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Hilbertian, Besselian, and semi-shrinking bases *

by
J. R. HOLUB (Virginia)

1. Introduction. Let (z;, f;) be a Schauder basis for a Banach space
X such that 0 < inf |ja;]| < sup |lo]] < 4-c0. Then (f,) is a basic sequence

in X* with coefficient functionals in [f;I" which are similar to (@) in

X by the “norm determining” property of [f;] (ef. [15]). We write
(f:» @) to designate this fact.
The basis (x;, f;) is said to be

(i) p-Hilbertian (1 < p < +o0) if whenever 2 &P < 400, then
2w e X; ¢

(ii) p-Besselian (1< p< +oco) if whenever D a;w;eX, then
2 ;[? < 4-o0; ‘

(i) semi-shrinking [10], [11] (or of type wey [3]) i the sequence
{w;} converges weakly to zero in X (in symbols, (z;) > 0).

In the case p =2 of (i) and (ii), the basis is called Hilbertian (resp.
Besselian) [8], [9].

The purpose of this paper is to continue the study of these types of
bases begun in [9], [10], and [11] and to demonstrate the use of tensor
product methods in this investigation. ‘

Section 3'is devoted to the study of general properties of p-Hilbertian
and p-Besselian bases and contains a characterization of Hilbertian bases
in a space X in terms of & certain basic sequence in X ®,X. The permanence
properties of the tensor product of Hilbertian and Besselian: bases in
X®,Y and X®,Y are also discussed.

In section 4 we use the results of section 3 and tensor product methods
to construct examples of semi-shrinking bases which are not shrinking
(and which have certain additional properties). At one time it was an

* This paper is part of the author’s doctoral dissertation written at Louisiana
State University under the direction of Professor J. R. Retherford. The author wishes
to thank Professor Retherford for this advice and encouragement in the preparation
of this paper.
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open question whether every semi-shrinking basis is shrinking [10]. Since
that time Pelezynski and Szlenk have given an example of a semi-shrinking,
non-shrinking basis [10] and Retherford has shown that the space (d) of
Davis and Dean. [2] also has such a basis [11]. In each case the basis con-
structed is nneonditional and boundedly complete. We exhibit a continuum
of mutually non-similar bages each of which is semi-shrinking, non-shrink-
ing, conditional, and non-boundedly complete.

2. Preliminary results. We recall the following definitions and results.
Let X and Y be Banach spaces. We will denote by X ®, Y the com-
pletion of the algebraic tensor product of X and Y in the norm

n n
HZ’mi@yi = sup Fle) 9w,
bt s rex* |

o<1, geT™*

while we denote by X®,Y the completion of X ® ¥ in the norm

n k k n
H Z Y,
- d=1

=int{ 3 gl lll: Y oj@y= > #,8y}.
j=1 i=1
If M is a closed subspace of X and N is a closed subspace of ¥, then

in1

M®. N is a closed subspace of X®, Y ([13], p. 35). We write M®,N -

c X®,Y. Also, X*®,Y" is a closed subspace of (X ®, ¥)*([13], p. 43).
The space (X ®,Y)" consists exactly of those bounded bilinear forms
v on XX Y that can be represented in the form

[ wo@, v au(@,y),
SxT

v(w) =

where § and 7 are suitable closed equicontinuous subsets of X* and
Y, and w, is the restriction of the bilinear form w on X*x ¥* to
Sx T([12], p. 168).

If (#;) is a basis for X and (y,) & basis for ¥, then (z;®y;) ordered as

“’1@?/1! ,0Y, QY
QY T, @Y, Ly @Ys

3@, L38Y, T3 QY5

is @ basis for X®,Y and X®,Y called the fensor product basis [4]. The
subsequence (#; @) of (3;®y,) is called the tensor diagonal of the bases
(;) and (y;) [5].

3. Properties of p-Hilbertian and p-Besselian bases. We begin with
some simple lemmas. The first demonstrates the duality existing between
Hilbertian and Besselian bases.
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LevwA 3.1. The basis (x;,f;) for X is p-Hilbertian (p-Besselian)
(1 <p < 4-00) if and only if the basic sequence (fiy %;) in X* is g-Besselian
(g-Hilbertian) (p~'+¢~* =1).

Proof. If (x;) is p-Hilbertian, then by the Banach-Steinhaus theorem
the linear map T: I’ - X defined by T ((@)) = 3 a;%; is continuons.

Therefore the adjoint map T*: X*— 1 (p~'+4¢7! =1) is continuous
and T%( 3 b;fy) = (b;) €1 for all 2 bify<[f;]. By definition (f;) is ¢-Besselian.

The other implication is proved in the same way.

Lemma 3.2. If (w) is a p-Hilbertian basis for X (1 < p < -+ o0), then
(@;) is semi-shrinking.

Proof. As the proof of Lemma 3.1 shows, there is & continmous one-
to-one linear map 7': I’ —~ X such that Te, = #; (where ¢; denotes the
i-th unit vector in ). For any f in X", T%(f) is in P (p~'4¢ ' =1)
and T*(f)(e;) = 0 since (e;) is semi-shrinking in 1 [6]. But T*(f)e; = f(Te,)
= f(x;). Therefore (x;) is semi-shrinking.

TEEOREM 3.3. Let (#;,f;) be a p-Hilbertion basis for X and (¥:y 92)
a g-Hilbertian basis for ¥ (p™'+¢~* = 1). Then the tensor diagonal (z,7,)
in X®,Y is similar to the wnit vector basis of c,.

Proof. Let (a;)ec,. Then

n n
1
” Za’imi®yi || = sup , Z“im*(mi)y*(yi> .
1=n le¥ <1 i=m
i<t
Since the spaces [f;] and [g,] are norm-determining over X and Y
respectively [15] there is an M > 1 such that this last is less than or
equal to

1w
M osup jal sup D la(z)| Iyt @)l
m<isn =<1, 2*elf;] =,
i<, y*¢g;]

By Lemma 3.1, (f;,®;) is ¢-Besselian and (9:, ¥;) is p-Besselian.
Therefore by the continuity of the mappings T* described in Lemma 3.1,

n

/g
sup [ 310 ()] < 71,
iz*I< sy,

*elf;]

and

su o : i,1/7;.< T
lzlf:’.:’[‘%[i;n ly (y”] < T3

(where T'; is the mapping corresponding to (z;) in 3.1 and T, corresponds

to (¥2)-
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Applyiﬁg Holder’s inequality we then have

sup D) le*(@)] Iyt )] < I I
[B*<1,2*e[#7] impm
[MIESSAL A

n
for all m and n. By our previous inequalities it follows that || 3 a2, @yl
i=m

2 0 and (4;®Y;) is similar to the unit vector basis of ¢.

In the case p = ¢ = 2 the following proposition (which is a partial
converse of Theorem 3.3) is true.

PROPOSITION 3.4. Let (2;) be a basis for X such that the tensor diagonal
(#,Q%;), in X®,X s of type P [14]. Then (x,;) is Hilbertian.

Proof. If (»;) is of type P in X®,X, then by definition

n n
sup || ¥ @@, = sup sup | 3'a" (@)y* (@)] < +oo.
n & n o<l &
<1
< *
In particular, sup sup | 3 [#" (#)]*] < 4oo.
7 i<l i=1
Now if (a;)eP, then
Yn' n
%
@ %;| = sup ;% (%)
“ & i< I 1-=Z,‘,: ¥
n n
<[sup it @] 3 tal]" ™ 0.
"<t = f=m

Therefore (z;) is Hilbertian.

Combining Theorem 3.3 and Proposition 3.4 we obtain the following
classification of Hilbertian bases in terms of a tensor diagonal.

COROLLARY 8.5. A basis (w;) for X dis Hilbertian if and only if the
tensor diagonal (2;® x;) in XQ,X is similar to (¢;) in c,.

An interesting corollary of Theorem 3.3 is '

COROLLARY 3.6. If X contains o p-Hilbertian basic sequence (w,) and
Y contains a g-Hilbertian basic sequence (y,)(p™ 4 q¢™' = 1), then X ®,Y
is not reflexive.

Proof. The corollary follows immediately from Theorem 3.3, the
fact that [#;]®.[y;] is a closed subspace of X ®.Y, and the fact that
every closed subspace of a reflexive Banach space is reflexive.

We will need the following result in order to demonstrate that the
duality existing between the e and = topologies on X®Y corresponds
to the duality between the notions of Hilbertian and Besselian bases.
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Levua 3.7, Let (x;,f;) be a basis for X having a subsequence (w,)
which is similar to (e;) in c,. Then the corresponding subsequence ( Tng) of
(fo i X* is similar to () in I

Proof. If (z,) is similar to (¢;) in ¢,, then the sequence of coefficient
functionals (g,,) in [%i]* is similar to (¢;) in . But clearly In; = fni][mni]
for each i. Hence if ;’ Oni s converges, then ;,‘ anifnil[%] = 3 Gy, cOns
verges. Thus 3 |a, | < +oco and (fn;) is similar to (g;) in 7.~

Remark. Since [f;] is norm determining over X, it follows from
Lemma 3.7 that if (=, f;) is a basis for X such that a subsequence (fa)
is similar to (¢;) in ¢,, then (z,) is similar to (¢,) in It

TeworEM 3.8. Lel (z;, f;) be a p-Besselian basis for X and (%5, 99)
& g-Besselian basis for ¥ (p~'+ ¢~ = 1). Then the tensor diagonal (2:®9;)
in XQ,Y is similar to (e;) in I

Proof. By Lemma 3.1, (f;, #;) is ¢-Hilbertian and (g;, %) is p-Hil-
bertian. Hence by Theorem 3.3 (f;®g,) in [£,]®,[4:] = (X ®, ¥)* is similar
to (&) in ¢p. It then follows from the previous remark that (u;,®%,) is
similar to (¢;) in 7%

We note that the dnality expressed in Theorems 3.3 and 3.8 cannot.
be extended further. That is, there is no analogue of Proposition 3.5 to
be obtained by replacing “Hilbertian” by “Besselian”, “” by “m”, and
“ey” by “I'” in that proposition.

ExAMPLE 3.9. Let (%) be the (conditional) basis for I* defined by 2, = ey,
By = b,y — 6, forn >1. Then (2;,Q;) in '@, is similar to (e;) in I,
but (x;) is not Besselian.

n k3
Proof. It is well known that in I'®, %, | Y Q& = Y |« [1).
=1 i=1
Using this fact one easily computes that for n > 3,
n=1
- Z‘
pust
Hence if ' a,4; @@; converges then D la;] < 400, implying (z; @ z;)
i i
in '®,I' is similar to (e;) in .
To show that (2;) is not Besselian, define @ =4, = a; = @, = §,

G5 =G = ... = Gy = §, and in general continue this pattern with every
“block” of 2°* numbers (4;) each equal to 1/2" (n =1,2,...). Then by

” 2"7 %;; ®T;
=1

Gt [ +2 3 1] +3a,).
=2

definition of the basis (#;) and the sequence (a;) it follows that > a;m;
=1
converges in I'. However, it is clear from the definition of the set (a@;)

o
that ) |a;* = “4co. Therefore (2;) is not Besselian.
i=1
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‘We will conclude this section with some results and examples concerning
the tensor product (z;®y;) of Hilbertian and Besselian bases (#;) and (y,).

ProposITION 3.10. Let (3;) and (y;) be bases for Banach spaces X and
Y respectively. Then (z;) and (yl) are Hilbertion if and only if (= ®Y))
is o Hilbertian basis for X ®,Y

Proof. If (z;) and (y;) are Hﬂbertian, then as in Lemma 3.1 there
exist continuous linear mappings Ty: PP->X and T,: I*— Y such that
T,(e;) = w; and Ty(e;) = 9;- It is well known that the tensor product
mapping 7,®7T,: F®,F—X®,Y is continwous [13], and 7,®7,
(6;®6) = 2;®Y;.

Now (¢;®¢;) is an orthonormal basis for the Hilbert space P,
(where o denotes the Hilbert-Schmidt crossnorm) and e < o [13]. Hence
it D' |agl® < +oo, then Y aye;®6;¢'®,1, implying Za,e ®6 QP
By the continuity of T, ® T, it follows that Z%w ®y; isin X®,Y and
(%, ®y;) is Hilbertian.

The converse is trivial since any subsequence of a Hilbertian basis
is Hilbertian.

COROLLARY 3.11. Let (x;) and (y;) be bases for Banach spaces X and Y.
Then (2;) and (y;) are Besselian if and only if the tensor product basis
(2;®y;) for X®,Y is Besselian.

Proof. Let (f;) and (g;) denote the coefficient functionals associated.
with the bases (#;) and (y;) respectively. Then if (#;) and, (y,) are Besselian,
(fi) and (g;) are Hilbertian by Lemma 3.1. It follows from Proposition
3.10 that the basis (f;®g;) for [f;]®.[9] < (X®,¥)* iy Hilbertian.
Therefore by Lemma 3.1, (#,Q4;, f;®g;) is Besselian in X®, Y.

In general the tensor product (s;®y;) of Hilbertian bases («;) and
(9;) is not Hilbertian in X ®, ¥, even in the case where @, = v, for all 4.
In fact, the unit vector basis (¢;) in #* is Hilbertian but (¢,®e,) in P, B
is similar to (e;) in 7!, a non-Hilbertian basis [5]. Since every subsequence
of a Hilbertian ba.sls is Hilbertian it follows that (e; ®¢) in P, 1*is not
Hilbertian. Similarly, (e;) in 7 is Besselian for 1 < p < 2 but there exists
1<p <2 such that (¢;®¢;) in ¥ ® ,I¥ is similar to (¢;) in I*, a non-Besselian
basis [5]. It follows that (e; ®e¢) in P, PP is not Bessella.n

In contrast to these observations we have the following results.

PROPOSITION 3.12. Let (e;) denote the unit vector basis for ¥t (a Besselian
basis). Then (e;®e,) in I'®, I is Besselian.

Proof. Suppose « = } ay6,®¢ converges in I'®,'. Then

N
I Y 46,06, < K|z for some K >1 and all . By definition then,

1,7=1

mm!Z auf(e)gle)| < Kl (¥ =1,2,..)
s
f.gelco
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Now if (s;)¥, and (t ), L, are Sequences of real numbers for which

,|s]<1fo1a,111<z<Na,nd|t[<lfora.]ll<j<N then set f, = (s;)2.,,
9o = (t;)2,, Where
, s it 1<ig<N , it 1<i<N
$; = e and ¥ = P .
0ifi>N 0ifj>WN
Clearly f, and g, are elements of I° and [|f,| <1, llg,/ < 1. Hence

by the above

izlmmmw—yv%wlxm

1,f=

It follows from Littlewood’s inequality [7] that 2( Z A" < 4o,
and so certainly 2 (Z @) < +oco. By definition, then, (e¢®e ) is Besselian
in '®,n.

COROLLARY 3.13. Let (¢;) denote the unit vecior basis for ¢, (a Hilbertian
basis). Then (e;Q¢e;) in ¢,®, ¢, is Hilbertion.

Proof. The coetficient functionals in #* associated with (e;) In ¢,
are (e;). Sinee I'®, I' is a closed subspace of (¢,®, ¢,)* and since by the

above (¢;®¢;) in I'®, I' is Besselian, it follows from Lemma 3.1 that
(e;®¢;) in ¢,®, ¢, is Hilbertian.

4. Semi-shrinking bases. In this section we will use the results of
section 3 to construct a continuum of semi-shrinking bases, each of which
is non-shrinking, conditional, and non-boundedly complete. The method
ilustrates the usefulness of tensor products for constructing examples
and counter- -examples in basis theory.

We will need the following result.

PRrOPOSITION 4.1. Let (2;) and (y;) be semi-shrinking bases for X and ¥
respectively. Then the basis (5,@y,;) for X®,Y is semi-shrinking.

P1 oof. Let ge(X¥®,.Y)". Then (as we mentioned in section 2)
g{w f wo(#', y')du (o', y'), where § and T are equicontinuous subsets

of X* a,nd ¥, respectively and w, is the restriction of the bilinear form
w on X*x T* to 8 X T (recall that every w in X® ¥ can be viewed as
a bilinear form on X*x ¥*). Now §x T is a compact metric space and
2, ®; (m’ y') = (2’ _/, (y) for all («’,y’) in Sx 7. Since by assumption
x; (m)—> 0 and ¥;(y’) > 0, we have (z, ®vy;) (as a sequence in C(Sx T))
converges pointwise to zero on §x T' and hence converges weakly to zero
in O(8xT). It follows that g(z;Qy) = SfT 2 @y (@', y')du(s', y')
X

= p(#;®¥;) > 0, and (x;®Y;) is semi-shrinking.
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ProrosmrioN 4.2. Let (x;) be a p-Hilbertion basis for X and (y,)
o g-Hilbertian basis for Y (p~'4q¢* = 1). If either (z;) or (y,) is non-
shrinking, then the basis (z;Qy;) for X ®,Y s semi-shrinking but non-
shrinking and non-boundedly complete.

Proof. By Lemma 3.2 each of (z;) and (y;) is semi-shrinking. Therefore
by Proposition 4.1 the basis (z;®y;) for X ®, ¥ is semi-shrinking. However,
since one of (2;) and (y;) is not shrinking and every subsequence of a shrin-
king basis is shrinking, it easily follows that (#;® ¥;) cannot be shrinking.
Finally, the diagonal (z;® ;) is similar to (¢;) in ¢, (a non-boundedly
complete basis) by Theorem 3.3 and it follows that (#; ® ¥;) is not boundedly
complete.

PRrOPOSITION 4.3. Let (y;) denote the basis for the space (d) of Davis
and Dean [2]. Then (y;) is g-Hilbertian for every 1 < g < -+oo.

Proof. Suppose 3 |4;]Y < 4-o0o. By definition of the norm in (d)

’

n n n n
[9p(3)] [ q]”“’[ AR ]”‘“
Yol = — 8 [ . .
el Y e D] [ 25"
i=m = i= i=

This last tends to zero as m,n — oo, implying Zaiyie(d) and (y;)
is g¢-Hilbertian. *

We can now state and prove the main result of this section.

TEEOREM 4.4. There exists a continuum of mutually non-similar bases
each of which is semi-shrinking, non-shrinking, conditional, and non-boundedly
complete.

Proof. Let (e;) denote the unit vector basis for I (1< p < +oo0)
and (y;) the basis for the space (d) mentioned in Proposition 4.3. Then
the basis (¢,®y;) for ”®, (d) has the property that it is semi-ghrinking,
non-shrinking, and non-boundedly complete (Propositions 4.2 and 4.3).
Clearly if p, 7 p, the bases (¢;®y;) in "1 ®, (d) and in 2@, (d) are non-
similar (if not, (¢;®%,) in 1 ®,(d) would be similar to (6,®9,) in P2Q,(d),
implying I"* and "2 are isomorphic, a contradiction for p, % p,).

For convenience, let X, = #®,(d) and let (2{")) denote the basis
(6;®y;) for X,. It is well known that for each 1 < p < oo the space
7 has & conditional basis (w{) [9] which i§ shrinking [6]. Hence by our
results the basis (wP®2P) in @, X, is semi-shrinking, non-shrinking,
non-boundedly complete, and conditional (1 < p < '+oo). By the same
argument as the above it is clear that if p, 5 p,, the bases (w{™ ®2(")
and (w{2? @42 are not similar.
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