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On separable Banach spaces containing all separable
reflexive Banach spaces

by
PRZEMYSEAW WOJTASZCZYK (Warszawa)

L. Introduction. The main result of this paper is the following

THREOREM 1. If a separable Banach space X has the property that
every separable reflewive Banach space is isomorphic to a subspace of X,
then @ is mot isomorphic to the dual space of any Banach space.

This theorem completes the result (due to Szlenk [5]) that if a Banach
space satisfies the hypothesis of Theorem 1, then it has a non-separable
dual and improves in the separable case a result of Lindenstrauss ([3],
Theorem 3.1), where the isometric isomorphisms are considered. Our
Corollary 1 and results of [5] and [3] give the complete answer on the
problem raised by Banach and Mazur (cf. [6], Problem 49). From Theorem
1 we deduce the non-existence of a boundedly complete bagis which is
universal for all boundedly complete normalized bases. This confirmed
a conjecture of Pelezytiski [4], p. 267. This result was also obtained recently
by Zippin [7] who used a different method.

To prove Theorem 1 we used a modification of Szlenk’s method [5].

This note is a part of author’s master thesis written under the super-
vision of Professor A. Pelezytiski. The author wishes to express his grati-
tude to T. Figiel and A. Pelezyniski for valuable discussion during the
preparation of the present paper.

2. Definitions and notations. The capital letters X, ¥, Z, ..., will
denote Banach spaces and the letters f, @, y, 2, ..., will denote the elements
of Banach spaces. The term “subspace’” means “closed linear subspace’.
The symhol Ky will denote the closed unit ball of the space X. By X*
and X** we shall denote the first and the second dual of & Banach space X.
We shall always identify the Banach space X with its canonical image
in X™*. The letters a, 8, y will be reserved for denoting ordinal numbers.
By o, we shall denote the first unecountable ordinal number. By the
(X, X*)-topology we mean the X*-topology of X called also the weak
topology of X. By the (X*, X)-topolagy we mean the X topology of X*
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called also the weak star topology of X (cf. [2], V,§ 3, for definitions)
The convergent in (X, X*)-i;opologz (resp. in (X7, X)-topology) will be
denoted by mﬂ(—xj’—;)wo (resp. %m%)- ‘We shall preserve the terminology
of [1].

We shall need the following

DErFINITION 1. Let &/ be a class of Banach spaces. The Banach
space X e is said to be isomorphically umiversal for the class <7 it each
member of &/ is isomorphic (ie. linearly homeomorphic) to a subspace
of X.

Next we recall the definition and the basic properties of the Selenls
index (cf. [5]).

DEFINITION 2. Let G and I' be bounded sets in Banach spaces X
and X* respectively. Let us assume that I' is (X*, X)-compact. For every
&> 0 and to each ordinal number « we assign (by transfinite induction)
a set P,(e; G, I') ag follows: .

1. Py(e; G, ) =TI

2. Poyq(e; G, 1) = {feX*: there exist #,¢G and JnePy(e; G, ) for

m =1,2,..., such that f"lm 1y m’"('x_.ﬁ 0 and limq SUP | (@) = };

3. If ¢ is & limit number, then P,(e; &, I) = (P, (¢; G, I').
Let us set r=e
n(e; &, I') = sup{a < wy: P,(5; G, I) # O).
DEFINITION 3. The Selenk index of & Banach space X with separable

dual is the ordinal number

X)) = Sugn(ea Ky, Ex).
&>

The following basic properties of the index 7(-) were, established
by Szlenk [5]:

8.1. If X* is separable, then 5(X) < w,.
S.2. If Banach spaces X and Y are isomorphic, then 1 (X) = 5(X).
8.3. For any countable ordinal number o there emists separable,
reflexive Banach space X, with o basis such that (X)) = a (¢t [B] and
[4], Theorem 4). The family X, can be comstructed as Sollows: X, =1,,
Toa = (Xo®b), ond if o is o Lmit number X, — (T1X,),.
y<a

_ 3. The main result. Tn this section we consider only Banach spaces
with separable duals. Let us introduce the following concept.
 DmPINITION 4. Let I" and @ be bounded sets in X* and X™** respec-
tively, and let I" be (X*, X)-compact. For each ordinal number « and real
number & >0 we define the sets B,(&;T, Q) as follows:

icm°
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1. By(e; I, Q) = I.

2. Boyy (o515 Q) = {f<X": there exist f,eB,(s; I, Q) and < for
n=1,2,..., such that o 0, fury / omd. Limint o3 (£,)| > e}.
E n

[N
(X%, X*n)

3. If o is a limit number, then B,(s; T, Q) = B,(s; I, Q).
y<a

Levwa 1. Let G, I' be bounded sets in X and X* respectively and leot
I be (X%, X)-compact. Denote by G the (X*, X*)-closure of & regarded
as o subset of X**. Then for each o and each = > 0 we have

Pale; G, ) = B(s; T, &).

Proof. Obviously Py(s; G, I') = I' = By(s; I, &).

Next we show inductively that Py(e; &, I") < By(e; I, @) for each
< o

Suppose, that for a countable ordinal number o3>0 we have
P,(s; @ 1) = By(s;,@). T feP,,,(e;G,T), then there exist a,<@

and f,eP,(¢; G, I') for n» =1,2,... such that f”(x*—,ﬁf’ wn(—x’?;() and

limsup|f,(@,)| = & Let us extract an increasing sequence of indices ()
Ik -
such that Lminf|f, (,)|> ¢; by inductive hypothesis S e Bale; T, G).
&

Since #,, (considered as elements of X**) belong to & for % =1,2,...,

and T, 0, we obtain feB,,,(e; I, &). Clearly if a is & limib ordinal

number and for each o' < a we have P,(e;@ I') = B, (s; 1, ), then
Pe; & I') = B,(s; 1, G). )

Now we show inductively that B,(e; I, G) < P,(e56, ). I feB,,(s;
I, &), then there exist o3 G and f,,eBigke;J’, &) for n =1,2, oy SuCh
that , e 0, f"(x_*,ﬁf and hmnmﬂwn (fo)] = e. Since the (X, X")-
topology in @ is metrisable for separable X* (cf. [2], p. 426), we can define
the gets .

U = {o™ @ [0 (5,) =" (fu)l < 1fn} 0 (6™ <2 o(a)", 2™) < 1/n}

for n =1,2,...,

where o is a metric for & equipped with (X**, X*)-topology. Clearly the
sets U, = @ are non-empty (because a ¢U,) and open in (X**, X*)-
topology. Since G is dense in @ in this topology there exists an z, <G N T,,.
We have

limsup|f, (@,)] > limin|f, (2,)| > Uminf (jo;* (f)|—1/n) >
n €% .

and mn_n_* 0 in X™ or, equivalently, T 0 in X. So we get

(X‘”,X» ~ ? . . 0 -
fePayi(e; G, ). Thus B,y (e;l, &) = Poyy(e; @, ). Clearly if a is a limit
ordinal number and for each o' < a we have B, (s; [, @) c_Pa,(e; @G, 1,
then B,(s; I, &) = P,(e; @, I'). Thus for each countable ordinal number
o we obtain P,(e; @, I') = B,(s; I', &) and the proof is complete.

Studia Mathematica XXXVII, z. 2 4


GUEST


]
|
:

200 P. Wojtaszeryk

Lesva 2. Let Z, ¥ be Banach spaces such that ¥* is separable, Z is
reflewive amd Z* is a subspace of Y*. Then for each 0 < a < w, and for real
e>0
@ B, (3 Ky Kzn) < Bu(he; Kpvy Kym).

Proof. We use the transfinite induction. Obviously

By(e; Bpy Bpes) = Epe © Ky = By(d6; Kypuy Kyraa).

Suppose that (1) is true for f < a < w;. We shall show then that
(1) holds for «. This is trivial for the limit ordinals. Assume therefore
that a = f41. Let feB,(s; Kgvy Kym). (I B.(e; Kgu, Kpw) .Is empty it
is nothing to prove.) Then there exist f,eBy(e; Kpr, Kpu) and o* K
forn =1,2, ..., such that z:j*m 0 and ﬁ”(zﬁ? fand li;ninf [ (f)] > .
Sinee ;" is a functional defined on the subspace Z* of Y¥*, we can extend
it to an 9" e Kypw (by the Hahn-Banach theorem). Since Kypw is compact
in (¥, ¥")-topology, we can choose a subsequence (y,) such that
yf;m y3* for some ¢ eKpw. Let us pub

Ty = $Wm— ")

Obw'ously,. we have @;:W 0. Now let us consider the sequence
1 - r ; T t 7 F 0
(fap,)- 16 is clear thab f“k(_zTES f. Thus by reflexivity of Z f,LhW> f. This

)
implies that f,,km f. Hence f,, > f. The inductive hypothesis implies
that f, eBg(Fe; I(’Y,,Kyu). Moreover, we have

(7,7
]imkinf [y, (fo)| = FUmint (37" — 93*) 1, |

k

= Himinflyl (f,)— 45" (fu)] = limint [y} (Fap)) 2 4e
k k
because for z*¢Z* we have
% (#") = H}:MZZ(Z*) = limz (") = 0.
Thus we get feB,(}s; Epv, Kpn) Wwhat means nothing else but
.BQ(E; sz, Kzn) e Ba(—%ﬁ; Ky*, .Kyw).
This completes the inductive proof.

Lmwwa 3. Let ¥ be a Banach space with the separable dual and let
Z be reflewive and let Z* be a subspace of Y*. Then for >0 ‘

n(e; Kgy Kp) < 7(3e; Ky, Kypu)
and

7(Z) < n(X).

. Pro?k’f. Uie Lemmas 1 and 2 and the fact that the unite ball of ¥**
is the (Y™, ¥")-closure of the wnite ball of Y([1}1, p. 41).
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ProrosITION 1. Let (Xa)a<m1 be a family of separable reflexive spaces
with the property that 7(X,) = a for 0 < a < w;. Let Y be a separable Banach.
space which contains subspaces isomorphic to each X, 0< a< w;. Then
Y is not isomorphic to a dual space of amy Banach space.

Proof. Assume to the contrary that Y is isomorphic to the separable
dual X* of a Banach space X. Let V, be a subspace of X* isomorphic
to X,. Since X, is reflexive, V, is isometrically isomorphic to the dual
Z; of a Banach space Z, isomorphic o X,. By 8.2, we have 5(Z,)
= 7(X.). On the other hand, by Lemma 3, we infer that (X)) =9 (Z,)

= 7(X,) > a for each a < w,. But this contradicts S.1. This completes
the proof.

Proof of Theorem 1. Combine Proposition 1 with S.3.
From Theorem 1 we deduce some -corollaries.

CoROLLARY 1. There is no isomorphically universal Banach space in
the class of separable dual spaces.

This is an obvious consequence of Theorem 1 and. the fact that every
reflexive Banach space is a dmal one.

The next application econcerns the universal bases (see [5] and [79.

Two bases (z,) and (y,) in Banach spaces X and ¥ respectively
are said to be equivalent if a series Y 6,0, converges if and only if the

n
series D' ¢,y, converges. If () is an, increasing sequence of indiees, then

n
the sequence (#n,) 18 called a subbasis of a basis (z,). Clearly the subbasis
is & basis in the subspace which it spans. A basis (z,) is boundedly complete

n
if the series }'t,, is convergent whenever sup || 2 bl < oo
[ 7 k=1

DeriNirIoN 5. Let # be a family of bases. A basis (,) is
said o be universal for & if every basis in # is equivalent to a subbasis
of (a,). ,

COROLLARY 2. There is no boundedly complete basis universal for the
Sfamily of all normalized boundedly complete bases.

Proof. Let (_XH)KL,,1 be a family of reflexive spaces described in S.3.
Since X are reflexive and have bases, because X, haive this property, the
bases are boundedly complete ([1], p. 71). Thus if ¥ is a Banach space
with a basis which is universal for the class of all normalized boundedly
complete bases, then it contains subspaces isomorphic to each X* for
0< a< w;. Hence, by Proposition 1, ¥ is not isomorphic to the dual
of a separable Banach space. Hence ¥ does not have a boundedly
complete basis, because a Banach space with a boundedly complete
basis is isomorphic to a dual of a Banach space ([1], . 70). This completes
the proof.
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