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Inequalities for Fourier transforms*

by
MAX JODEIT, Jr. and ALBERTO TORCHINSKY (Chicago)

1. Introduction. The primary purpose of this paper is the derivation
of necessary and sufficient conditions in order that the Fourier transfor-
mation carry one given Orlicz space into another (Theorem (2.16)). The
sufficiency follows from an argument due to R. O'Neil [21] on the inter-
polation of operations of types (1, co) and (2, 2). Necessity is based on
examples exploiting the lacunarity argument in Example 27, Chapter V
of Zygmund’s book [33].

The following special case exhibits the general form of the charaeteristic
condition. Let A4, B denote convex functions defined on [0, co), with
A(x)/z and B(x) [z increasing strictly from. zero to positive infinity with 2.
Then there exists % > 0 such that

whenever

[4(f@))az<1

—o0

if and only if for some constant ¢ >0
() B~ (tz) = exA™Nt)z) for 2 >0,0 <t 1.

Here A7, B™! denote the functions inverse to 4, B respectively,
and flz) = [ f(i)e~™di. The Fourier transform of f is defined since

(*) implies (by setting # = 1/t) that f is the sum of an integrable function
and a square-integrable function (see (5.8)).

* This research was partially supported by National Science Foundation Grant
GP-14255. )
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In terms of the Young’s complement 4 of 4 (see section 2 for definitions
and notation) condition (*) reads: for some constant k >0, and for
z>0,t=1

B(kz) < 1/£A(1[tn).
That is, B(k») is dominated by the largest among ‘uhose° functions
O for which :

O(») <1/4(1/x) and O(z)/a® is non-decreasing.

This paper is divided, into six sections. Preliminary matters are discus-
sed for reference in section 2. The reader familiar with Orlicz spaces might
start at (2.13). In section 3, the interpolation of operations of types (1, co)
and (2, 2) is treated; section 4 consists of further remarks on such
operations. Section 5 is devoted to a necessary condition for the Fourier
transformation to be of type (4, B). Section 6 contains notes and
remarks not already given in the text, dealing with references [1]-[4],
(71, [8], [18]-[16], [23]-[26], [28]-[32].

‘We are indebted to Professor Zygmund for suggesting this problem
and for valuable comments, and to Professor R. O’Neil for pointing out
that his theorem could be modified. The extension to arbitrary abelian
groups was aided by J. B. Dowling, who suggested. the hasic ‘“lacunary?”
set, and by Phillip Griffith, who explained to us the structure of torsion
groups.

2. Preliminaries. (a) Young’s Functions (see [19], [22], [35], etc.).‘

The letters A, B, C are reserved in this paper for functions 4 (x), defined
for > 0, such that

) 0< A(2) < +o0, A(0) =0;

(i) A(2x)/r increases (in the wide sense);

(i) 4 is left-continuous (A(x) = 4(2~0));

(iv) A is non-trivial (0 s A (%) =& oo for z > 0).

By the phrase “A(z)/» increases” we refer to these conditions. Let

@.1) Ay () = f AW g

Then 4, is convex, increasing, zero at zero, and non-trivial (4, is
positive and finite in the same set as A). Moreover,
() Ay(0) <A (@) < 4,(20).

Funetions which have the properties of 4, are called Young’s Functions.

iom®

 A(z)/z increases, by Mulholland [20]. Imequalities (*) show that such
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Inequalities of the Hausdorff-Young type have .been studied, when

inequalities (for example, the special case in the introduction) are equiva-
lent to ones with convex functions. However, it is often convenient to
use A instead of its regularization A,. For example, min(A(m),B(m))
satisfies (i)-(iv) but is not in general convex when A, B are convex.

b) Orlice spaces. Let (X, u) be a positive measure space, and leb
A(z)[s be increasing. The Orlicz space L, (X, u) is defined to be the space
(of equivalence classes modulo equality almost everywhere w1th respect
to u) of measurable functions f such that

[Alelf(@)) dp(a) < oo
x

for some ¢ > 0 (depending on f). It is easy to see that I, is a linear space.
It is a Banach space with respect to the norm

Ifle = inf{k >0: [ Ay(\f(2)|/k)dpu(a) < 1},
x

where 4, is A if 4 is a Young’s function, and is given by (2.1) otherwise.

. These spaces are studied in detail in [18], [19], [22]. Note that L, and

L, consist of the same functions.

Inclusion relations among Orlicz spaces are characterized by ine-
qualities on the functions A4 determining them, and by properties of
the measure space (X, u). In any case,

(2.2) If there exists % >0 such that A(x)<<B(kw), x>0 then

L(X, p) 2 Lp(X, p).

We use the following converse cases:

(i) If u is non-atomic and u(X) = oo, the converse of (2.2) holds.

(ii) If u is non-atomic and u(X) < oo, the condition of (2.2), holding
for z sufficiently large, is necessary and suﬁmlent for the inclusion to
hold.

(i) T£ u is purely atomie, with u({f}) = a >0 for each teX, the
validity of the inequality in (2.2) for 2 sufficiently small is necessary
and sufficient.

This leads to the following definition.

(2.3) DerFINITION. We say that B dominates 4 and write A < B if
the inequality in (2.2) holds. 4 < B for large values, 4 < B for small
values are defined similarly. For example, 4 < B for large values if there
exist positive constants k, z, such that A (z) < B(kz) for © > z,. As part
of the preceding definition, we say that 4 is equivalent to B (for all values,
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large values, etc.) if 4 <B and B<< A (in the appropriate intervals).
This is denoted by 4 ~ B. Thus A ~ B means Ly = Lp; the norms
are equivalent. For example,

we® ~ ¢ for large values,
since for o > 1,

&Ll < .
Fma]ly we note that L, 0 LB = Iimax(a,5)y LatLp = Loynia,m
and the norms are equivalent (see (17})

(e) Opemmons of strong and weak types (A, B); rearrangements. A linear
mapping T: L, (X, u)— Lg(¥,») is continnous if and only if there is
a constant K >0 such that

(2.43) [ B(Tf(y)/E)dv(y) <1
¥
~ ‘whenever
(2.4D) [4(f@))dp@) <1 (that is, [[fl. < 1)

X

The best constant K is called the norm of T. BEven if T is not linear
(2.4) may hold; this is expressed by saying that T' is of (sirong) type
(4, B). Notation: When 4 and B are powers, we use the exponents. Thus
it A(x) =4 L, is I?, amapof type (4, 4) is of type (2,2), ete. It is
natural to call the function 4 given by

A@) =0 for 0<ao<l, A = +oofors>1,

a “power”; we sometimes write 2™
definition of Orlicz spaces.

To define weak type (4, B), we first recall the notation m(f, y)
for the distribution function of a measurable function f on (X, u):

(2.5) n(f,y) = pl{e: |f(@) >}, y>0.

If T is a function from I,(X, u) to Lz(Y, ») for which inequdlities
(2.4) hold, then for each y >0

(2.6) m(Tf, y) < 1/B(y/K).

In case (2.6) (but not necessarily (2.4a)) holds whenever (2.4b) holds,
we say that T is of weak type (4, B), with norm < K.

In addition to the distribution function, we shall use the rearrange-
ment of f, denoted f*, and defired to be the distribution function of m(f, ¥)
(see [127). Sinece also m(f*,y) = m(f,y) (this follows using the right-
continuity of m(f,y)), f* and f are “equi-distributed”.

. That L, =L follows from the

icm°®
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z
It A(x) = [ a(t)dt, & > 0 and increasing (i.e., non-decreasing) — which
0

means that 4 is a Young’s function —, then

@n [ Alf@)du@) = [ o
X

0

Wm(f, Ndy = [ A(f*()d

(@) Orlicz spaces related to L ,; operations on Young’s functions. Let
2)[z increase. The Young's complement of A, dehoted 4, is given by

(2.8) A(w) = sup (ay—A®)).
y>0

4 is a Young’s function, 4 ~ A4, and 4 < B if and only if B 4.
The inequality

(2.9) oy < A(y)+A(x)
is called Young's inequality.
By (2.9),
(210) [ (@)l lg(a)ldu(e) <20l lgls (Holders inequality).
X

Also (Luxzemburg [19], Theorem 3 in section 2 of Chapter II and
after),

¥ = sw | [f@)g@)du@)]

il p<t'x

is a norm on L,, equivalent to ||f],. In ca,se. A (22) < CA(x) for some
constant C, I 7 is the space of continuous linear functionals on L 4 (see [19]).
The inverse of A is defined on [0, co] by

A7 (y) = inffe: A(2) >y} (inf @ = +oo),

A~ (y) is positive and finite fory > 0, 47 (o0) = oo, A™!

is non-decreasing
and right continuous, and 47 '(y)/y is decreasing,

(2.11) AlA @) <e< A 4(n), =2>0,
A(m) =sup {y: A7 Hy) <=z} (sup@ =0},
A(z) =2 (=0 for 0<2<1, = 4o for o >1) is an i]lumina.ting

example.

If p and p' are conjugate exponents, the relation #/7-2® =& is
the prototype of

(2.12) < AN (@) A (z) < 24,
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to
ot
(=]

Algo, A~
and only if Blz)< 4
inverse of %B(Kz) is

Up)< B-(z) (for all, large, small values respectively) if
< A(x) (for all, large, small values respectively). The

1 @
— B '—}.
()
Tor our purposes, there are special operations to mention. Let
A(z)[z increase, and pub

0, z =0,
(2.13) RAR@) =\ o4y, o >0,
y<z
where 1/0 = 4o0 and 1/oo = 0. Then RAR is left-continuous, non-

trivial, RAR(z)/z increases. The effect of this operation is to reverse
the behavior at zero with that at infinity. It is easy to check that RAR
< RBR if and only.if B< 4 (with “for large values” and “for small
values” interchanged). Since (RAR)™'(z) = 1/A7'(1/z), we use (2.12) et
seq. and the remarks after (2.8) to see that

A< B if and only if RARK BEBRE.

(2.14) RAR ~RAR,

We later consider functions 4 such that A (x)/#* is monotone. Then
A(n)/s* and RAR(z)/z* are monotone in the opposite sense, and RAR(v)/a*
in the same sense. If only A-(z) > ma® near zero, we define

A, () = o* inf A(y)/y"

y<T

Then A4, (#) < 4 (%), 4,(»)/z* decreases, A,(x)/» increases. 4, is largest

with respect to the first two of these properties; the second and third

imply that 4,(#)/z is continuous; 4, is non-trivial.

(2.15a) DmrINITION. If A (%) > ma® near 0, let

A(x) = RA,R(w).

A iy maximal in the ordering < (for large values or for all values)
defined by (2.3), with respect to the properties

(i) C(x)/#* increases,

(i) ¢ < RAR,
provided A (z)> ms* near 0. Bu’n (2.15a) depends on the behavior of
A () for small », and for some spaces L, this does not matter. In this
case let C-denote RAR and set
«* inf

z<y<0~1(1)

-+ o0

Cly* (0 =RAR),

(215b) © A(x) =

(2> 07(1)).

icm°®
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It may be shown that the equivalence class (for small values) of
A depénds only on that of A (for large values), and that 4 is maximal
with respect to properties (i) and (ii) above, in the sense of the ordering
< (for small values).
We may now state the main result.

(2. 16) THEOREM. Let G be a locally compact abelian  group, and denote

its dual G. Then if Alx)fa increases, Ly(G) < LB(G) if and only if
A(x) = mz* near 0 (no restriction if @ is compact) and

I3(@) < Ly(@).

To prove this, we show that if A (x)> ma® near 0, then the Fourier
transformation is of type (4,, R4,R) (Theorem (3.1)). Since
Li(6) € Ly, (@) > Ln1,p(@) = La(@) < Lp(@)
and the inclusions are continuous, L, (@) < LB(G). The closed graph
theorem then gives the continuity of the map when the inelusion holds.
To prove necessity, we first make a number of reductions, and then derive

an inequality which (in the non-compact case) forces B to be trivial unless
A(z) > ma® near 0.

3. Interpolation of operations of types (1, oo) and (2, 2). The results
of this section give the following theorem.

(3.1) TEEOREM. Let G be a locally compact abelian group, and let I’
denote its dual group. Suppose that A{(x)|x increases. Then the Fourier
transformation is a continuous mapping of L, (@) into Ly (I) (;1 is defimed
by (2.13)), of A is non-trivial.

This follows from (3.10), applied to A4, = RAR (~4 i A(x)/|«?
decreases), for 4, << 4 and 4,(z)/2* decreases.

In [20], H. P. Mulholland essentially stated (3.1) for the circle and
the integers in order to prove special cases. Now (3.1) is a convergence
theorem: one only asserts that [A4(f) <1 implies f B(ef) < 1 for some
&> 0. It is also of interest to know when, for example, [ B(sf) < [AD.
Mulholland considers this question and obtains a number of results;
the choice of material for this section and the next is based on his paper.

Theorem (3.2) the basic one for this section, is essentially the Mar-
cinkiewicz interpolation argument, eombined with the idea of Cotlar [5]
in which the availability of strong type (2, 2) is used to advantage. The
extension to certain Orlicz spaces appears in the thesis of O'Neil [21].

Studia Mathematica XXXVIL3 . 4
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x

(3.2). TEEOREM. Let A(z) = [

0
continuous, and strictly increasing from 0 to ~-oo with «, and (i) a(t)[t
is non-increasing. Denote by @(t) the inverse function to a(t) and set

a(t)dt, where a(t) is (i) non-negative,

A* (o) = fm asfa(1ft).

[

(3.3)

Then if T s a sublinear operation simultaneously of types (1, oo)
and (2, 2) of norm < 1 in each case, it follows that

(3.4) fA*(l (TH)* (2)) Ao < fA(f ()
whember the right-hand side is < 1.

Proof. Let b denote a non-negative function. such that a(y) = b(y)/y

is non-decreasing, and set a = a(0--). Suppose f A(f*(#))dz < 1. Then

by Fubini’s Theorem, the inequality m(f+g, 29) < m(f, y)-+mg, y) and

the sublinearity of T,

o 00 ) Y =] :
[ m(Tf, 2biy)dy = [ ym(Tf, 29) [ da(z)dy+a [ ym(Tf, 29)dy

0
©

°

[ [ ym(Tf, 29)dy da(e) -+ K

z

o%

w0 oo

< [ [ ym(Tf" y)dyda(e)+

0 =z

+ [ [ ym(Tf,, y)dyda(e)+ E
0 =z
=I+J+EK,

where f, = sgnf min(u, |f|) and f* = f—f,. Recall that m(f,,y) =
= Lo @)m m(f* y) = m(f, y+u). Here # is to be regarded as
a monotone functmn of 2, to be chosen.

To treat I, we have, sinee 7' is of type (1, co),

esssup | TF*| < ||,

so that m(Tf% y) =0 if y >z and

7@l = [ m(f, it<e

u(z)

icm°®
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Since [ A(f%) —f a®ym(f, )dt <
u(2) by
(3.5)

it follows that I = 0.
Since

1, If¥l, < 1/a(u). Thus if we define

1/a(u(z)) ==

-] [ u

[ ym(Th, )y < [ ym(fu, n)dy = [ ym(f, )y,

z

oo u(z) 2~ (y)
I< [ [ ym(f,y)dyda(s) = f g [ da(x)m(f,y)dy.

In case a =0, there is no term K, and

u—l(y)
y [ da(s) = ya(u (@) < aly)

if a(y)<1/ya(lJy), that is, if

(3v6) <1/a(ify).

Hence in this case (3.4) holds (since

[ - f’”(h’y T

Now suppose we define b(y) by (3.6), with equality in place of ine-
quality. Then

o 20 _ g 00)

a=limby)ly = — inf

—)—uou u w

In case a >0, we then have A (2) > lax? so that feI* and so since
T is type (2,2) norm <1,
o
<o ym(f, y)dy < oo.
0 w1

)
Return. to the estimate for J. When a > 0, the quantity y f da(z)
[}

= y(a(u—(9))— o); the negative term and the finiteness of K allow some
cancellation. That is
J+EST+HE< [ a(y)m(f,

0

y)dy,

0 (3.4) holds. This completes the proof of the theorem.
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Remarks. =1/a@(t), eg. if 4 is a power, then
A% = 4.
(ii) Similar inequalities hold when we have only |T'(f-+g)(=)|
<K(1Tf(m)l+{1’g(m)!). The constant 1/2 iy replaced then by 1/2K in
the conclusion. ) '

(i) In case @(l/t)

(iii) Let us write v = f A(f*
but by

(m))dw, and define u(z) not by (3.5)

ofa(u(z)) =

Since 4 (z)/s? decreases, v is finite for feL,. Then we continue as
before to obtain

(3.7)

» Of A*(Elg(il’f)*(m)) m<l (v= Of A(f* () da)

COROLLARY. If in addition to the hypotheses of Theorem (3.2) we have
\T{cf)] = le|{Tf| for each constant ¢, then

(3.8) [ A (k(Tf)* (@) dw < oo for each k>0,
0
Proof. We have, since a(0) = 0, that hm A(@)[z = 0. Thus in (3.7)

we may replace f by 7f, » > 0 and solve t‘or rin r/20 = (v now depends
on 7). In case A* is submultiplicative, or supermultiplicative, we modify
(3.7) to obtain

(3.9) CororrArY. With v as in (3.7), if

A (2y) < CA™ (@) A™(y)  for @,y >0,
then
f * (1" (2) de < oA*(z)A ® _ < c2a*@)mm).
If A% (zy) > cA* (w) A% (y), 8, y > 0, then

]

[ (@) de <

0

1/ovA™ (1/20) < 43 (40)/e.

In the next theorem RAR(z)=1/4(1/x

), where 4 is the Young’s
complement of A (see (2.8)).

©

icm
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(3.10) THEOREM. Let A(x)/z be non-decreasing and. A(z)/x* non-
increasing. If T is o sublinear operation of types (1, oo) and (2, 2) there
ewists a constant k >0 depending on A, T only such that

[ RAR(K(TH*(@)dz <1 if fm A(f* (@) dz < 1.

= [ (G0 f)at. Then Cy(a)/e*

0

Proof. Let Cy(z) = f (A(t) 1) at, Cy()

is non-increasing and
(3.11) O, (2) < A(2) < Oy (4).
Case 1. lim A(2)/x =0, hm A(z)|# = co. Then O, satisfies the

0

hypotheses of (3.2), as does kT for some constant % > 0. Thus by (3.2)
and (3.11),
J xRy @)de < [ A(f* (x))do
[} [
if the right-hand side is < 1. The proof for this ease is now an application
of the following lemma, which will be used again later (see (£.3)).
(3.12) Levma. If 0 < a(f) is non-decreasing, continuous from the left,

and @(y) = sup{&: a(zx) <y} (sup@ = 0) is its left-continuous “inverse”,
then with A(z) = [ a(t)di,
[
A(4]z) < <1 ia
VAW < [ Gy <A,

[

where by comvention 1]0 = oo, 1/-4o00 = 0.
&
Proof. Since A(z) = [ a(t)dt,
0

ALy <}t- (t)gz(—?)

The first of these inequalities gives the second of the lemma since
1/tA(1}t) is non-decreasing. The second, and integration from /2 to
z gives the first inequality of the lemma.

Return to the proof of (3.10).

Case 2. A(z)/x is bounded away from 0 or away from co.

(a) ¥ A(z)/z> >0, then A(z)jz— oo as &—>oco unless A(x) is
equivalent to z, in which case there is nothing to prove. Define a new
function 4, as follows:

A(z)/A1),

4 B z=1,
o) =\ awyawo),

o <<l.
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Note that A, satisfies the conditions of case 1. Now A(z) ~
~ max (4o(2), #), 80 BAR(x) ~ max(R4,R, 2™). Hence I maps L, =
Ly, n L' into Lpzp N L” = Lgzg, and we obtain the conclusion of
(3. 10) for this case.

(b) A(z)jr < M < co. We define 4,(z) now in terms of A (z) for
0<z<1, and get that A, satisfies the conditions of case 1 (unless
A(z) ~ ). ] .

Now A(z) ~min(dy(w),s), so RAR(r) ~min(R4,R(»),s™), and
thus 7 maps Ly = L, ~+I* into Lpz,p+L° = Lpzg, and (3.10) follows.

Remark. In (3.10) it suffices to have A (x)/z non-decreaging and
A equivalent to a function .4, such that 4,()/a* is hon-increasing. This
is the case if and only if for some K >0

A(@) < Eo* int A(y)y°

ysw

(3.13) TeeOoREM. Lot T be sublinear, of weak type (2,2) and type (1, co),
x
with norms < 1. Let B(x) = [ b(t)dt, 0
@ [
A(z) = f a(t)dt, where a(z) is continuous and strictly imecreasing from
0

0 0 oo with . Then if

b non-decreasing. Suppose

o [(p)f)d<1/2a(1]w), @ >0,

[ BRIN (@) de <1 when [ A(f*(@)de<1.
[] 0

Proof. As in Theorem (3.2) choose # = w(y) so that m(TfY y) =
Then

I= fm(Tf,-‘%@/ )b(y) dy<f m(Tf,, y)b(y) dy

2f ;f” tm(f, t) ) —dy,

by weak type (2,2) norm < 1.
This gives

t)dt.

icm°®
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Now %™ (t) = 1/a(t) so

ta(?) = a(t),

1
a(lju~(1)
and thus by the hypothesis on b(t), the result follows.

ExampiEs. (i) Let A4 (x) = wlog(z+1) (so that L,(0, 2x)
Then

= Llog* L).

= 6-1/:5

— i~
et —1

_ _ for small values,
Af@) ~a(e=1),  EAR(@) ~ @2 for large values

(®)/x— 0 with z, we get for f(x)

[

Since A(z)/e* decreases and A
~ ) 6,6™, that for each & >0

2 o < oo
n

(Hardy and Littlewood [10]).
(i) Let A(z) = oflog(1+1/z). Since RAR is A in the preceding
example,

2w

whenever f If (@) |log™ | f(@)| dz < oo

- o*  for small values,
RAR(w) ~z(f—1) ~
¢ for large values.

Again A(z)/s? decreases and A(z)/z->0 as #— 0. Thus if

D leal log (1+1/lcal) < oo,

n

there exists feL'(0,2w) such that f(z) ~ 3 ¢,6™, and
2 *
f @iy < oo
[

for each % >0 (Hardy and Littlewood [9]).
(iii) The Fourier transformation is of types

(wzjlog(l—l— z), @*[log™ %) , (a:’log (1 + %) , @*log* w) .

More generally, the Fourier transformation is of type (4, R4AR)
whenever A(x) = aPp(x), where 1 <p <2 and ¢(x) is “slowly varying”
(see [35]), or when p =2 and ¢ decreases.

4. Remarks on operations of types (1, co) and (2,2). The sufficient
condition in Theorem (3.1), that if A (z) > ma? near 0 a sublinear operation
of types (1, co) and (2, 2) is of type (4, RA4, R)is, as we shall see (section 5)
necessary for the boundedness of the Fourier transform. But it is not
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necessary for all operations of types (1, co) and (2,2), as we shall show
in this section by means of an example which has several uses, namely
the operation which assigns to fe(L'+L?)(X, u) the function

(3
where f**(z) ff (tydt. Werecall (see e.g. [22]) that (f-+¢)*™* < ™+

+9", (o)™ = Iclf**

The main theorem of this section is (4.6) which gives a characterization
of operations of types (1, co) and (2, 2) in terms of U. It is immediate
that U is of type (1, co) norm 1. An application of Hardy’s inequality
(see [12] and [35], Ch. I) shows that U is of type (2, 2) norm 2.

ExampLE. Let A(#) = max (2% ™). Then 4,(x) =% so RA,R(x)
~a*. The following proposition shows that UL, = I7,1 < p < 2; but
2? £ o* near 0.

(4.2) PROPOSITION. If feL? N L™, then UfelP,1 <p <2

Proof.

(a.1) ffu

1
1 "x"Hf”oo7

"m‘f** (*010—) <

If U is of type (4, B), U is of type (B, 4). The proof is based on the
inequality .

Uf(z) =
1.
—i7 Ik

|[ 19y <[ 1*@)g" @)ae  (see[12]).
P, ] o
U is of type (4, B) it for some £ >0
f B(eA™(2)a)dz < oo.

This follows from the inequality. f** () < ||f|l A~ (1/2).

It is convenient to express RAR in another form for what follows.

(4.3) LeMMA. The functions A* RAR and C’ defined by (3.3), (2.14),
ond by

o) = wA™ (1/0)

respectively,

are equivalent to each other,
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Note. O(x) will have this meaning in the remainder of this paper.

Proof. That 4* ~ RAR is Lemma (3.12). To show RAR ~C we
use inequality (2.12):

2< A Y z) A Y a) < 2.
It follows that

1 . 2
0 < S T
and hence that
© 1 1 oy 1 1 ,
T ST A S BB S ey T S

From thig the lemma follows.

(4.4) THEOREM. The operation U is of fweak type (A, B) on (0, oo)
with norm <1 if and only if B(u) < CG(u) for all u>=0.

1
Proof. Since Uf(x) = F*(1/x) is a decreasing funetion of ,

m(Uf, y) = sup{z: Uf(z) > y}.
Since

(o) < |fl A7 (1 s),

Uf(z) >y implies ||fl.C~*(1/z) >y. Thus
m(Uf,y) < sup{w: |fll.C”
= (inf{e: [fll ¢~

Sufficiency follows since 1/0(u) <

Y(1/z) >y}
Yty >yh ™t =1/0W/Ifllo)-
1/B(u) for all u. Now set f(x)

= Uy, (#). Then ofc A(f(@)de = ud(v) <1 if v = A7 (1[u).
Thus
1 o1} _ vlw, @ >1fu,
—m—f (;) = Ufla) = ‘w, » < 1fu,
and hence

oly, y<ww,

m(Uf, y) =[

0, otherwise.
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Set now y = fuv, 0 < 0 < 1; from m(Uf, y) <1/B(y) it then follows
that B(y) < /v or B(fuv) < Bu, then buw < B~ (8u), or 007 (u) < B~(Bu)
and smce 1/6B7*(0w)—~ B (u) as 611,

B(u) < O(w) for all u>0.

(4.5) THEOREM. If f— Uf is of type (4, B) on (0, o), norm 1/e, then
B(1) @
oes[ 2 u<ol?).

Proof. As above, set f(2) = vy (2). Then |f|, <1 and

v, 0<o<u,

t2 %

After multiplying through by « and repla,cihg wv by 0~ (u), we replace
u by O(=) and use the inequality (see (2.11)) 07*(0(z)) > .

(4.6) THEOREM. Leét T be a sublinear operation. T is of type (1, o)
and (2, 2) if and only if for some comstant K and each feL'-- I?

fm (IH*e @< K of (;_ f**,(—lt—))z aﬂ, z >0,
where f** ( JalOY:

Proof. Tet the condition hold. Then for feI?,

@(Tf)* ac)2<.Kfz ( ( )) dt
1t

-x f ([ £ as) a< xoisp.

[
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For fel?,

f (TfY (o do < K f (%f (—})) &t =X f (@) da,

which by Hardy’s inequality is dominated by 4K |ifl;. Thus 7 is of types
(1, c0) and (2, 2). Assume now that T' is of types (1, oo), (2, 2), norms
< L. Then with f = f*-f,, f, = sgnf min (%, |f}),

m(Tf,y) < m(Lfu, y— 1)
it ¥ > [If*;- It follows that for each u
(TH* (@) < (TF)* @)+ 1,  2>0.
Thus

z

I=([(zprora)e<| f PO RS T

°

1
Set u = f* (;) Then by computations, using the relation zf**(w)

— '@+ [ m(f 9y (o 21,

([l o) (),
Since % ~* (%)2 < f (it = (%))2 dt, we get
f (TH*Pdt < 4 f (% * (it))z dt

(4.7) TeEOREM. Let B(z)/o" be non-negative and non-decreasing, i = 1,2.
Let T be of types (1, o) and (2,2). There exists a constant k depending on T
such that for fe'+ 17,

fB((Tf)*(t))dtng(k f**( )) dt, «>0. ‘

Proof. This is a consequence of (4.6) and Theorem 249 in Hardy-
-Littlewood-Polya [12] (see also [11]).
In order that

[olg(a))dz < [ o(f(a)) do
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should be true for every convex and continuous ¢ it is necessary and suf-

ficient that
b b
[ lg@—y)*do < [ (f(a)—y)*do

for all y’ (here o™ means max(a, 0)).

As an application of (4.7) we take B(#») =a% ¢> 2, and apply
Hardy’s inequality, to deduce the following theorem of Hardy-Littlewood-
Paley type: ’

(f (If)* (2)? dw)”q< (o ( fmf*(w)awqﬂzdm) Ya,
0 b

where O, < kg. In the terminology of Lorentz spaces L,, (see [22]),
T carries L, , into L,,. .

To complete the pair, we note that
I~ (T (@),

with measure dx/2* is sublinear of weak type (1, 1) and type (2, 2), whence
by the Marcinkiewicz interpolation theorem, for 1 < p<2,

(f(.’l’f)*(m)ﬂmp—zdm)up <0, Uwf* (m)pdm)]/p.
° o

That is, T carries L, , into Ly e

Results <.)f this nature might also be obtained by direct interpolation
methods, as it was first observed in [34]. The following theorem can be
shown by means of the general idea given in (3.2) and [21].

(4.8) THEOREM. Lét T be a sublinear operation of weak type (1, 1)
and of type (s, 8) 1<<s < co. If A is any Young’s function such that

. @ D .

o AQ) A

(@) f A0 o o(—ﬂ

; I3 b

!

oy Al) , )
(ii) & S @ non-increasing function of x,

T is of type (4, A).

. For. § == 2 this result is readily seen to generalize the ones stated
in [34], in particular we note that Theorem (4.8) applies to A (1) = 2 p(x)
o(z) .sl().wly varying and. non-increasing. Further applications are obmined’.
by similar arguments to the ones given in [35], Examples X1II 1,2, 3
for general unbounded orthonormal systems. T
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5. Necessary conditions. Let & be a locally compact abelian group
with dual I In this section we show that if for some &> 0, feI'(@)+
+ I andaf A(|f(@))dw < 1 together imply [ B(elf (#)])de <1, then

r

Ly(I) 2 L;(I'), where A is the largest function D such that D < RAR
in the appropriate sense and D(x)/x? increases (see (2.15)). We first prove
this assertion for the special cases of the real line and the integers by
means of lacunarity arguments; a duality argument gives the result
for @ = T and for any compact group G once the result is known for its
discrete dual I'. The structure theorem leads to a reduction to the case
of discrete groups G. There again examples based on the lacunarity argu-
ment applied to Z are used.

' (a) The case ¢ = R. The inequality [ B{e|f (#)])de <1 is readily
seen to imply z

(5.1) m(f,y) <1/B(sy),

for f = vyy, where F is a measurable set of finite measure w and
1> fA(]f(m)})dm = uA (v). This will hold if » = A™'(1/u) and in what
follo;;:s o is always so chosen. We now apply the.following lemma, to
be proved shortly.

(5.2) LEMMA. There exist constanis K >0, 6 >0 such that #f u >0
and t =1 are given, o set B = B, ; exisis such that E has measure u and

) .U
(5.3) m(ZE’E)> 512w
Let f = vyy, combine (5.1) and (5.3) to obtain:
= >m(7’721a;—ulu‘)=m(imi)>5—tz.
B(euv[Kt) Kt Ki u
In particular, B(euv/K?) is finite (though this may not be true for
all values of the argument), and so

U %
R < S
B( Kt) 5
from which we deduce (by (2.11))
U %
— < B Y— |-
Kt ( 512)
Recall that wv = wA~(1ju) = C"'(u) (see(4.3)). The last inequality

then assumes the form

(5.4) 3%0‘%) < B Mu/éf), w>0,t>1.
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(Note. If welet uw = /2 for w > 1, we get A" (1/u) < const- (1/u)
so that A (@) > ma?, for # near 0.) The taking of inverses, leads to

bic
O(J) > 6B@), >0,i>1,
&
thus

1 = (Kay* int 94
y=Kz (l/

for some &k >0, which implies Lg(R) = L;(R) as desired (.éi iy defined

by (2.15)).

We turn now to the proof of the Lemma (5.2). By a echange of variables
one finds that it suffices to treat the case » = 1. Now for a particular
value of ¢, let & = [¢]. Let F) be the set symmetric about the origin con-
s1st1ng of 2702 intervals of length 1/2%%, centered at the points +3, +9,

. £8%

B@) < A (k)

—,—— R a—
-9 ~3 0 3 9 3K
Then K, has measure 1 and
. i
sina /4%

IJEEk("”)I =

1 3
P Wgcos3 »

The first factor is greater than 1/2 in (—#n, ¥* =). The second
factor is a lacunary trigonometric polynomial which therefore exceeds
a fixed positive multiple of the P-norm of its coefficient sequence in
a set of fixed positive measure in (—=, n). (This is Theorem (8.25) in
Chapter V of [35]. If the intervals of ;, were centered at 4 3%, .., 4.3m0+#
thiy would also follow from our extension — (Lemma (5.12) to discrete
groups of Example 27 in Chapter V of [35]). Therefore, |XE (z)| > const- k™t
in a set of measure at least a constant times %* (by perlodmlty) Note
that the constants do not depend on F,. Then since #/2 < k<<t (5.3)
follows (with « =1).

{(b) The case @ = Z. As before we have (5.1) for f = vy, where
15 1s the characteristic function of a finite set (with w elements) and
v = A7} (1/u). Since the dual group (I' = T) is compact, we only need
to show (5.4) for ¥ > 1,t> 1. The lemma corresponding to (5. 2) is

(5.5) LuMmA. Given n >0, & > 0 there is a set B with *n elements
such that the trigonometric polynomial % ( 2 " salisfies

~  kn 8
m XE:f 2;,

where K, 8 >0 are independent of & and n.

(5.6)
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Proof. Let B, =0, ..., n—1 and choose n, 50 large that two distinet
translates B, 3" m = 1,2, ..., kozf B are disjoint (later on n, wil

be chosen perhaps larger) with B = U (B,+3""™) we set

m=1
- 2_‘ e

vel

n—1 2
Lm(®) = Db YN,
r=0 m=1
S0

1Zn (@) {Sm%’n,ml lZ cos (3ﬂo+M):s1

lsmlacl

The first factor exceeds ! =— if ]—m < =/2, that is,

in a set of measure =/n. The second faetor is a lacunary polynomial.
Therefore by Example 27, Chapter V of [35] (or by (5.12)), it exceeds
a certain fixed multiple of % (which is the square root of the sum of the
squares of its coefficients) in a certain fixed proportion of any fixed set,
provided m, is large enough. That is, (5.6) holds for some such set E,
and the lemma is proved.

To complete the proof of necesity in this case, we combine (5.6)
and (5.1) with 4 = ¥*n and v = A7 (1/u) = A7*(1/k%n), to get

ekn

Bl— A7Y(1/¥n)

(K an) <5
which leads to

—ﬁ 0_1 (k27b) < B! (’)’0/5) y

and then, with k<t<2kn<o<2n determined by given z>1,
t>1, we get, since 0~'(z)/z decreases,

(5.7

£ 22
< B~ t>=1 >1
2Kt0(2) B(a)’ 1o

(compare with (5.4)).
Note. We need only consider a sequence

{n;} of values of n such that n; < m,; < gny,
where g >1. The sequence {p'} is used in conmeetion with (5.19).
Thus
2Ktw
OB(z) < 20( - )/tz, t>1,2>B71(1/6);

it follows that Ly(T) = L;(T) = L;(0, 2%).
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(5.8) Remark. In (5.7) take s =1 to get
2 1
A—l(—-ﬁ—)g CODStT y t=1

which again gives A (z) > ma® near 0. This condition, which guarantees
that A be non-trivial, means that L, = Iy+ L, since f = f*+f,, where
f, = (sgnf)min(u, |f]) and thus for some small % >0

A(f) = A(fuh+Af) \mlful’+!f“| w

In particular the Fourier transform of each feL, is well-defined in
terms of the Fourier transformation in L' and L%

¢) The case@@ = T';aduality argument for compact groups.
Throughout this section (g, y) denotes the value of the character yel
at ge@(I"is the dual group @ of @). The following lemma will be used later
also.

(8.9) LEMMA. Let @ be a compact abelian group, with (discrete) dual I
If for some ¢ >0

[A(f(@))do <1 implies Y B(slo,l) <1,
G

yel'

where ¢, = f fl@)(m,y)do = f(y), there exists 8 >0 such that for every
]

sequence ¢ = {c,},.p with only a finite number of non-zero terms
ZE(]G,|)<1 implies f}[(a‘Zoy(m,y) de<1
@ v

yel'
Hence (with ¢(@) =Y, c,(w, ) for y >0
v

(5.10) m(é, y) <

1 . =
<agy ¥ ZBleb<t

Proof. Using (2.10), with||-||, denoting the mnorm in IL,(@) and
Il that in L,(I') =1,, we have -

Bli< s | [oo(erds] = oup | Flag(r)
< D 2l gl < 2K el
lloll g=<1

where K denotes the norm of the Fourier transformation. This proves
the lemma,.
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Now when ¢ =T, I' = Z we apply (5.5) and the derivation of (5.7)
to obtain

= 1 = 1 —
SmB_](%)=~:'tsz—l(ﬁm) 4- 1(?), tz1,z>1.

We let ¢ =1/s,x = 1/y, multiply both sides of this inequality by
B7'(s2y) 0 (y) and use (2.12), (4.3) to get for some constant K > 0

K
C_l(y)<?3_l(8’y), s<1,y<1,

so that

1
(5.11) ?;B(fky—) <0y, y<O07'(1),s<1.
It follows from the definition of A (see (2.15Db)) and its niaximality
with respect to the properties D < C, D(x)/»* increasing, that B << 4.
Hence Theorem (2.16) holds for @ = 7.

(d) A property of certain trigonomefric polynomials.
In this subsection we show that for certain sets S, called “dispersed” sets
(Definition (5.13)), we have the following lemma, based on a result of
Zygmund (Example 27 in Chapter V of [35]) concerning lacunary series.

(5.12) LEMMA. Let 8 be a “dispersed” set in the discrete group G, and
let E =T (the dual group of G) have positive measure. Then there exists
a finite set F < 8 such that

m (fXE, 5 40)

whenever f(x) = 3 ¢,(s, %) is a trigonometric polynomial with coefficients
Cg =0 unless se8 ~F;C = (3le,[)'?; and A, u are positive constamis
depending on S but not on F or f. -

Proof. By Lemmas (5.14) and (5.16), proved later, there exists
a finite set ¥ = § such that for f as in the statement of the lemma,

= um (B),

10m(B) < [ |f(2)Pdo < 20°m(B),
2 .

[f@)de < EC*m(B),
E

where K depends on S. By Holder’s inequality and the second of the
preceding inequalities,

[ 1f@)Pde < ([ 17(@)] do)® (EC*m(@)>.
E E

Studia Mathematica XXXVIL3 3
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It follows that for a certain A >0

[ 1f (@)l dw > 220m(B).
B .
The conclusion now follows with the aid of an inequality of Paley
and Zygmund [35], Chapter V, (8,26): .
It g(#) > 0 is measurable on F,

[g(z)dw> Am(B) >0, and [ ¢*(2)do < Bm(B),
B n

then
m{g, $4) =1 (4/B)*m(B).
We turn now to the definition of “dispersed” sets and the two lemmas
alluded to before.
(5.13) DErFINITION. An infinite set § < G is “dispersed” if
(i) the number of solutions of

0 #g =8—=8y, $i,8e8,

is bounded independent of g # 0;

(ii) The number of solutions of

0 #g =8—t+u—2

is bounded independent of ¢ = 0, when s, %, u, v satisfy:

(1) s—15£0, (2) s+u 50, (8) s—v #£0, {4) —t+u £0, (5) —t—v
#0, (6) u—wv #£0;

(i) S =—8 or §n(—A8) =0:

We let @ denote the set of quadruples (é, 1, 4, v)eS* which satisfy
0 s s—t+u—o and (1)-(6). If F < § iz a finite set, we let Qp denote
the set defined as before with § ~ F in place of § (see (5.17) for examples).

In the following lemma only condition (i) of (5.13) is used; the
argument is due to Zygmund (see [35], V. 6.5, and the remarls on Chap-
ter V).

(5.14) Limvvaa. Let 8, B be as in (5.12). Let v > 1. There exisis a finite
set F'= 8 such that )

(5.15) rloém(E) < [1f (@) do < v0*m(B),
B

when f and O are as in (5.12).
Proof. Expand |f(z)* = ff. Then

[f@0rde =3 lotn@®+ Y 65 [(s—, a)do = C*m (B)+E.

854
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Denote the integrals in R by e,_, (= 7z(s—1)). By the Schwarz ine-

quality
1B <( Seflaf™ (3 o) < 0 (3 Fla) ",
8#L

s#t

where N is & bound on the number of ways # s 0 can be expressed as
a difference of elements of S. The sum is taken over the non-zero
elements of 7—T, where T = § ~ F, with F a finite set to be chosen
ag follows. ;

Arrange in decreasing numerical order the numbers le,[*. This induces
an ordering (not unique) on the elements of #e@ with [e,] £ 0. Let X,
be the set consisting of the first # such «. For a first 7,

3 1
N >, )”‘g(l——) m(E).

YU
Let K denote the first K, with n>>r such that |e,| < |e;| if g¢K,,
heK, (that is, we place in K the elements » of K, and also those & such
that |e;| is equal to the least value |e,|, ueK,). Now for each 0 s g in K
there are only a finite number of elements of the “dispersed” set § which
can be used to express g as §;— 8, with s;, 5, in 8. Let # denote the set
of all seS which enter into some representation of some 0 s geX. Then

Y Fles)t<a-1mmm),

07 ueT T
and this gives the left-hand inequality (5.15). The other follows, using
that (1—1/v) < v—1.

(5.16) LEMMA. Let S, F be as in (5.12). There exists a constant K depend-
ing only on 8, and a finite set F = 8 such that

[ \f(@)*dz < BC*m(B)
E

when f and C are as in (5.12).
Proof. Notation is as in (5.14). Now [f(x)} = C*+ 3 4, (v, —z),
uF=0

where d, = Y ¢,,6. Then by the Parseval formula
11
[if@tdn = '+ >'1d,1
Ir

u#0

But

Siaf =31 Y o< DN 3 ol o< NC4
t

UAD w0t u#AD


GUEST


270 M. Jodeit, Jr. and A. Torchinsky

where N is a bound suitable for (5.13) (i), Thus with

lf(w)i" = 2 osatcuaﬂ(s_t’l‘“—vy ""'w)7
AR
we get
W0 > [lf@l'do = D) afog,.
r Sl u—v=0_
Hence

f[f o) de < (N +1) Cm (B) -+

Gs Et cuav (es-—t—i-'u—v) .
§= U050

Now by the Schwarz inequality
|2 csatcuaues—-t-(-u—v <(2 Iasatouaulz)llz (2 Ies—!+u—vl2)1l2
Q [F3 Qp
< tegons )" (o 3 lon )
Qp
i
<O (o Y jau)",
Pp
where Q5 is defined just after (5.13) (iii);
Pp={w+#0:w=s—t+u—u (s,%, 4, 0)eQp}U
viw #£0: w=s5—1,818 ~ F};
M is a bound suitable for (5.13) (ii); and F is a finite set, to be chosen.

The first requirement on F is that (M 2 lew}'* < m(B). A method of

choosing sueh F iy given in the proof (5 14).
It remains to consider the case: s—i+u—v = 0 and (s, %, u, v) ¢Q.
Let B denote the set of such quadruples (here 8, %, u,v each belong to
8 ~ F). Let R, denote the set of (s, ¢, w, ) in R such tha,t condition (%)
of (5.13) (ii) fails, ¥ =1,...,6.
Then R =R, V. uR6 and

‘ 2 Cs Et cuau Os—ttu—v
R

In R, (and similarly in R, R,, R,) s =t so condition (6) of (5.13)
(ii) must hold; otherwise s—1i+u—» = 0. Thus

F(Z o) 3 et < 3t "<

for F (possibly) further restricted. The same argument gives estimates
for R, R,, R;.

6

< Z 2 Icsat auau| [ea—t-)-u—vl .

i=1 B

C*m(H)
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Now if § n(—8) =0, B, = B, =@, and the lemma holds in this
case. Otherwise, by (5.13) (iii), § = —§, and

2= Dledle_dllal 1o, le_s]

R, )
<X teltosdd) (3 1t len) ™ (2 3 leut)™,
ry i, g

it Fis enlarged so that F = — #. Thus > < ¢*m(E). Lastly, 3 is handled
Ry R
in a similar way. Hence °

[ lf(@)tdo < (N +8)C*m ().
E

(8.17) Examprms. {+38% k>0}. In} Z,, p & prime, or mZ’ -
n=1

2 < p; <Py <...a strictly increasing sequence of primes, let § denote
the set of basis elements &, = (81, ... Ogny---)y B =1,2,...

() The two remaining special cases. In this subsection we
construct examples corresponding to (5.5) for discrete groups 3 Z,, p
00 n=1

a fixed prime, and 3’ Z, ., where p; < p, < ... is a strictly increasing
m=1

sequence of primes. In subsection (f) the general case will be reduced to
these and the preceding examples. In each case we let S be the collection
{81, 8z, ...} of sequences with & “1” in the #-th position and zeroes else-
where. It is clear that S is a “diipersed” set.

In the case of a fixed prime consider the set F, of members of G with
support in 1<<m < n and the basis elements s, ., ..., Sug ks where
Ny > . Let }

={s+sp 45 8eF, 1< < Y.

F has ¥*p" elements, and

12
=36 0) (3 Gages 9)-
Fp i=1

The first factor equals p™ in a set F of measure p~". The second
fa.qtor,szor n, sufficiently large, is by Lemma (5.12) greater than AC

1 (@)

= (2 1)¥? =F) in @ set of measure at least pm(F) = up~™. This gives
(a 18) LeMMA. Let G = Z s D o prime. There exist positive numbers

A, p such that for any n >0, k > 0 there is @ set F with k*p™ elements such
that

m(y gy Mep™) > pp™"
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(5.19) Remark. The argument following (5.5) now applies, g0 Theorem
(2.16) holds in this case.

(5.20) LEMMA. If G =m2=’1 Zipyy D1 < D5 < ... astricily increasing sequence

of primes, then given k > 0, n > 0 there exists a set F with & n elements such
that

m(ypy Mom) > ufn,

where A >0, u >0 are independent of k, n.

Proof. Let p be the first p,, > 2n, let 4 denote the annihilator of
Z, in I' (the set of wel" such that (g, ) = 1 for all geZ,). With g denoting
4 generator of Z, consider

— (gor-1
n n , e ’ w?‘/l:
2@ = Y g0 = Mo =1 "7 a1

m=1

Ny wed.

Number the cosets of 4 in I" as A, A,,..., 4, so that (g, x) = ¢¥™"/?
in 4,. Then
2

= —n
™

sinmar [p

Palo)l = sinwr/p

if |mnr/p] < n/2. We can put p—7 in place of r so
‘ 2n
|Py(@)|=— in 142 [—p—] of the 4,,
b 2n

that i3, in a set of measure >1/2n since each A4, has meagure 1 /p.
Finally we complete the construction ss in Lemma (5.18) using base
elements Snot1s ++ oy Spypa2 a0d Lemma (5.12).
() Beduction to previously considered cases. Let G be

a locally compact abelian group. We begin with a lemma. For background
see the first two chapters of Rudin’s book [27 ]

(5.21) LEMMA. LAet H be an open subgroup of G. If L,(@)" < LB(é),
then L, (H) < Ly(H).

Proof. Since H is open L, (H) < L, () in a natural way. If fin
L 4(G) belongs to L, (H) (i.e., is = 0 off H), thenvfis constant on the cosets
of 4, the annihilator of H (4 is ecompact since A = (G/H)" and G/H is
diserete). Thus f determines a function A on IjA o~ H. We assert that
h is a multiple of the Fourier transtorm of f as an element of I, (ﬁ ). This

follows since each character on. H can be extended to a character on
G, and any two such extensions lie in the same coset of A.
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Finally, we have, for some & >0

1> [Blelf@a = [ ([Bllf E+ol)aae
r

rjA -4

= const. [ B(e'|] (2)])dx
i

(cf. Rudin [27] Chapter 2, Section 7). This proves the lemma.

‘We consider two eases. First, suppose & is not discrete. By the structure
theorem ([27], Ch. 2, Section 4), G has an open subgroup H of the form
R"x C, where n > 0 and C is compact. If # > 0 consider functions of the
form

F(z,c) = fl@)en, ..., 2)rcle)

with for example ¢ the square of the Fourier transform of a characteristic
function, in order to reduce to the case of the real line (5a). If n =0,
C iy an infinite compact group, and we apply the duality argument
(Lemma (5.9) and after) to reduce to the case of discrete groups.

Then consider an infinite discrete group 6.

(i) I @ contains an element ¢ of infinite order we apply Lemma
(5.12) to the (open) subgroup generated by g to reduce to the case
G =Z (5b). ‘

(ii) If @ contains no element of infinite order, but contains an infinite

oo
subgroup of bounded order, then @ also contains }' Z, for some prime p.
n=1
We apply (5.21), (5.18), ete.
(iif) If @ contains no element of infinite order, and no infinite subgroup
0o
of bounded order then & contains > Ly Py <Py <-... for some strictly
. m=1
increasing sequence of primes. Apply (5.21) and (5.20).
This completes the proof of Theorem (2.16).

6. Notes and Remarks. In the issue of Comptes Rendus dated 1 July
1912 [31] there appeared a paper by W. H. Young, extending the Par-
seval theorem to the relation

(Do) <5 f @)

between 2 function f and its sequence {c,} of Fourier coefficients. The
exponents p and ¢ had to satisfy the relation 1/p+41/g =1, with ¢ a pos-
itive even integer. In the following year [32] Young published the dumal
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result, in which the sum and integral switch sides in. the inequality. Later,
F. Hausdorff [13] showed that the only requirement on ¢ was that ¢ be
at least 2. F. Riesz [24] showed that the trigonometric system could be
replaced by any uniformly bounded orthonormal system. Titchmarsh
[29] extended the inequalities to Fourier integrals. The interpolation
theorem of M. Riesz [25] bad all these results as a first application. For
notes see the books of Zygmund [35], Edwards [7], and the Collected
Papers of Hardy, vol III [6]. :

In 1918 Carleman [3] gave a continuous function with Fourier coeffi-
cients ¢, such that

2l = oo

Thus the condition that g exceed 2 was shown to be essential. Special
examples ([35], Ch. XIT, Sec. 2) show that 1/p-+1/¢ = 1 is the best possible
relation for 7, q. The case of Fourier integrals is covered in Chapter
XVI, section 3 of Zygmund’s book.

Mulholland [20] considered the generalization of the Hausdorff-
-Young inequalities which is obtained by replacing the powers p and
g by an appropriately related pair of positive increasing functions. In
this context the M. Riesz interpolation theorem did not apply. Also,
Hardy and Littlewood had already obtained the inequalities for some
important special cases [9], [10]. In contrast to Cooper’s generalization
of Holder’s inequality, Mulholland gave the relation

for 6 >0.

(*) O () = 2P (1/z)

to interchange the behavior of & at zero with that of ¥ at infinity. He
essentially proved the mecessary condition of Theorem (4.5).

The Marcinkiewicz interpolation theorem, with powers replaced by
convex functions, was applied to Fourier coefficients by Zygmund [34]
and W. Riordan [26]. The methods used by Hardy and Littlewood [10],
and by Zygmund [34] to derive the result of Example (i), section 3
actually give the stronger result that

o0
2
1

converges, where {c;} is the non-increasing rearrangement of the sequence
of Fourier coefficients. The interpolation condition of Riordam’s thesis
[26] yields relation (*).

Integrability theorems for trigonometric transforms (see the book
by Boas [1] with this title) of functions restricted by conditions of monot-
onicity, positivity, etc. have been discovered in great numbers. For
some of these in the context of Orlicz spaces see Chen [4].

icm
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Integral transforms with the form

(@) = [ Flay)f(y)dy

were considered by O’Neil ([22], Theorem 10.11), with integrability condi-
tions on F{z) not satisfied by exp (iz). However, better results are then
possible. For example, in the case of the Laplace transform, the exponent
2 in (4.6) may be replaced by 1.

Theorem (3.2) leaves the following question: is the factor 2 multi-
plying the norm necessary, or is it merely a consequence of the method
of proof? The question of best possible constants for the I” Hausdorff-
-Young inequalities on compact groups was treated by Hirschman [16],
a8 was previously done for other contexts ([2] and [8]).

The operation U of section 4 ariges from the estimate

1. (= ~ .
—{—E—f(;)<ofsm(mt)f(t)dt, >0,

when f is integrable near zero, convex, and decreases to zero at infinity.

The concept of “digpersed set” (section 5) was introduced in order
to obtain inequalities such as in (3.16) including the factor m (F) (cf. [15],
and [28]).
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Components and open mapping theorems

by
NIELS JORGEN NIELSEN ({Aarhus)

Introduction. In a recent paper of De Wilde [8], strictly netted locally
convex spaces are defined and some closed graph theorems are proved.
It seems, as it is not the striet net itself in such a space which plays the
essential role, but that it is only a tool for constructing a general structure
on the space, & structure, which is independent of the actual construction
and from which the closed graph theorems are a consequence. This is the
background for this paper.

After the preliminaries are given in section 0 and 1, section 2 brings
a general open mapping theorem for closed mappings from a pre-(F)-
sequence into a not necessarily metrizable topologieal group, a genera-
lization of Theorem, 2 in [6], and it is from this that all other open map-
ping — and closed graph theorems presented here will be derived.

In section 3 come the main mnotions, those of a component and an
overwhelming set of components for a locally convex space. The existence
of such sets is responsible for the validity of the open mapping and closed
graph theorems proved here. The notions are slightly different from those
introduced by Stowikowski [7]; this enables us to include new cases, for
example, it turns out (section 4) that the structure of strictly netted
spaces and of Souslin spaces gives the possibility of constructing sets of
components, which overwhelme.

In section 4 also examples from [7] are taken, and it is indicated
that the class &, considered by Raikov [3] is contained in the class of
spaces having an overwhelming set of components.

I would take this opportunity to thank Dr. W. Stowikowski for his
willingness to discuss the subject with me and for his encouraging attitnde
in general.

0. Notation and Terminology. All vector spaces in consideration are
supposed to be over the complex numbers, and all locally convex spaces
are supposed to be Hausdorff, unless something else is stated.

As it is customary, we shall write “the topological space X” instead
of “the topological space (X, t)”, where no confusion about the topology
7 will arise.
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