locally finite in Sx T and such
that R;x TC J4C Uyx I. Clearly, & = |/ {#;: iel} is an open
refinement of s¢, locally finite in 8 x 7, and it covers B x T. Hence R e IT*.
The proof is complete.

TEEOREM 2.3. If R is a closed C-scaltered subset of a paracompact
space 8, then B is well-situated in S; i.e., every paracompact C-scattered
space belongs to IT*. 4

The proof proceedes by transfinite induction.

It RY = 0, then B = 0 and hence the theorem is true.

If B**Y=0, then R is locally compact. By Theorern 1.6 there
is a locally finite closed covering {Ri: i I} of R in B such that every
RY is compact. Aceording to Theorem 2.2 it suffices to prove that each
R; is well-situated in 8. To simplify the notation let us put F = R;. Let T
be any paracompact space and -t be any open covering of Fx T in 8 x T.
For each t ¢ T the set F® x {t} is compact; hence there is an open set U;
in 8 and an open set V;in T such that 7 x {8} C Uy x ¥, C Ty xV; C U #,
where #; is some finite subfamily of - and ie T. Clearly, {Vy: e T} is
an open covering of 7. Since T is paracompact, there is an open locally
finite refinement B of {V;: t e T}. Without loss of generality we can as-
sume that $ is irreducible. For each B ¢ B we pick a fpe T such that
B CVyy. Clearly, {Fyi,: B« B} is also a covering of 7. Now for each B eB
we will define an open set B’ in 7' such that B C Band | J {B": Be &} = T.
To do that, let us take a well-ordering relation < of %. Assume that for
some By eB, for every B < B,, the set B’ is already defined in such
a way that B'CB and | {Bj: By<B}u | J{By: B, > B)= T. The set
By' = T—(U{B": B< B} v {J{B: B> By}) is closed in T; By C B,
because {B': B < By} {B: B> B} is irreducible. Since 7 is normal,
we can choose an open set By in T such that By’ C B{CByC By. So B, is
defined. Since FC Uiy we have (F— U,B)(“)= 0. Hence, by the in-
ductive assumption, F— Uy, is well-situated in 8. Hence (F—U,)x B,
as a closed subset of (F—Uy,) x T, has an open covering Cz, locally finite
in 8% T, such that Cp refines -t and | JCpC Sx B. From the above
constructions it follows that

{(UtBXB)f\A: A ey and BeB} v | {Cr: BeB}

is an open covering of F x T, locally finite in §x 7, which refines .
Hence F is well-situated in §.

If B® =0 for the ordinal limit number a, then by Theorem 1.6
there is a locally finite closed covering {E;: 4 ¢ I} of R such that for each
i eI there is a f < a such that RY = 0. Hence every R; is well-situated
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in § by the induetive assumption. So, by Theorem 2.2, R is also well-
situated in 8. The inductive proof is complete.

A collection {4;: 4 <I} of subsets of a topological space is said to
be order locally finite, if we ean introduce a well ordering < in the index

set I such that for each i e I the family {4;: j < i} is locally finite at each -

point of A;.

Lewwa 2.1 (Y. Katuta [6]). Let {4 i e I} be an order locally finite
collection of subsets of a space S and let {B;: j e Ji} be a collection of subsets
of Aq locally finite in 8, for each ¢ eI, such that Ji~Jy=0 for ¢4
PutJ = J {Ji: i e I}. Then the collection {By: j ed} is order locally finite.
In particular: & o-locally finite collection is order locally finite.

Lemwa 2.2 (Y. Katuta [6]). 4 space S is paracompact iff any open
covering of 8 has an order locally finite open refinement.

As a generalization of Theorem of Y. Katuta [6] we have

. TrEorEM 2.4. If a space S has two coverings

(Feiell and {Ugiel}

such that each F; is closed and well-situated in 8, every Uy is open in S and
U2 Fy, and {Us: i eI} is order locally finite, then 8 ¢ IT, i.e. for any pare-
compact space T the product Sx T is paracompact.

Proof. Let T be any paracompact space and let /£ be any open
covering of §x T. Sinee every F; is well-situated in §, then there is an
open covering B; = {B;: j ey} of Fix T, locally finite in §x 7, such
that $; refines 4 and {J B C U;x T. Without loss of generality we can
assume that J; n J; = 0 if 4 4 7. Since the open covering {U;x T: i ¢ I}
of §X T is order locally finite and Fix T C | JB:C U;x T, then the
family (J{B:: i eI} is, by Lemma 2.1, an open order locally finite
refinement of £ and it covers §x 7. Hence, by Lemma 2.2, S X T is
paracompact. The proof is complete.

CororrARY 2.2, If 8 is a paracompact space constituting the wumnion
of some countable family of its closed subspaces Sn with Sy ¢ IT*, then 8 x T
is paracompact for any paracompact space T.

From Theorem 2.3 and Theorem 2.4 immediately follows

TEHEOREM 2.5. If a paracompact space 8 has two coverings: an open
covering {Us: © eI} and a closed covering {Fy: ieI} such that {Us: i el}
s order locally finite, UiD Fy for each ieI and every F; is O - scattered,
then 8 X T is paracompact for every paracompact space T.

Remark. From the example of B. Michael [11] it follows that if
{8n: n < w} is & family of paracompact spaces such that P 8y e I, then

. n<w
there is n < w such that for each % > n the set Sx is compact. To see

this, suppose that S, is not compact for ky <k <Fky<.. Then S,
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contains & countable infinite closed isolated set R,. Since P R, is a closed

n<w

subspace of P 8y, then P R, can be embedded as a closed subspace
n<w

n<w
of P S,.But P Ryishomeomorphic to the space of all irrational numbers.

n<m n<w
P En¢II by Michael’s example and hence P 8,¢I7 by (2.1.1).
n<o n<o

PrOBLEM 2.2. Is the topological product of countably many para-
compact scattered spaces paracompact?

Now we give some corollaries to Theorem 2.5.

CoroLLARY 2.3 (K. Morita [14]). If 8 is paracompact and o-locally
compact, then S ell.

CororLARY 2.4 (T. Ishii [5]). If S is a closed continuous image of
a paracompact locally compact space, then S eIl

To prove this, we apply Theorem. 4 of [12]; the space S by hypothesis
is O-scattered (its second derivative vanishing). Hence S e II.

CoroLLARY 2.5 (M. Tsuda [26]). If S is a closed continuous image
of a paracompact perfecily normal o-locally compact space, R, then 8 II.

From Theorem 4 of [12] it follows that by hypothesis § under as-
sumptions is a union of some countable family of its closed C-scattered
subspaces. Hence § e I7. It is clear that the assumption that R is perfectly
normal is superfluous; this answers a question of T. Ishii [6].

CoroLLARY 2.6 (Y. Katuta [6]). If a space S has iwo coverings
{C0s: i eI} and {U;: 1 e I} such that

(a) C; is compact, U; is open and C;C Uy, for each iel, and

(b) {TUs: @ eI} is order locally finite,
then S ell.

Now we give an example of a scattered paracompact Lindelof space S,
which does not satisty the assumption of the Theorem of Y. Katuta [6].
Let p e fSN—N be a p-point, ie. there is a clopen basis {U.: a << o}
of nhds in p such that for every a« < w, and every § < a we have Uy,—N
C Up—¥ and (Ue—Ups1)— N £ 0. Let us pick po € (Us—Uay1)— N and
put 4 = {pat a< ). Take §, =N u 4 v {p} with the topology of 8,
as the subspace of fN. Then §, is completely regular. §, has the Lindelof
property, because the complement of any basic nbd of p is & countable
set. Hence S, is paracompact (see [2], p. 211). A is an isolated set, because
Vo= 8y n (Us—TUas) is & clopen nbd of p, in §, such that Vo n 4 = {p.}.
Hence 8, is scattered as a union of three isolated sets (see [8], p. 79,
Theorem 2). Let ¢ be any compact set in §,. Then C is closed in gN.
Hence C is finite or ¢ has the cardinality of SN (see [2], p. 132); the last
case is impossible, because the cardinality of S, is less than the cardinality
of BN. So C is finite. Suppose that S, has two coverings, {C;: ¢ ¢ I} and
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{Us: i eI}, satisfying (a) and (b) from Corollary 2.6: Since every .Oi is
finite, then each C;—{p} is compact. Now the coverings 10— {p}:ie I}
and {Ui— {p}riel } satisfy the conditions (a) and (b) fropa .0.orolla1?y 2.6
for the space 8= S,— {p}. Hence, by Corollary 2.6, S is in p‘a:rtllcgla,r
paracompact. So § is collectionwise normal. Bub this is 2 contradiction,
Dbecause |{pc}: a< o] is a discrete family of closed setis in § and there
is no diserete family of open sets {Ba: « < w;} such that pa € B.. Hence 8,
cannot satisfy the condition of the Theorem of Y. Katuta [6].

PROBLEM 2.3. Does the class of all paracompact C-scattered spaces
coincide with the class IT*?

The product space of two spaces satisfying the conditions (a) and (b)
from Corollary 2.6 for non-cofinal ordered systems <I, <) and <J, <)
need not satisfy the eonditions (a) and (b) for some (K, <y. To check
this it suffices to take Q %I, where @ is the space of all rationals and L
is the subspace of {a: a < w,} consisting of all nonlimit countable ordinals
and of the greatest element ;.

3. Total and absolute paracompactness. In this section we consider
covering properties much stronger than paracompactness, bub still weaker
than compactness. Totally paracompact metric spaces were studied by
A. Lelek [9] and [10]. This section is a generalization of Theorem 3 in
my earlier'papér [24]. Corollary 3.3 in a slightly weaker form was proved
also by H. Kok. A proof that the space of all rationals is not absolutely
paracompact is contained in a joint paper [7] of H. Kok and the author.
The last paper is a natural continuation of this section.

A space S is said to be fotally paracompact if every open basis of 8
contains a locally finite covering of 8. A family $ of open sets in S is said
to be an outer basis for R C § if for every p ¢ R and every open nbd U
of p in 8 there is a B ¢ B such that p e BC U. A subspace B of 8 is said
to be totally paracompact relative to S if every open outer basis of R in 8
contains a covering of B which is locally finite in S. Finally, a space R is
said to be absolutely paracompact if R is totally paracompact relative
to every paracompact space S such that R is embedded in § as & closed
subspace.

Putting B = 8, we see that every absolutely paracompact space is
totally paracompact. Clearly, every compact space is absolutely para-
compact. Moreover, we have

TeeEOREM 3.1. If R is a paracompact C-scattered space, then R is
absolutely paracompact.

Proof. Let § be a paracompact space such that B is a closed sub-

space of § and let 3 be an outer basis for R in §. We will prove by trans-
finite induction on « that if R® = 0, then R is absolutely paracompact.
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If R(D)‘= 0, then B = 0. Hence the theorem is true.

If RETY — 0, then R® is locally compact and closed in RB. Hence
there is a locally finite family {Ci: i eI} in § of compact sets such that
R® = J{C:: i eI} Since § is paracompact, there is a locally finite
family {Us: 4 eI} in 8 of open sets in § such that C;C T, for each i I.
-Bince every C; is compact, there is a finite subfamily $;C $ such that
CiCUB:C Uy Clearly, By = |J{Bs: i eI} isa locally finite family in S,
and it covers R® and By C B. Now, R—1| | B, is a closed subspacé of R
and (R—{_J $)® = 0, because B— | J $,C R—R“. So R_ B, is ahso-
lutely paracompact by the inductive assumption. Since B is an outer
basis also for B—J By, B contains a covering 4, of R—|J®, locally
finite in 8. Clearly, #£, v B, is a covering of R, locally finite in S con-
tained in $.

If B® =0 for the ordinal limit number a, then Dy Theorem 1.6
there is a closed covering {Fi: i< I} of R, locally finite in R (and hence
also in 8, because R is closed in §) and such that R = (| {Fi: eI} and
for each 7 eI there is a f < a such that FP — 0. S0, by the inductive
assumption, every F; is absolutely paracompact. Let {Ui: i I} be a locally
finite open family in § such that U;D F; for every i e I. Let i be fixed;
since B is an outer basis also for Fy, there is a $; C % which is locally
finite in § and such that F; C {J $: C U;. From the above construction
it follows that £ = | {B:: ¢ e I} is a locally finite family in S, « covers R
and #4C 3.

The induective proof is complete.

CoroLLARY 3.1. If R is paracompact and locally compact, then R is
absolutely paracompact.

COROLLARY 3.2 (Theorem 3 in [24]). Each paracompact scaitered space
s totally paracompact.

ProBuEM 3.1. Is B C-scattered if R is absolutely paracompact?

ProBLEM 3.2. Is R totally paracompact if R is o-compact? In
particular, is R totally paracompact if R is countable?

COROLLARY 3.3. Fach paracompact C-scaitered space is totally para-
compact.

ProBuEM 3.3. Is 8 X T totally paracompact if S is totally paracompact
and T is compact? More generally: let T = f(S) and f be a perfect mapping.
Is 8 then totally paracompact iff T is totally paracompact?
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The space of rationals is not absolutely paracompact
by
R. Telgirsky (Wroctaw) and H. Kok (Amsterdam)

A Hausdorff space X is said to be paracompact (metacompact) if
every open covering of X has a locally finite (point-finite) open refi-
nement.

A Hausdorff space X is said to be totally paracompact (totally meta-
compact) if every open base of X contains a locally finite (point-finite)
covering of X.

A family & of open sets in X is said to be an outer base of YC X
if, for each y « ¥ and each open set & in X, such that y € G there exists
a Be% such that ye BC G.

We call a subset ¥ of X totally paracompact with respect to X it every
outer base of ¥ in X contains a locally finite (with respect to X) cover-
ing of Y.

It is easy to prove that if ¥ is totally paracompact with respect
to XD Y, then Y is a totally paracompact subspace of X. A paracompact
space X is said to be absolutely paracompact if, for every paracompact
space Y such that X is embedded into ¥ as a closed subspace, X is totally
paracompact with respeet to Y.

For results on totally paracompact spaces we refer to [2] and [5].

In this paper we will prove that a space of B. Michael [3] is not
totally metacompact and that the space of the rationals is not absolutely
paracompact. It is known that the space of the rationals is totally para-
compact, and that the space of the irrationals is paracompact but not
totally paracompact (cf. [27).

Let o denote the Baire space of sequences of non-negative integers.
It is well known that o is homeomorphic to the space of all irrational
numbers (cf. [4], p. 143).

Let

D= {few® Hn: VE=u: f(k)= 0}.

Then D is dense in »® and D is homeomorphic to the space of rationals.
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