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§ 1. Introduction. Examples due to E. Tolsted (see [5]) and A. Zyg-
mund show there are positive superharmonic functions %(z) in the unit
dise D: |2] <1 which have nontangential limits almost nowhere on
|2] =1. On the other hand, Littlewood [3] shows such « have radial
limits almost everywhere. In [5], Tolsted extends Littlewood’s result
as follows. Let ¢ be any continunous curve in D with one endpoint on
|#| = 1 at which C is tangent to & chord of D, and let C(6) denote C rotated
about the origin through an angle 6. Then u%(z) has a finite limit as 2
approaches |z| =1 along C(6) for almost all 6.

Recently, L. Ziomek [6] proved the following result. Let I;(6)
= I4(8, %), 0 <» < =, denote the cone in D with height § and aperture
» whose vertex is at ¢ and whose axis is along the radius trow 0 to €”.
If u(2) is positive and superharmonic in D there is a function «(0) on the
boundary such that

1
]ifi |T5(6)] f‘“(z)—'u(@)l”dz=o

T's(8)

for almost all 6 for every 0 <v < =w and 1 < p < oo,

This result, and the others above, are actually true for superhar-
monie functions # which are not necessarily positive but whose negative
part is L' bounded, that is,

27

f w0 < M < o0 for r<1,

i .

where 4~ = Max(—u, 0). This condition. is sufficient to permit the Riesz
decomposition of % into the sum of an L' bounded harmonic funetion
and a (Green’s) potential. Since the boundary behavior of I! bounded
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harmonic functions is known, it is enotgh to consider the potential part,
which is positive and superharmonic.

Ziomek uses conformal mapping to extend the result to very general
domains D of the plane. He then proves an analogous result when D ig
the unit ball in Buclidean. n-space E". In this case, the p range is limited

Y and he shows the 1esult iy false for p >

—2

The purpose of this note is to extend Ziomek’s result to more general
domains D < E". Specifically, we will assume D is a Lipschitz domain —
that is, a bounded open subset of F"™ whose boundary 0D is described
locally by a function of class Lipl (see [2]). If @<0.D, a truncated (open)
cone I" with vertex @ is called a nontangentiol cone ot @ if there iy another
cone I” such that T’—{Q} < I"= D. I I'(Q) is any nontangential cone
at @, I';(Q) denotes I'(Q) truncated at the height 4. Following Ziomek,
we say u(P) has nontangential limit A in LP at @ if

to 1<p<

tim [ u(P)
o T g™

for every nontangential cone I'(Q) at Q.

Our main result is the following theorem.

TEEOREM 1. Let u(P) be positive and superharmonic in « Lipschitz
domain D < E*. Then for 1 <p <nf(n—2), v has a nontangential limit
in I at each Q € 0D except for o set of harmonic measure zero.

It will follow from the proof of the theorem that if v = h4w is
the Riesz decomposition of 4 into the sum of a positive harmonic function
h and a potential w, then the nontangential boundary values in IF of
u coincide except in a set of harmonic measure zero with the nontan-
gential boundary values (in IZ®) of A, that iy, w has nontangential L?
limit equal to zero almost everywhere on 9D.

‘We remark that just as when D is a ball, so also in thig general case
Theorem 1 is valid for superharmonic functions whose negative part
is I* bounded — this being defined as for the ball except that averaging
over interior spheres is replaced by integration with respect to harmonic
measure over the boundaries of interior domains.

Our proof of Theorem 1 will depend heavily on results and termi-

— PP =0

nology from [1] and [2], and to save space we shall often refer the reader '

to the necessary facts rather than recall them here. We will give two proofs
of the theorem. The first and simplest of them, intended for the reader
who is familiar with general potential theory, shows that the existence
of such a limit is a corollary of the existence of a finite fine limit almost
everywhere at the Martin boundary of D (see [4]), and the identification
of the Martin boundary of D with its Buclidean boundary 8.D for D Lip-
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schitz (see [2]). The second proof is the classical Lebesgue point proof,
using estimates from [1] and [2]. The two methods are of course not
independent.

Lemma 2 of § 2 containsthe main inequality that is needed in proving
Theorem 1. § 3 contains the proofs of Theorem 1 itself.

§ 2. An inequality for superharmonic functions.

LeEMMA 1. Let g(M, P) be the Green's function of the unit ball By of
B™. Then for 1< p <nf(n—2),

Sup [ {o(M, P)yrapP < o
MeBy f)
where ¢ depends only on p and n.
Proof. For n >2,

) ap
Juonrar< [ oo

f rn-l,'.(z—n)p d?‘,

" which is finite provided p < n/(n—2). When #n = 2, we have in the

same way
1

f out, yar<e | rfrog Ve

which is finite for all P < co.
Levva 2. Let u(P) be positive and superharmomc in the unit ball
B, of B If for some 1 < p < nf(n—2),

@.1) Jwprars a0 >0

then u(P) = cA for all P eB,, the ball with radius o <1, where ¢ is o constant
depending only on ¢, p and n.

Proof. By the Riesz decomposition, u(P) = h,(P)+w,(P), PeB,,
where &, is positive and harmeonic in B, and

wy(P) = [ g(M, P)du (M),

By
with f — | M|)du(M) < oo. Splitting B, = (B;—B,)UB,,r = (¢+1)/2,

we ha.ve u(P) = h(P)-+-w(P) where h is positive and harmonic in B,
and

w(P) = [ g(M,P)du(M).
. _ By .
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It follows from (2.1) that either
4y
[ weypar> (3)
BE‘

or
[w@yar> (é)
BQ

In the first case, there is a point P,eB, such that h(P,) > ¢ —g—, where

¢ is the pth root of the volume of B,, and the lemma follows immediately
from Harnack’s inequality. In the second case, we have by Lemma 1

< eBTf au (M)

However, g(M,P) is bounded below by a positive constant for M B,
and PeB,. Thus

= (Bf )’ < ) f (Bf {g(;l@f)}de)”” du(M

=ow(P), PecB

e?

5 <o [ g0, Pyau(an)
B,

and again the lemma follows.

§ 3. Proof of Theorem 1. If (P) is positive and superharmonic in
a Lipschitz domain D, we decompose % = %--w where b is positive and
harmonic in D and w is a Green's potential. Since % has an ordinary non-
tangential limit on 8D except for a subset of harmonic measure zero
(see [1]), it also has one in I” for p < co. Hence it suffices to show that
the potential part w has nontangential I” limit zero except for a set of
harmonic measure zero. .

Given a sequence of points P;eD which approach @,¢dD nontangen-
tially, choose 7o > 0 such that the closure of each ball B, = B(P;, 7o |Py—
—@Qol) with center P; and radius 7,|P,—Q,| lies in D. For 0 <r <1,
let By, = B(Py,r|P,—Q,|). A simple covering argument shows that w
has nontangential I” limit zero at Q, if and only if

1
3.1 .
31 Bl

a8 k — oo for every such sequence of nontangential balls B, at Q.
If we use the facts that w has fine limit zero almost everywhere on
the Martin boundary of D (see [4], Theorem 21) and that the Martin

(P)YPdP -0
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boundary of D coincides with 0D for Lipschitz domains (see [2]), (3.1)
follows from Lemma 2. For if

P, f{w(P}”(ZP>/ >0

for all ¥ and some 1 <p <n/(n—2) then w(P)> 1" >0 for p e|J B,.
k
By Lemma (5.3) of [2], | B, is not (semi) thin at @, and 8o w cannot
k

have fine limit zero at @,.

‘We can also give a Lebesgue point proof for Theorem 1. Restricting
our attention to a small portion of 4D, we may assume without logs of
generality that D is starlike about a point P, (see Lemma 1 of § 5 of [1]),
that w is finite at P, and that P, = 0. If G(M, P) is the Green’s funetion
for D and D,, 0 <r <1, is the contraction {rP: PeD} of D, we may
write

w(P)= [ G(M,PyauM) = [ + |
D Dy D

—Dy

with

w (P fG‘MP)d,u fde)<oo

For the first integral on the right above we have

lim [ G(M, P)ap(M) = 0.

p—9D 1,

This is true since G(M, P} 0 as P — 3D (unrestrictedly) and G(M, P)
is uniformly bounded for MeD, as P — dD. Moreover, u(D,) < oo since
G (M, P,) has a positive lower bound for MeD,, and so the assertion
follows from the Lebesgue dominated convergence theorem.

Since »(D—D,) -~ 0 as r —1, we need only consider the case

G(M, P)

(8-2) G(M, Py)

w(P) = dy (M)

with »(D) arbitrarily small. ' ’

Let (X,vy), X<E" ', y real, be the local coordinate system with
center Q, = (X, yo)saD and positive y-axis along the ray @,P,. Follow-
ing [2], we will denote by %(Q,,r) the cylinder {(X,y): |X—X,| <,
[y — 9ol < rs} with s sufficiently large to insure that the top of the cylinder
is in D and the bottom is in the complement of D for all small r > 0.
We write 4(Qq,7) = 0DNyw(@,, ) and call 4 a disc.
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The measure » on D induces a measure on 0D also denoted by » as
follows. For E = D, let E* be the subset of D of all points rQ, 0 < r < 1,
Q ¢ B, and set »(H) = »(B*). If we form the Lebesgue decomposition of
» with respect to harmonic measure o™ at Py, dv(Q) = f(Q)dwTo(Q)+
+do(Q) with f integrable and o singular with respect to %o, then by
Besicovitch’s theorem on the differentiation of set functions (see [2]),

v(4)
wFo(4)
as 4(Q, r) shrinks to @.for almost all (dw™) QedD. Since »(8D) can be
chosen arbitrarily small in advance, the same is true of the I' norm of
f with respect to dw”™. Chebyshev’s inequality then implies that given
&> 0 there is, except for a set of points @, with harmonic measure
less than ¢, a 6 >0 depending on @, such that »(4)< sw¥o(4) for all
4 = 4(Qs,7) = 4(Qo, ).
Let @,<0D be such a point and let P, be a sequence of points of

a standard nontangential cone at @, which converge to Q,. With B;, and
B;, as before,

([ {w(P)}vdP)”k J — f @, P}de) au ().
By

By Lemma 2 therefore,

()

f{w(P ) dP) <e [ {inf G(M,P)}du(M)
P PeBy,

( 1Bxl 5,

We now estimate inf G, P)
pey, G(M, P,)

Case 1. MeB,. For any fixed MeB;, choose a point P,eB, such
that |P,— M| > 7, where r, = 7|Q,— P,| is the radius of B,,. Since G (M, P)
is harmonic in each variable for M 5= P and is positive, we may assume
by Harnack’s inequality that M is inside p(@y, ) and P, is the point
in the center of the top of v(Qq, 2r;). Applying Lemma (3.1) of [2] to
the function G(M, P) harmonic in D—y(Q,, 7,), taking P = P, =0 in
this inequality and using (3.8) of {1], we obtain :

,. considering several cases.

G(M, P,) <
G(M, Py) ~ wo(4)’

Superharmonic functions on Lipschiltz domains 197

and therefore
G(M,P) e
rem, G, Py)  wfo(4)

where 4 = A(Qy, |@o—Prl)-

Case 2. Mep(Qo, |Qo—Pyl)—By. If we choose P = P, the center
of By, then the geometry of this situation is the same as in case 1, and
we obtain the same estimate.

Oase 3. M in the ring v(Qo,2'|Qo—Pel)—(Qo; 277 |Qo—Pyl),
j=2,8,..., N where N is chosen so that 2V !|Q,— P, <8< 27 |Qy— Py-
‘We again choose P = P,, the center of B,. Using Harnack’s ine-
quality, we may assume that M is in the part of the ring near 8D of points
whose distance from @D is at most a fixed constant multiple of 27 {Q— Pp|.
If we apply (2.4) of [2] to G(M, P) as a function of P and put P = P,
and then apply Lemma (3.1) of [2] to G(M, P) and put P = Py, it follows
from the proof of Lemma 4 of [1] that

G(M,P,) < cG;
== P, b
G(M, Py) ~ w0(4)

where ) ¢ < co and 4; = A(Q,, 2|Q,— P, |). Hence
7

int G (M, P) < Pea,.
 ra, GO, By) S 0Po(4))
for Mey;—y;_,, where y; = 9(Q0s 271Q0— Pyl), A; = A(Q,, 21Q0— Py))
and Y ¢ < oo.
Case 4. MeD—p(Q,, d). Using Harnack's inequality, applying
(2.4) of [2] to G(M, P) as a function of P and putting P = P,, the center
of B, we obtain

for MeBy,

ing G P)
pesy G, Py)

uniformly for MeD—y(Q,, 6) a8 k — oo.
Combining these estimates, we have

N
[{aeleDaon< > [ +

j=1 w]' vy D—e(Qq.9

< 2 I,O(A »(py)+o(1 fdv
< cezwc]-—i—o(l).

-0
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It follows that

1 1»
limsup( : f {w(P)}”dP) <ce
koo \ Bl

k&
except for a set of points @, of harmonic measure at most . Since the
constant ¢ depends only on the nontangential cone at @, and not on @,
itself, it is a simple matter to complete the proof of Theorem 1.
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A ring of analytic functions, II*
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This paper is devoted to a further study of the commutative locally
convex algebra A of all complex-valued functions which are defined and
holomorphic in the open unit disc U of the complex plane, where the
ring multiplication is convolution (the Hadamard product), the other
operations are the usual ones, and the topology is the compact-open.
Specifically, we investigate the spectra of elements of this algebra and
the operations of inversion and exponentiation.

In Section 2 we give simple proofs of the two main results of [2]
whose proofs (in [2]) depended on an incorrect theorem (2.3 of [2]).

Section 3 consists of one theorem which gives a means for relating
convergence in the compact convergence topology of 4 to certain prop-
erties of the corresponding sequences of Maclaurin coefficients.

Section 4 is concerned with the spectrum of an element of A. The
algebra A may be identified algebraically with a certain subalgebra A
of C(N), since the space N of non-negative integers (usual topology)
is in a natural way homeomorphic to the space of non-zero continuous
homomorphisms of A onto C (with the usual Gelfand topology). For
z ¢ A, we let # be the corresponding element of C(N). Then £(n) = @,,
the mth Maclaurin coefficient of the holomorphic function z. We show
that the spectrum o () of » is between the range R(4) of £ and its closure
and give examples to show that in general one cannot say any more about
o (). Since A is not locally m-convex, the functional calculus developed
for such algebras by Michael is useless here and one is induced to look
at & spectrum. defined for general locally convex algebras by Allan (and
others) for which there is an applicable functional caleulus. We identity
first the set of (Allan) bounded elements of A, and show that Sp(s)
= R(#)*, where Sp(z) is the spectrum defined in terms of having or not
having an (Allan) bounded inverse and “x” indicates the closure in the
Riemann sphere. Thus, Sp(z) is easily computable, once R(£) is known,
whereas o () is not.
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