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Existence and uniqueness of the solution
to the critical problem in neutron transport theory

by
JANTUSZ MIK A (Warszawa)

I. Introduction. The critical problem in the neutron transport theory
is usually formulated in the following way: How much should one increase
(in the fictitious way) the number of secondary neutrons per fission to
achieve the stationary neutron distribution in a given system? In other
words, the fission neutron source is multiplied by 1/k, where k is the
so-called effective multiplication factor of the system and the positive
value of k corresponding to the non-negative stationary solution is sought.
The system is just eritical if such a value of % is equal to unity.

The existence and uniqueness of the solution to the critical problem
has been investigated for the transport equation by Shikhov and Shishkov
[6]—[8] under a number of restrictive assumptions. In partieular, they
assumed that the scattering kernel is bounded for all finite velocities.
At the same time, it iy known that the diffusive model of scattering in
liquids leads to a singular behavior of the scattering kernel.

In this paper it is proposed an approach to the ecritical problem
different from that employed by Shikhov and Shishkov. It is based upon
the theory of semigroups investigated in the neutron transport theory
in connection with the time-dependent problems. In such a way the
assumptions concerning the scattering kernmel are less restrictive and,
ab the same time, the analysis becomes much simpler.

The neutron angular distribution is assumed to be square summable
with respect to space and velocity variables. The reason for such assump-
tion is that the analysis of the time dependent transport equation for
square summable functions is almost complete so one can easily transfer
the results to the stationary case.

For the sake of simplicity the homogeneous system is considered.
The extension to heterogeneous systems is straightforward.

II. Formulation of the problem. The transport equation describing the
stationary neutron distribution in a finite homogeneous convex body
surrounded by vacuum has the following operational form:

1
2.1) T¥+KY+—F¥ = 0.
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The neutron distribution ¥ (77, 3) depends on the position vector 7
and velocity vector 7. The operators in equation (2.1) are, suceessively,
the streaming operator

22) . (T¥) (7, ) = — b grad ¥(7,5)—no(0) ¥(7, V),

where » = [p| and «(v) is total macroscopic cross section; the scattering
operator

(2.3) (&) (7, %) = [ @b K(3,5)PEF, ),
where
(2.4) (T, ) =]/7:@.((2,’)> v o0 > D),

2,

is the scattering kernel symmetrized by the Maxwelian m(v) = ¢
and, finally, the fission operator including prompt and delayed neutrons

(2.5) () (7, %) = [ 455 Flo, ) ¥(7, %),

- where the isotropic fission kernel is given by

m(v')
m(v) ’

(2.6) B, = B )
4 !

Here B(v) is the fission spectrum normalized to the total number
of secondary neutrons per fission and .¢;(v) is the fission cross-section.

The scattering kernel. defined by equation (2.4) is symmetric only
if the inelastic scattering on heavy atoms is absent in the system. It seems
that the inclusion of such scattering would not lead to any serious diffi-
culties. However, it would require the extension of the results obtained
so far in the time-dependent trangport theory and will not be considered
in this paper.

The symmetrization of the scattering kernel »’ o',,(_'t))’ —>_'5) leads to
the inconvenient behavior of the tission kernel for large v since 8 (v)/Vm(v)
diverges at infinity. This is the reason that the upper bound of neutron
velocities will be assumed so that the integration with respect to v is
performed in equations (2.3) and (2.5) over the sphere w with the finite
radius, say, vy.

The complex-valued function EP(?, 5) will be defined and square
summable over the domain VX w, where V is the volume of the body.
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Thus ¥ is assumed to belong to a complex Hilbert space H with the
following scalar product and norm:

(2.7) (f,9) = [ a7 [ a0f(7, D)g(7,2);  Ifl =V(F, D).
14 o

The operator K is bounded and defined for all feH for all practical
models of scattering in moderators. The proof is given by Borysiewicz
and Mika [2]. The same will be obviously true for the operator F if the
upper bound for neutron velocities is assumed since both ﬂ(fv)/l/m
and fuaf(v)l/m('v) are bounded for finite .

The operator T is closed and densely defined. Tts domain D(T)
consists of all funections ’1’(7, 5)) admitting the directional derivative
along v, satisfying the boundary condition that no neutrons are entering
the system from the outside and such that TW = H. The detailed analysis
of the operator T is given by Vidav [9].

It is obvious that the solution to equation (2.1) will be sought among
the functions !ZJ(F, Y ) belonging to the domain of 7 since the remaining
operators K and F do not imply any restrictions upon ¥(7, 5) and
D(4) = D(T).

IIT. Reduction of the critical problem to the eigenvalue problem. The
important step in the analysis of equation (2.1) is to reduce it to the eigen,
value equation, preferably for the compact operator. This task can
be carried out with the help of the results obtained so far in the time-
dependent neutron thermalization theory based upon the theory of
semigroups in the Banach space.

The following theorem of Hille and Yosida [3] is applied: If the opera-
tor M is closed and densely defined in the Banach space E, its residual
spectrum is empty and the inequality

(8.1) ' AL — M)l = (A—») [l

holds for all fe D(M) and some real y and every 1> y, then M is an infi-
nitesimal generator of a strongly continuous semigroup of operators
{6 ()} uniformly bounded on B. The semigroup {Gy,(f)} admits an
estimate:

(3.2) IGn@®I<e’; t>0.

The resolvent operator R(A, M) = (AI—M)~* exists and is bounded
and defined everywhere for Rel > y. If {G4,(¢)} is a semigroup of positive
operators, then B(A, M) is also & positive operator for 1 > y. The operator
in 2 Banach function space is positive if it leaves invariant the cone
of non-negative functions.
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The resolvent operator and the semigroup are related to each other
by the formula

(3.3) R(A, M)f = [ ate™ Gy ()f; feB; Red> y.
0

Congider first the operator 7. Its properties depend on the behavior
of the function vo (v) representing the total collision rate. It will be assumed
that

@) 0<wo(v) << oo, we[0,vy];
(3-4) (i) inf v (v) = limoo(v) = 2*> 0.
ve[0,v77] v—0

Conditions (3.4) ere satistied in all physically important cases.

Lenyva 1. If conditions (3.4) are satisfied, then the operator T defined
by equation (2.2) in the Hilbett space H is an infinitesimal generator of
a strongly continuous semigroup of positive operators {Gr(1)}. The semigroup
is given by the formula:

N F G TR e A S I

(3.5) (Gr(0)) (7, v) = 12 0;
0; r—o eV; feH.

The semigroup {Gr(t)} is uniformly bounded:
(3.6) ez < e 1> 0.

The resolvent operator R(4, T) = (AI—T)7* emists for ReA> — 1* and
s given by )
N L s B
(8.7) ((]:I—T)_lf) (7, 9) = f ds:e-sl(lﬂm('n))f(,r v s, 3)7
0

feH; Rod> —1%;

where s (7 s ) is the time required for a neutron to travel from the boundary
to the point 7 in the direction of © with velocity v. In particular, (—T)™*
exists as a bounded positive and defined everywhere operator on I,

Proof of Lemma 1 is easily obtained by the application of the

Hille-Yosida theorem. The details can be found in the paper of
Vidav [9]. ‘
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Levma 2. If the operator K is bounded, then the operator A = T-- K
8 an infinitesimal generator of a strongly continuous semigroup of operators
{G4(8)} given for t=0 and feH by the perturbation series:

(3.8) G 00f = D 6PWSf;  6DOf = 6o)f;
k=0
¢
LW f = [ dsCr(t—s)KGG(s)f; n>1.

The series in equation (3.8) converges absolutely and uniformly in ¢ for
each finite interval [0, 7], where T > 0. The semigroup {G,(3)} is uniformly
bounded

(3.9) 164 (Bl < 6(—)-*+nKn)t; > 0.

Proof of Lemma 2 can be easily given by observing that the addition
of the bounded operator to T does not change any of its properties required
by the Hille-Yosida theorem. The series in equation (3.9) is obtained by
the usnal perturbation procedure [3]. The estimate (3.9) follows from (3.6)
and (3.8).

It is seen from equation (3.3) together with (3.9) that the resolvent
of A exists for ReA> —A*+|K| and for A> —A*4[|K| is a positive
operator. However, this result is not very practical since if the norm of K
is greater than 1%, then the existence of R(0, 4) = (—4)~' does not
follow from the above analysis. Thus it is very important to find another
estimate for the semigroup {G,(#)}.

The total collision rate ve(v) consists of the absorption rate (including
fission) and the scattering rate:

(3.10) V0 (0) = 00, (V)4 vog (V).

It will be assumed that the minimum value of vo,(v) is greater than
Zero:
(3.11) Ay = inf

ve[0,vp71

va,(v) > 0.

Physically, it means that neutrons are absorbed in the system at all
velocities.
The scattering rate vo,(v) is connected with the scattering kernel

v' 0, (V — 0) and with the symmetrized kernel K (@, %’) by the formula
m(v')
m(o)

(312)  wo,(v) = fclﬁ'm(% =) = fdﬁ’K(Z, 7;')]/
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LeMMA 3. The semigroup {G (1)} admits the estimate
(3.13) e () < & e'5
Proof of Lemma 3. Consider for real s and feD(T

(814) [(AI—T—E)f] - Il
> (I~ T—E)f, f)| = Re((A[—T—K)f,

= flit+ [ dor [ a0 ¥ - grad, [f(7, ©)*+ [ do7 [ dgbwo,(v) 1 (F, 5)]+
v ") v @

+ [ 47 [ a8 (v, (0) 117, B2 [ 45" K (3, 501 (F, )1 (7, ).
v ) »

t=0.

) the expression:

The second term in RHS is always non-negative which can be geen
by the application of the Gauss theorem and the boundary condition
satisfied by feD(T). The same can be shown to be true for the last term
in RHS after making use of equation (3.12) and the symmetry of K (?), 7:’).
The details of the derivation are given by Kuiter and Vidav [5]. Finally,
it follows from equation (3.14) that for real 2 and feD(T)

(3.15) (AT —A)fll = (A2 IIfl.

The comparison of equation (3.15) with (3.1) and (3.2) shows that
the semigroup {G,(t)} admits an estimate given by equation (3.13).

LeMwA 4. The operator B(0, A) = (—A)~" ewisls as & bounded positive
operator on H.

Proof of Lemma 4 follows immediately from equations (3.3), (3.8),
(3.13) and (3.11).

Levuma 5. The operator (—T)™ F is compact.

Proof of Lemma 5 can be obtained by the use of the theorem given
by Borysiewicz and Mika [2] who have shown that if a certain operator,
say M, is compact on 2 subspace § of H containing functions dependent
only on the velocity v and M (8)= 8, then the operator (AT— T)~
compact on H for 1> —2*. Now F is obviously compact on § since 1ts
kernel is bounded and the range of lntegra.tlon is finite. This completes
the proof.

TrEOREM 1. The critical problem given by equation (2.1) is equivalent
to the eigenvalue problem

(3.16) ‘ KY¥ = BY

Jor the compact positive operator B given by the formulas:

Bf = (—T—K)"Ff = (I—(—1)"*E)"(—T)"'Ff
= (=D MI-E(-T)" V) TREf feH.

(3.17)

icm°

Oritical problem in meutron iransport theory 219

The eigenfunctions of B necessarily belong to the domain of T.

Pl oof of Theorem 1. The existence of the operators (—7)! and
(I—(—T)'K)* follows from Lemmas 1 and 4. The compactness of B
follows from Lemma 5. The third form of B given by equation (3.17)
shows that the range of B consists of the functions belonging to the domain
of T. The operator Bis positivesince F is positive and (—4)™* = (—T—K)™!
is positive.

IV. Existence of the non-negative solution to the critical problem. The
existence of a non-negative eigenfunction of the operator B correspond-
ing to a positive eigenvalue % being, at the same time, a solution to the
critical problem given by equation (2.1), will be proved by making use
of the Krein-Rutman theorem [4]:

Let @ be a positive compact operator on a Banach function space F
with & cone C of non-negative functions. Let for some ge( the function
Gg°—ag <( for some o> 0 and natural p. Then there exists g,eC such that
2080 = Ggy and A, > oM? is no smaller than the modulus of any other
eigenvalue. Similarly, there exists g, such that A,g; = G*g}, where @*
is an operator adjoint to G.

LeywA 6. The operator B can be written in the form
(4.1) Bf = (=T)'Ef+B.f; feH;
where By is @ positive compact operator.

Proof of Lemma 6. From equation (3.3) written for 4 and 1 =0
it follows that for feH and 7> 0

C(42) (—A)7f = [ a6,(0f = [ @6, @)f+ [ a6, of
0 0 T

The perturbation series representing @,(t) in equation (3.8) is abso-
lutely and uniformly convergent in the interval [0, v]. Thus it may be
integrated term by term in this interval to give for feH

(4.3) (—A)Yf = hm{ f dtGT(t)f—i—Z' f O™ (1) F+ f O, (2) }

n=10
Since
m [ &Gy ()f = (~1)7'f;  feH;
1—)000
equation (4.3) gives
(4.4) (—4)7'f = VB feH;

Studia Mathematica XXXVIIL3 2
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where the operator

[ T o
(4.5) R,f = 1im{2f @6 (0)f+ [ a6, (0f }
T T p=190 T
is positive and bounded and defined for all feH. Thus the lemma is seen
to be true with B, = R, F.

LeMMA 7. The operator (—T) "' F on H satisfies the requirements of the
Krein-Rutman theorem with p = 1.

Proof of Liemma 7. As the function g it will be taken y, <H, the
characteristic function of the set n = VX o, such that 0 < v, < v
<o, <oy and | inf 8> 0 if I' is the boundary of V. The

en, rgel’
velocities vy a.ndr Jlrgbre chosen so that o;(v) > 0 and f(v) >0 for v,<
<v< v, Using equation (4.1) and the explicit expressions for (—T)~
and F given in equations (3.7) and (2.2) one obtains the inequality

-~
[r —7r| =

(4.8). (—I)7 Ty,
s, ) ‘ v
= [ e L gy o) 1, s, )
; Vm(v)
. 'usf;,-;) Var -
—— (s ®
_j—(ﬂ—_- ds”e's""(")f v'“"dv’a,(ﬁ’)l/m(v’)xn<r-———s“,v’) :
. oVm () & B v

by
613 (’D —da'v) f ,1)13d,uro,f(,v/) l/m(’vl)
'v l/m () vy
in which 4 is the maximum chord drawn inside the body. Write

oy = inf p(w)vVm(v) and

vo<w<y)

ay = inf Vm(v)o,(v).
Vy<U=<Y)
The choice of v, and v, implies that both parameters a, and a, are

positive. Since vo(v) is bounded in w, one has ay = sup o(v)< oo.
VSV

Now equation (4.6) yields

(47) (_'T)_IFZn = i ’:Sa’le«daa('vl;_’vg) a’2Xﬂ = UXns
where p> 0. Thus it is seen that the operator (—T)~'F satisfies the
requirements of Theorem 2 with a =, g =y, and p = 1.

Lmyva 8. The operator B has a non-negative eigenfunction in H, say P,

for the positive eigenvalue k, which is not smaller than the modulus of any
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other eigenvalue. Similarly, the adjoini operator B* has for k, non-negative
eigenfunction ¥,.

Proof of Lemma 8 follows immediately from Lemmas 6 and 7 and
the Krein-Rutman theorem.

THEOREM 2. The critical problem (2.1) has a non-negative solution ¥,
and the mgenwlue ko represents the effective meutron multiplication factor.
The value of k, is no smaller than the modulus of any other value of k for

which equation (2.1) has a solution.

Proof of Theorem 3 follows from Lemmsa 8 and Theorem 1.

V. Uniqueness of the non-negative solution to the critical problem.
The uniqueness of the non-negative solution to the critical problem will
be proved under some more restricted physical conditions.

Tt will be assumed that for &> 0 and almost all 7, o' co
T 1 - =
(5.1) K(v, 1}')+ZF('¢J, ') > 0.

Condition (5.1) is satisfied in all practical reactor systems.
Introduce the operators

(5.2) Qf = (T+K+ %F) i fed(m)
and )

1
(5.3) S(k)f = —T)"1 (K+IF) f;  feH.

LevmA 9. If the operator B has an eigenvalue k, then Q(%k) has an
eigenvalue zero and S(k) an eigenvalue unity. The converse is also true.
The corresponding eigenfumctions coincide.

Proof of Lemma 9 follows directly from the definition of the operators
Q (k) and S(%).

The operator Q* (k) adjoint to @ (%) is defined as

(5.4) “(k)f = (T*+K+ %F) fi feD(T*,

where

(85)  (T*)(r,7) = o-gradz f(7,0)—v0(0)f(7,%); feD(T*),
and :

(5.6)

(F*f) (7,7) = [&v' F(v,0)f(r, ¥); feH.

The domain of Q* (k) is identical with D(T™) and consists of all func-
tions feH, admitting the directional derivative along 75, satisfying the
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boundary condition that no neutrons are leaving the system and such
that T*f<H.

Similarly, one can define an operator

1

(5.7) S k) f = (K+-7;F*) (—=T*7Y, feH,
adjoint to S(k).

Lmnta 10. If B has an eigenvalue T with an eigenfunction ¥, then
Q* (k) has an eigenvalue zero with the same eigenfunction and S*(k) has
an eigenvalue wnity with an eigenfunciion

P =(K+%F*) v,

The converse s also true.

Proof of Lemma 10 follows directly from the definitions of the
operators Q* (k) and §*(k).

LevMa 11, If condition (3.1) is satisfied, then any non-negative eigen-
function of B or B* is positive almost everywhere.

Proof of Lemma 11 follows from condition (5.1) and the properties
of the operator (—T)~* given explicity by equation (3.7). It is seen that
(—T)'f > 0 for almost all 7 <V whenever f> 0 on a set of a positive
meagure in V.

LEMMA 12. There are no non-negative eigenfunciions of B for k + k,
if condition (3.1) is satisfied.

Proof of Lemma 12. Assume that, besides &, there is for B another
eigenvalue &, for which there exists a non-negative eigenfunction. Two
following equations are satisfied:

1 1 1
(5.8) (T*-i—K—]——k—F*) P =0, (T—&—K—\—]G—F) W, =0.
0 1
By taking the scalar products and subtracting the obtained relations
from each other, one gets

(5.9) (ky—Fy) (Fy, F¥y) = 0.

It follows from Lemma 11 that ¥y is positive almost everywhere.
Then, from equation (5.9), it follows that F¥; = 0 almost everywhere
which, in turn, shows by the second of equations (5.8) that (T'+ K)¥, =0
almost everywhere and ¥, is an eigenfunction of the operator A corre-
gponding to the eigenvalue zero. This is, however, in a contradiction with
Lemma 4. Thus it is seen that the assumption that B has a non-negative
eigenfunction for an eigenvalue k, different from %, leads to a contradiction.
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LeMMA 13. The eigenvalue ko is simple and the eigenfunction ¥y is
defined uniquely wp to a multiplication constant if condition (5.1) is satisfied.

Proof of Lemma 12 follows closely the argument used by Vidav [9]
in a slightly different physical situation. Suppose, contrary to Lemma 13,
that for %, there exists another eigenfunction, say @, One can always
take a linear combination §, = g,-f¥, such that (¥;,H,) =0, where
gf’: is the eigenfuction of §%(%). This is always possible since (i’; , o) > 0.
The latter follows from the fact that both @: and ¥, are positive almost
everywhere by Lemma 11. It is seen now that @, is neither positive nor
negative and }690(7, 3)] > g r y 7) on a set of positive measure. Since 8 (%)
is an integral operator with a positive kernel and @, = 8(k,)®,, one gets

[Po(7 5 8)1 < (S (Bo)@0l) (7, ©)

on a set of positive measure.
From this it is seen that
0< (T(Ty }&ol) < (T:a S(kn) 1‘;0]) = (’S*(ko) on l‘;’ol) = (T:7 1&0])1
which is a contradiction. This shows that g, has to be identically equal
to zero and g, proportional to ¥,.

Tt has been shown in Lemma 8 that the eigenvalue k&, is not smaller
than the modulus of any other eigenvalue. This result may be strengthened
by modifying the approach applied by Borysiewicz [1] in & differeny
physical situation.

LEawA 14. There are no eigenvalues of B on the circle k| = %, if con-
ditton (5.1) is satisfied.

Proof of Lemma 14. Suppose, contrary to the above conjecture,
that there exists an eigenvalue &, of B corresponding to an eigenfunction ¥y
and such that ki = Fo. From the equation %, ¥; = BY it follows that

(5.10) kol 122(7, 9)] = [(BZY) (7, )| < (BI¥:]) (7, 0)-
From equation (5.8) one gets ‘
(3.11) Ro(Py, [#4]) = [kl - (5, [#4)) < (5, BI¥4))
= (B*W;, |¥h]) = ko(F5, [%i])-
Qince the function ¥,* is positive almost everywhere, it follows from
equation (5.11) that
(5~12) ko‘gjﬂ = B|¥|

almost everywhere. Thus || is an eigenfunction of B corresponding to k.
Hence it is necessarily proportional to ¥, and ¥, can be written after
omitting the arbitrary constant, in the form

(5.13) (7, 0) = Po(r, )",
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Let k;, = kye™; then the eigenvalue equations k¥, = BY, and
k¥, = B¥, give

(5.14) koW = BY, = ¢t) By,
The last equation can be also written in the foﬁn
(5.15) B, (1", ¥) (1— eitr+00 5i-00" ) )} = 0.
Consider the real part of LHS of equation (5.15):
(5.16) B (7', ') (L—cos(y-+0(¥, ) —0(F", 7))} =0.

Since the kernel of B and ¥, is positive almost everywhere, it follows
from equation (5.16) that the non-negative function

(5.17) 1—cos(y+0(7, )= 0(+", 7)) = 0

almost everywhere. This is possible only if 0(7, 7) =0 almost everywhere
and y = 0. This implies, however, that &, = &, and ky is the only eigen-
value on the ecircle [k| = k, with the eigenfunction ¥,

The results of this chapter, together with those obtained in the
previous one, may be summarized in the following.

MAIN THEOREM. If the reactor system satisfies condition (5.1), then
the critical problem has always o positive solution wnique i a cone of mon-
negative functions in the Hilbert space H for a positive value of the effective
neutron multiplication factor k. The solution for k, is unigque up to o mulii-
plication constant. The modulus of any other value of the parameter & for
which the critical problem has & solution is less than k.

The results obtained in the paper not only prove that the positive
solution to the eritical problem exists, but also show that is has properties
which allow to perform successfully the numerical computations. These
properties are: the uniqueness of the solution and the fact that ky is the
only eigenvalue on the cirele k| = %,
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