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Random functionals on K {},} spaces
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CH. SWARTZ (Las Cruces, N. M.) and D. E. MYERS (Tucson, Arizona)

Let V be a linear topological space, (2, &) a probability space?
and X (w, v), we?, veV a complex valued function .on Qx V such that
X(-,v) is a random variable for each v¢V. By analogy with Yaglom
[7], X is called a random field or for V = R, a stochastic process, or in
general, a random functional.

Applications frequently require additional properties relative to
V, i.e. continuity, differentiability or joint properties such as mean-
square continuity, stationarity, covariance stationarity or mean-square
differentiability. Gel’fand [1], Ullrich [5], Yaglom [7] in particular have
considered applications involving differentiability defined in terms of
test function spaces, with Yaglom utilizing ¥ = 8, the slowly increasing
functions and Ullrich, ¥V = 2, the Schwartz space. In both of these latter
instances, the random functional is considered as a mapping from £ to
8* or 2%, the dual spaces with an appropriate measurability condition,
rather than as a funetion on 2 X V as indicated above.

For both S and 2, representation theorems for random functionals
have been obtained, [7], [6], which parallel those for elements of §*, Z*.
As was observed by Yaglom and Ullrich, random functionals on these
spaces are special instances of those of Gel’fand.

In this paper we will consider random functiorals on K {M,} and
on induective limits of K (M,} spaces. Since § and 2 can be obtained as
special instances of K {3} spaces by appropriate choice of the functions
M, many of the results of Yaglom and Ullrich are obtained by those
choices. A principal result is Theorem 2, which provides a representation
for random functionals on this large class of spaces.

I. K{M,} spaces. We refer the reader to [2], p. 87, for the definition
and pertinent properties of K{M,} spaces, also for the properties denoted
(M), (N), (P). For inductive limits of K{M,} spaces see [2], p. 58, an
inductive limit space being denoted by 4.

Throughout the rest of this paper we will abbreviate K{M,} by K
and K {M1} by K, with {M,} or {M}} fixed, given sequences, unless noted
otherwise.
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Lruma 1. Let f be essentially bounded on R™ and suppose there exists
p such that M, f induces an element of K*. If {M,} satisfies conditions (M)
and (N) and if pqunomalals are multipliers on K, then

fM,,f =f M, (5)f () at;

induces an element of K* and D fill[,,f) = M,f, where D; = 90w, is
differentiation in the sense of elements of IC*.

' Since the proof for R™ is analogous to the case for n =1, we will
write the proof in that form: By (N), there exists p’ > p such that M, | M,
= M, is in L}R). Also from (M)

*

._..1___ g v Mp(s) - M, :(8)
) J‘Mp(t)f(t)dtJQ———*GpMp'(s) !of‘f(t)[dtg_%‘if”f”wis[.

Since the polynomials are multipliers on K and M, is in L'(R)

it follows that [ M,f induces an element of K* (see [2], p. 83). Let T
0

z
be the element induced by [ M,f; then
0

(DT)(g) = — T (Dg) = — Rf [[ 2,000 @) ¢ 0)dn = [ M, (0)f(2) p(z)do.
0 R

Since by (XN), ¢ vanishes at oo, D? M.f = M,f.
0

} ‘I[. Random linear functionals on K {1} spaces. We follow Ullrich
[5] in defining these. Suppose given a fixed probability space (2, =, u).
For § a non-empty set and & a o-algebra over § and F < 8, denote by
E n &, the minimal c-algebra generated by sets of the form B N F,Fe?.
Now let @ be any test function space and ¢* the dual space; and &
the o-algebra over ©* generated by sets of the form ’ ’

{T/Re(T(p) < O, Im(T () < )}

for all (pe@l, C1, O, real numbers. Then £, a measureable transformation
of (2, &) into (K*, K}) is called a random linear functional on K.

Several of Ullrich’s theorems and comments concerning random
S‘fhwa.rtz distributions carry over for random functionals on K spaces
m@out any change in the proofs. These include the following, the proofs
being omitted : ) ’

Ul.. If ¢ is arandom linear functional (rlf) on X, then there is a unique
probability measure »,, defined on (K*, K¥), given by nE =y,

icm
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U,. Let £ be a mapping of Q2 into K*. Then & is a random linear
functional on K if and only if for every ¢eK, [£(w)](g) is a complex
random variable.

U,. Let &, & be random linear functionals on K, o & complex num-
ber. Define {,, ¢, as follows:

Li(w) = & (w)+Ex(w),  Ca(w) = aréy;

_then ¢, Z; are also random linear functionals on K.

T,. Let {&,)} be a sequence of random linear functionals on K such
that for all w <, the sequence {&,(w)} converges in the topology of K*
to & mapping &,(w). Then &, is a random linear functional.

T,. Let & be a random linear functional on K ; then for every n-tuple,
a =(ay,...,a,) of non-negative integers, D*¢ is a random linear func-

[D*Ew)1(p) = (— 1) [£(w)](D*(p))-

III. Some examples of random linear functionals.

A. Let Y be a real rector-valued random variable on (2, &/); then
from U, it is clear that [&(w)](p) = ¢(¥ (w)) defines a random linear
functional on K (or »#°) and might be called & random delta function.

B. Let Y be @ real vector-valued random, variable on 2 such that
the expected value, E(p(Y)), exists for all ¢ in K. Suppose X is a real-
valued random variable on (2, o) (dependent on Y). Then &, defined
up to an Pg -equivalence by

[E:(w)l(p) = Elp(Y)|X = 2](w)
(conditional expectation) is & random linear functional on K and might

be considered a generalized time series. If X, ¥ are assumed to have
joint and marginal density functions, f(#, y) and f(z) respectively, then

_ [l
2 @

but Em('w)eK* implies that there exist functions {g7}, bounded measure-
able, such that

(i) [E@)](p) = D) [ M,D* p(y)gs(y)dy,

lal<p gn

(i) & (p) @ (y)dy

where we assume condition (V) is satisfied (see [2], p. 113).

Equating the two representations, (i) and (ii) and assuming f(«, ¥)
as the unknown function, “testing” with functions in K could provide
a method for obtaining approximate solutions.
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C. Let {h,(w, )} be complex-valued functions defined on R"x Q,
jointly continuous in the first variable and measureable in the second.
Further suppose that for each p and each peX

X, = fM@(w)hp (2, w) o (@) dw
RM
converge absolutely. Then & defined by

[E@)](p) = D) X,(w)

p=1
is & random linear functional on K.

D. Let*G be a measureable subset of R™ with positive measure,
Construct Iy = (L;(¢))" as in the beginning of this section.

ProroSITION 1. Let & be random linear funmctional on I (G); then
there emists g : 2X G — ¢ such that

(i) g(+,t) 18 measureable for all te G,

. (1) g(w, °)is essentially bounded on G (with respect to Lebesgue measure)
Sor all weQ;

(iii) for all weQ, gL' (G)
L)) = [¢glw,ta.
G

Proof. Since &(w)e(L'(@))* there exists h(w,)eL®(G) such that

[E@)](0) = [@()h(w,tat
G

for all peL'(@). Extend % to all of B™ by setting A(w, t) = 0 for ¢¢G
all we. '

For arbitrary open sets in B", define
t(B) = é hiw, )it = [g(t)h(w, @t = [£w)](pg),
[

where ¢g is the Gpwacteristie function of E. By Theorem 8.6, [4], p. 154,
for any substantial family of open sets, u, is differentiable a.e. [m],
Dy, (#) = h(w, @,) 2 e. [m] and hence h(w, -)is in L*(@). Since w — u,(B)

is measureable so i i
e 18 w->Du,(e) for » in @ Let g(w,») = Dy, ().

E@)) = [e@glw,Hdt  for all pel}(@).
[£3

Sinee h(w, -) is essentially bounded on @ 5o is g(w, +).

icm°
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Although this example does not involve K {M,} spaces and in par-
ticular would not obtain a “differentiable” random linear funmectional,
if @ were assumed compact, then the Schwartz space % would be a sub-
space and the representation would still apply by first extending func-
tionals to all of I'(@). This proposition also serves to illustrate the gener-
ality of Ullrich’s definition of random linear functionals and also is used
in the proof of Theorems 1 and 2.

IV. Representation theorems for random linear functionals.

LemMA 2. Suppose {M,} satisfies conditions (M), (N) and (P), & is
an rlf on K. Let « >0; then:

(i) there ewists M esf such that p(M)>1—e

(ii) there ewists r > 0 such that for all pe K, we M

L)) < rsup [ M,0)1D° p )@t = rllgll,.
al <9'F

Proof. Since &(w) is in K*, for all wef2 there exists P, >0 and
S, > 0 such that [[E(w)](¢)1<8’w[]¢p[1}w for all geXK (see [2], p. 112).
Without loss of generality, we may assume that P,> S, for all w and
hence

[TE(w) 1 ()] < Pylollp,,-
Note that

2= U N {wlEIE) < Vel = p Ay(p)

N=1 peK

and Ay(p) € Ayyq(p). Sinee K is separable, there exists a countable
dense subset, H, and hence

Ay =N Axlp) =) Ax(p)
peK peH

is measureable subset of 2. But 2 = |J A, implies there exists » > 0
NZ1

such that u(4,)> 1l—e Set M = 4, and by the construction of 4,(¢)
and 4,, (ii) follows.

Remark. This is the analogue of Lemma 4 in [6].

THEOREM 1. Let & be an vlf on A", where conditions (M), (N) and (P)
are assumed for all sequences {MJ}. For m a positive integer and & >0
there exists am integer r, Me & and functions {f.}, |a| <7, such that

(i) p(M)>=1—¢

(ii) for each we®, f,(w,-) is essentially bounded on S and for teS,

fa(+, 1) i8 measureable (la] <),
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(iii} for all we M, pe K™

E@)lp) = D) [ M@ (0,1)D% ¢ ()t

laj<<r g

toe. Ew) = 3 (=1 D [MPf,(w, )]

laj<r
Proof. (a) Since # = lim K™, &(w)e A, &(w)e(E™)*
M0 )

By Lemma 2, there exists » >0, M measureable such that (i) is
true and

L&) (p)] < rsup [ M@ D) @t = rlg]).
FT

Extend & by setting

(& ()](p) = [Ew)l (), weM,
0, w¢ M.
" Set A = {plpeE™, |lpl, <1}
s{w) = sup (£ (w)(p)] = sup |[£*(w)1(p)l,
ped geH A

where H is a countable dense subset in K™ (see conditi
4 ndition (P)).
$(w) iz measureable and ( (). Shen

IL£* (0)1(9)] < 8 (w) [lgll-

| <(b) CF[“]olr each g K™, associate a vector y = {y,}, where y, = M D" g,
a| <r. The correspondence 6: ¢ — v is one-to-one. Let I' be the direct

sum of y copies of I'(F"), where » iz the numb i
o T oy y ) mber of components in ¢.

s s 2 = suplfihy  fil = [1f 0] di
i<y 7

and let 4 be the image of K™ under the mas
2 p 0. Construct L(w, ) o
4 by L, 0(p)) = [£*(w)](p) and note L(w, :) is in A* with ) on
Z(w, 0(@))] < s(w) (6 ()]

Since I' iy separable and A< I, Ii( i
. : €I’y L(w, -) has an extension IL*(w,")
defined on I' with |L*(w, z)| < s(w)llzli for all zeI. This follows f;rt’)m

Theorem 2 . : e .
such that [81. By Proposition 1, for all |a| <1, there exists g,: 2F" — R

(i) ga(w, -) is essentially bounded, in 7",
(ii) go(-, %) is measureable,

(i) Z*(w, @) = 3 [ @,(t)ga(w, ¢)dt.
lal<r FT

icm
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Hence
Liw, 0(p) = [E@)(p) = Y [ M7 (t)g.(0, ) Dp(t) 8
for we M. e

Under appropriate conditions on the space X', we will obtain & rep-
resentation theorem analogous to Theorem 1, [6].

LeyuA 3. Let 8 be a Lebesgue measureable subset of B* and f: QX 8 — R
such that

(i) f(+, 1) is measureable for tef,

(ii) f(w, ) s continuous for all weQ.

If C < 8, is compact, then g(w) = c! f(w, t)dt is Lebesgue measureable.

Proof. Since f(w, ) is continuous, for fixed w, the integral exists
and is finite because C is compact.
Let

My,
Gn (W) = Zf('wv 1;) A%y,

i=1

where the #; are chosen such that |g,(w)—g(w)| <1/2" By the existence
of the integral this can be done but M, and {t;} might be dependent on w.
However, by the uniform continuity of f(w, -) on C, the M, and {t;} are
independent of w. We note finally that g, is measureable for each n and
hence that g is measureable.

LEMMA 4. Let f: QX 8 -~ R, 8 « B" be sure that

(i) f(-, t) is measureable for all teS,

(i) f(w, ) is essentially bounded and measureable for all weQ (and
hence locally integrable).

If C< 8, is compact, then g(w) = [f(w, t)dt is measureable.

c

Proof. Since f(w, ©) is measureable and bounded, for each w, there
exists a sequence of continuous functions f,(w, ") converging a.e. to
Jw, ), and

1 (0, Moo < 115 (20 oo -
By Lemma 3 [f,(w,#)dt is measureable and by the dominated
]

convergence theorem
Lim [ f,(w, )@ = [ f(w, t)dt = g(w)
n>00 oy o]

is measureable since € is compact (i. e. € has finite measure).
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TaEOREM 2. Let & be an +if on X', where conditions (M), (N) and (P)
are assumed for all sequences {MJ}. Assume further that polynomials are
multipliers for each E™. For m a positive integer and & > 0 there ewists an
integer and v, M e o and functions {h,}, |a| < r, such that

(i) p(H) >1—s,

(ii) hy(w, -) is continuous on F" for all weQ,

(iii) h,(-, t) is measureable for te X",

(iv) for all we M, pe K™

[E@e) = D) (=1 [h,(w, ) Dop(t)ds.
Fr

lal<r+1
Proof, By Theorem 1, there exist functions f,, |a| <7, such that

Ew) = 3 (—1) D[P, (w, -)],
|al<r
where for each w, f,(w, +) is essentially bounded. If Lemma 1 is applied
to each f,(w, -), then

E) = D (=11 D ([ M, f(w, )
and each = '

ho(w, @) = [ M, ()f,(w, t)dt
0
is continuous in # and measureable in w by an application of Lemma 4.
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In discussing tensor products, bilinear mappings and linear mappings
on a Banach space it has been found useful to di&tigguish between‘ various
sorts of mappings such as the compact, nuclear, integral mappings (?tc.
(ef. Treves [17] and Grothendieck [2]). Since n-ho@ogeneous polynomla}s
are nothing more than symmetric n-linear mappings and & holomorphic
funetion on a Banach space can be looked upon as a sequence of };c'm.m-
geneous polynomials which satisfy certain conditions, it is not surprising
that one can define various subgpaces of the space of all holomo_rph}c
functions go that the resulting structure is enriched. Such is the case in
Nachbin and Gupta [15], where Malgrange’s approximation theo_rem. is
generalized from the finite to the infinite-dimensional ca_se.‘ To describe
a theory for a large class of subspaces Nachbin [13] introduced the
concept of holomorphy type. )

Nl[)otiva,ted by %)Ta?(:hbin and Gupta [15] and Nachbin [13] we des-
aribe and study in this work various topological vector spaces of holo-
morphic funections.

In Section 1 we recall the definition of holomorphy type .and of 1.;he
spaces (#,(E), 7). We define a-holomorphy type and the corresponding
topological vectors spaces (Hy(H), Ty).
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