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TaEOREM 2. Let & be an +if on X', where conditions (M), (N) and (P)
are assumed for all sequences {MJ}. Assume further that polynomials are
multipliers for each E™. For m a positive integer and & > 0 there ewists an
integer and v, M e o and functions {h,}, |a| < r, such that

(i) p(H) >1—s,

(ii) hy(w, -) is continuous on F" for all weQ,

(iii) h,(-, t) is measureable for te X",

(iv) for all we M, pe K™

[E@e) = D) (=1 [h,(w, ) Dop(t)ds.
Fr

lal<r+1
Proof, By Theorem 1, there exist functions f,, |a| <7, such that

Ew) = 3 (—1) D[P, (w, -)],
|al<r
where for each w, f,(w, +) is essentially bounded. If Lemma 1 is applied
to each f,(w, -), then

E) = D (=11 D ([ M, f(w, )
and each = '

ho(w, @) = [ M, ()f,(w, t)dt
0
is continuous in # and measureable in w by an application of Lemma 4.
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In discussing tensor products, bilinear mappings and linear mappings
on a Banach space it has been found useful to di&tigguish between‘ various
sorts of mappings such as the compact, nuclear, integral mappings (?tc.
(ef. Treves [17] and Grothendieck [2]). Since n-ho@ogeneous polynomla}s
are nothing more than symmetric n-linear mappings and & holomorphic
funetion on a Banach space can be looked upon as a sequence of };c'm.m-
geneous polynomials which satisfy certain conditions, it is not surprising
that one can define various subgpaces of the space of all holomo_rph}c
functions go that the resulting structure is enriched. Such is the case in
Nachbin and Gupta [15], where Malgrange’s approximation theo_rem. is
generalized from the finite to the infinite-dimensional ca_se.‘ To describe
a theory for a large class of subspaces Nachbin [13] introduced the
concept of holomorphy type. )

Nl[)otiva,ted by %)Ta?(:hbin and Gupta [15] and Nachbin [13] we des-
aribe and study in this work various topological vector spaces of holo-
morphic funections.

In Section 1 we recall the definition of holomorphy type .and of 1.;he
spaces (#,(E), 7). We define a-holomorphy type and the corresponding
topological vectors spaces (Hy(H), Ty).
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In Section 2 we get a representation for a generating family of semi-
norms for (H,(H), Ty) and hence show the space i complete. The bor-
nological topology of (HQ(E), Te), 5, turns out to be the finest locally
convex topology on H,(F) which induces on each space of homogeneous
polynomials its original norm and for which the Taylor series converges
absolutely. We also discuss the relationship between (.#e(E), T, and
(Ho(B), Ts).

In Section 3 we introduce the concepts a-f-holomorphy type, a-g-y-
holomorphy type, Borel transform, formal power series and partial differ-
ential operators. For a-f-holomorphy types we characterize the dual
spaces using the Borel transform. For a-f-y-holomorphy types we show
partial differential operators on formal power series are onto maps and
the solutions can be approximated by exponential polynomial solutions.

Section 4 contains examples and counter-examples, where we take
F to be a separable infinite-dimensional Hilbert space.

1. DEFINITION OF TOPOLOGIES

" E will denote a complex Banach space. For m a positive integer
or zero Z(™E) will denote the Banach space of all m-homogeneous com-
plex-valued polynomials on ¥ with the norm

P} = sup |P(x)],
fieli<t

which is called the current norm. A polynomial is a finite sum of homo-
geneous polynomials. 5 (F) will denote the vector space of all complex-
valued functions on E which are holomorphic on all of E. For each fe 5 (E)
we have its Taylor series at the origin,

J@) = Y a0 @),

Mm=0
for every seE and the corresponding differentials of order m = 0,1, .
af(0) e ().

In many cases (c¢f. [13] and [157]) it has been found necessary to
consider various vector subspaces of #(™E) ‘and of # (H). We recall some
of the more important of these.

Exavere 1. If B’ denotes the dual of B, we have ¢™ «Z(™E) for
each ¢ecF'. We denote by #,(™E) the vector space of those elements
of #(™E) each of which can be represented as a finite sum ¢+ ... 4 ¢,
where ¢;¢E for j =1,...,7. An element of #(™E) is said to be of finite
type in case it lies in Z;(™E).
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ExawpLE 2. The Banach space of m-homogeneous compact polyno-
mials is the closu,re of #Z;("E) in #(™E) with the topology induced from
Z("E).

Exampre 3. The Banach space Zy(™FH) of all m-homogeneous nu-

" clear polynomials can be characterized by the following requirements

(cf. [14]):

(1) Z5("B) is a vector subspace of Z(™E).

(2) Zy5(™H) is a Banach space with respect to a norm, denoted by
I Iz, and called the nuclear norm.

It is to be distinquished from the current norm by the following
two requirements:

(3) #;(™E) is contained and dense in #y(™E) with respect to the
nuclear norm.

(4) For each Pe<Z;(™E) its nuclear norm is equal to the infimum
of the sums |lg, "+ ... 4 |lg,J™ for all possible representations P = ¢i" -+
+ .ol

For another space of polynomials see Section 3 (the integral poly-
nomials). All these spaces of polynomials satisfy the following definition
(cf. [18], p. 34, and [3], p. 18):

Definition 1. A holomorphy type 6 on F is a sequence of Banach
spaces %y (™H) for m = 0,1, ... the norm of each being denoted by { |
such that the following conditions hold:

(1) Bach &,(™H) is a vector subspace of Z("H).

(2) Z,(°B) ~ C (the complex numbers).

(3) There 1s a real number ¢ > 1 such that, given any I =0, 1, ...,

=0,1,. < m, PePy(E) and weH, we have d'P, (v)eZ,('E) and
’ d'P(z)

li

4]
Definition 1 leads to the first natural definition of a topological
vector space of holomorphic functions on B (cf. [13], p. 43).
Definition2.
a) fei?(B) is said to be of holomorphy type 8 at &< B if:
(1) d™f(£)ePy("B) tor m =0, 1, 2,
(2) There are real numbers C, > 0, 02

< 0"l lxl™ .

0 such that

<0,-0 form=0,1,2,...

s,
b) fe #(E) is said to be of holomorphy type 6 if f is of holomorphy
type 6 at all points of H.

Studia Mathematica XXXIX,3 2
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(¢) We denote by #,(E) the space of all functions on F of holomorphy
type 6. (We note 5#,(F) is a vector subspace of #,(H).)

(d) A semi-norm p on 5, (F) is said to be ported by a compact subset
K of B if either of the following equivalent conditions hold:

(1) Given any real number ¢ >0, 3C(¢) > 0 such that

PN <0() ) sup ] TO|  sor every fe ().

(2) Given any real number s >0 and any open subset ¥V of B which
confains K we can find a real number C(e, V) > 0 such that ‘

d™f (@)

m!

o0

PN< 06 V) D emup

uD for every fe oy (H).

m=0

.(e) The natural topology on 3#,(E) is the topology generated by all
semi-norms ported by compact sets and is denoted by 7.

(f) & #("B) = Z(™E) we call the holomorphy type (@(”‘E));’,LO
the cm‘wmt type. In this case 5#(E) = o (H) (by the definition of holo-
morphic funetion) and its topology is denoted by 7,.

‘We recall one result which we shall use (cf. [13], p. 59).

) PB.OPOS]ETION 1. 4 semi-norm p on 3¢ (H) is ported a compact set K < B
if and only if, for every neighborhood V of K,3C(V) >0 such that

2 < O(V)sug [f@)]  for every fe #(B).

e will den({te ‘t}%e set of all sequences of positive real numbers which
tend to zero at infinity. () will denote the set of all compact subsets
of B, and # () will denote the set of all convex balanced compact sub-

sets of B. We usually write 4 and # when. F is fixed. We say a normed
space of m-homogeneous polynowmials (#,(™B), || |l)) is intrinsic if it depends
only on the t. v. 5. (topological vector space) structure of J. We are given
& Banach space with a fixed norm and we denote its unit ball by B,.
We shall, however, have reason to consider other norms on E (in most
cases they will be equivalent to but not necessarily isometric to the given
norm). These different norms on ¥ may give rise to new norms on, Spaces
of-polynomials (e. g. examples 2 and 3). Thus if U is the uniﬁ ball of a new
norm on B and (%(”E), I ||)ﬁ is a normed space of m-homogeneous poly-
nomials on B, we denote the new norm on Z4("B) by || o, € g- for the
nuclear polynomials we write ||| v,z and for the current tyi)e we write || |ly.

The next most important topological vector space of hol(-)mo_rphi(}

fun.ctiops oceurs in [15]. Using our above-mentioned notation we can
define it as follows:
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Definition 3. Hy (&) the space of nuclearly entire functions

(a) feHy(B) if:

€ _te #(B).

(2) @"f(0)ePy("E) for n =0,1,2, ...

(3) For each Ke o, 3e>0 such that

0

2

m=0

< 0.
N,E+5B;

Zam5(0) “
m:

(b) A semi-norm p on Hy(E) is said to be N-ported by Eed if,
for each &> 0,3C(e) >0 such that

p(N<0() D)
m=0

(¢) The topology on Hy(E) is that generated by all semi-norms
N-ported by elements of x.

In generalizing Definition 3 we found it first necessary to put some
further conditions on the spaces of polynomials involved.

Definition 4. An a-holomorphy type 6 is a holomorphy type which
satisfies the following conditions:

(1) #,(™E) is an intrinsic space of polynomials for each # and the o
in Definition 1 depends only on the t.v.s. structure of E.

(2) If || |ly and || ||l give the original topology on E and C is a positive
real number such that OU < V, then for each n we have

—1—dmf(0) for all feHy(E).
m!

N.E+eB)

C™Pylle,o < |Pylle,r  for all P ey ("H).

Remark. If U < V, then for each n
1Pulle, o < 1Pulle,yy  Prefo("H).
If (U = V, then for each n

C™Pullo,y = |1Pulle,y  for all P,ePs("E).

Remark. It is easy to check that Examples 2 and 3 satisfy these
conditions.
Definition 5. .
(a) Let 6 be an a-holomorphy type; then Hy(F) is the set of all fune-
tions f on E which satisfy the following conditions:
(1) fe # (E). :
. (2) dnf(0)ePy("B) for n =0,1,2, ...
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(3) For each Ke A, s> 0 such that

Z“w. anf(0)

m!
m=0 "'

8, K—}—BB]

(b) A semi-norm p on Hy(E) is 6-ported by K et if, for each
e >0,30(¢) >0 such that

o(e)_)j

m=0

amf(0)

for all feH,(E).
m!

p(N<

0,K+eBy

(¢) The topology on H,(H) is that generated by all semi-norms-
ported by some element of A Tt is denoted by T,.

(d) If 6 is the current type, we denote the space by H(E) and the
topology by 7.

2. THE SPACE (Ho(E), Tp).

In this section we obtain a different characterization of the space
(H,(E), Ts) and hence show it is complete.
ProposITION 2. Let

f= 2 T10) o (m)

n=0

and  @F(0) <Z,("B)

for m =0,1,... Then the following three conditions are equivalent:
1) feH,(B),
(2) for each Ke X, {(a,)2 e, we have
V1 [|_4"7©)
2w o
poyur nd 0,K +ayBy
(3) for each K, ()i gecf, we have
|l arfo
lim 70 =0.
n—oo || ”' B,K+anB1
Proof. (1) = (2). Let Ke X and (a,)2,cci be chosen arbitrarily.

)
5 (a), & >0 such that

2‘”7 arf(0)

n!
n=0

By Definition

6,K+eRy
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Let n, be a positive integer such that a, <
nition 4, (1), we have

& for n > n,. By Defi-

arf(0) ar£(0)
! — S|l for n > n,.
i n 6,K+a,B) s 0,K+sBy
Hence
|| 4f(0)
Sy .
n=ng (K 6,K+ay, By
Since
arf(0)
prrmr] w o, x1a,B,

we have that (1) = (2).

(2) = (3). Given Keo and (an)mpecy. Lot (B8,)2, be an albmra.ry
sequence of positive real numbers such that d = supﬁ”" < co. Then

o

dK e -7{ and ( ib/" n)n—ﬂeco

)

n=0

By (2) we have

af(0)
n!

< co.
6,dK+ 81", B,

.

Since 0 is an a-holomorphy type we get for each n

arf(o) _ || arf0) arf(0)
"ol lokias nl (66 ksl e B nt  ||o.ak+8L"a, B,
Thus _
Z“’ 5| F1©)
=~ e n! 0,K-+a, By
and
an 0 1/n
lim sup (ﬁn 70) ) <1.
100 ! 0,E+a,B)
Letting g, = o" we get
dn 1/n 1 :
hm sup “ 110) ) <-—.
0, K+ay, By ¢
Hence
an 0 in
lim( 1) | ) =0
o n—o0 n! ‘B,K+anBl
and (2) = (3).
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(3) = (1). Suppose (1) does not hold; then I KeX such that for
every ¢ >0 we have

N E£)
Letting ¢ =1 we have
lim sup d“j =1
n—roo 0,K+B;
Choose 7, such. that
af)
' 7! 6,K+Bl/ >

By induction take m, > n;_; such that

dref (0) ||
' =
Hog? 0,K+1/kBy
Detine
1 for n < ny,
Tk for me, < n<
Hence
. anf(
lim sup |———— A0 >3 and  (e)0 <0 -
n—»ca n! 6,K+a,B;

This contradicts 3.

ProPOSITION 3. If feH,
to f in (Hy(B), Ty).

Proof. Follows immediately from the definition of (H,(E), T).

ProposiTION 4. The topology Ty on H,(H) is generated by all semi-
norms of the form

(%) »(f) = j

n=0

(), then the Taylor series of f at O converges

da £ (0)

n!

b
9,K+ﬂn31
where Ke ™ and (a,)% qecg .

Proof. By Proposition 2, p(f) is finite for all feH,(®). It is then
obviously a semi-norm on H,(H). Given ¢ > 0 choose #, such that o, <e
for all n > n,. As in Proposition 2 we then get

d”f 0)
YR Y L

n=ny n=

for all feH,(H).

6,K+eBy
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For n =0,1,...,%,—1,36 >0 such that §6(K+q,B,) « K+ eB;.
Since we are dealing with an a-holomorphy type
a"f(0) <
n! 0, +a,B) n! 0,K+ By
for all feH,(¥) and » = 0,1, ..., n,—1. Thus
arf(o x| dr
S, e SR
0, K+a, By i<ng - n! 8,K+eBy

Hence p is continuous on (HG(E), Te). Now let p, be a continuous
semi-norm on (H,(E), Ty) we show p; is dominated by a semi-norm of

the form (x). Suppose p; is f-ported by Ke A For every ¢ >0 choose
C(e) >0 such that
29>

n=0

Hence p,(P,) < C(¢) [|Pollogsen, for all P,ePy("F). For each n and
e >0 let K, (¢) be the smallest positive number or zero such that

P1(Py) < Ky ()Pyllogren, for all P,cPy("E).
Since K, (s) < C(e) for all n, we get limsup K, (e)*

() < a AL

for all feH,(H).
BK-I—EBl

< 1. We now

n—oo -
choose a positive integer =, such that XK, (1) < 2 for all # > n, and by

induction we take n, such that n; > n;_, and

1 in
Kn(f) <2 for n=mn.

Let
1 for mn<m,,
a, = 1 .
" for n, < < Mgy

Then (a,)2..ccf and K,(a;)" <2 for n > n,. Hence there exists
¢ > 0 such that K, (a,) < C-2" for all n. By Proposition 3 we have

) 022”

oo

n() < Zpl ( T4

nH<o )

=0

d”f(O

’
8,K+0,B)

for all feHy(E).

n! ‘ 62K +12a,B]
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This gives the required domination and completes the proof.
We now get necessary and sufficient conditions on the sequence

o
{P,}ny 80 that Y #, is the Taylor series expansion of an element of

m=0
H(B).
PROPOSITION 5. Let P2 ("E) for m =0, 1, ... Then the following
conditions are equivalent:
(1) Y P,, is the Taylor series expansion of an element fof #(B),
m=0

(2) for each Ke & and (o) <ci, we have lim | Py, 5, = 0,

n-—+00

(3) for each KeX and (a,)gecf, we have EHP1,1]iK+amBI< 0, .
m=0

- o
(4) for each Keot'y 36 >0 such that ZHP,,LHKMBI < oo,
m=a

Proof. Since the current type is an a-holomorphy type it is easy
to show (2) < (3) < (4). We therefore prove (1) = (2) and (4) = (1).
(1) = (2). Let Kex and (a,)2 ,ecf be given. Since

1 fOX)

27 amtl
14]=¢

WPl so,m = sup [P,(X) = sup ar

XeEK+4a,, B XeK +ay By

([13], p. 21) we get

for anyp >0

Pl < o (x
Ci — 8 ()] .
mlictai, < 5 XEQK+£1nB1 |F(X)]

Choose ¢ > 0 arbitrarily. Hence pK<#. Let V be a neighborhood
of oI on which fis bounded (by M say). Choose #, such that oK+pa,B; = V
for # = n,. Then

1 M
WPl sa, 5, S— - su 1) < —
milK +a, By N Qm X€9K+9PamBlIf( )[ = Qm

which implies

. 1
Lim sup [P, 47, 5, < =
M~>00

Since ¢ >0 was chosen arbitrarily we get ”1111)1; Sup || Pl i, 5 = 0.

(4) = (1). Let 2 be an arbitrary point of . Denote by X the convex
balanced hull of z. By (4), 36 >0 such that ZHPm“X-f—dBl < co. Hence
M=0

. o0
”I:_risup [|Pm[|3’{4’fﬂg1 <1. By [11], p. 206, 3 P,, is the Taylor series expansion
m=0

at t]}e oiigin of a function holomorphic in the interior of. X4 6B,. In
particular it is holomorphic at ». This completes the proof.
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COROLLARY 1. #(E) = H(E).
CoROLLARY 2. Let P,.e Zy("E) for m =0,1,...; then the following
conditions are equivalent:

(1) XY P,, is the Taylor series expansion of an element f of H,y(E).
m=0
(2) For each Ke JZ’, de>0 such that Y Palle, o8, < o0.
n=0

- 00
(8) For each Ked, (a0 je0c7, we have né:)}]Pnlle,KHnBI < oo.
(4) For each Ke X, (@n)ieoecs, we have qlinlilPAﬁf%HnBl = 0.
i+ 00

This means that conditions (2) and (3) of definition (5) (a) imply con-
dition (1).

Proof. For any a-holomorphy type 6, o > 1, such that for eachn,
1P < 0" ||Polly for P,eZ,("E). Hence (2), (3) and (4) hold also where
¢ is the current type. Proposition 5 implies f = 3 P, (¥)and Prop-

n=0

osition 2 then gives the required result.

PROPOSITION 6. (Ho(E), Ty} is complete.

Proof. Let (f,).s be a Cauchy net in (H,,(E’), T,,)‘ Hence, for »
= 0,1, .0 {@"2(0)}neq I8 & Cauchy net in the Banach space { Z,("E), |||ls)-
Suppose ", (0) — P,e Zo("B) as a— oo for m =0,1,... Let KeX
and (a,)0_pc¢f. Given e>0 choose f, such that for pB,f,,=>f, we
have

fx” a(fﬁl’—fﬁz)(o) | <.
L I !B,K-I-anBl =

Hence for any positive integer m and f;, f, > f, we have

@1 (0)  d"f(0)

n! n!

m

2

n=0

< eE.
8,E+a,B;

Letting B, - oo we get

m a 0
(*) ZH%" sy ( )|

| <& for all m and all 85> f,.
n!

6,K+ayBy

=0
In particular, we get

m

n=0

df, (0)

n!

P

3
n!

+e.

<
6,K+a, B

o0
U
0, K+a,By —0 1

k%
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Thug

+e< o0

E£3
nl 8,E+ayBy

>y il @7, (0)
<=
6,K-+a, B . nl

n=

NS
f= gﬁeﬂe(ﬂ).

[

2

and Proposition 5 implies

(*) also gives

m

arfs (0
2 _Ii_ fﬁz( ) <e for all m and all ﬂ2> ﬂo.
n=0 ! ! 0, E+apBy
Hence
|| B, @ (0) _
- = T < for .= 6,.
P(f~Ta) 2 s L Ba> fo

An application of Proposition 4 completes the proof.

The space (H,(E), t;). We now discuss the finest locally convex topol-’

ogy on Hy(F) which gives the same bounded sets as (HB(E), _’Z’e). We

denote this topology by ?,. We get a representation for a set of semi-

norms which generate the topology. We then show it is a complete

barrelled space. We note it is the finest locally convex topology on H,(H)

for which the Taylor series converges absolutely and which gives the

I/l topology on each ("E). T, and. t, induce the same topology on bound-
ed sets and they also give the same compact sets.

Definition 6. We denote by ¢, the finest locally convex topology on

" Hy(E) which hag the same bounded sets as (H,(B), T)

LemMa 1. Let
® o
feH,(B) and g, — o™ Zi%i)-

?

n=m

then g, =0 in (Hy(E), Ty) as m — oo,

Proof. Let KeJ%, (@pdmepect and 0 < e <} be arbitrary. By Pro-
position 2 we can choose n, such that for n > %y We have

d"f(0) o
n! 0,K+a,B) h
For m > n, we then have
|| dnF (0 26)™
10<gm)<2’"2|—f$~) <@,
= 2 0,K+a,B, 1—s
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An application of Proposition 4 completes the proof.
ProposrrroN 7. If feH, (), then the Taylor series of f at O converges
o f in (Hy(B), to)- )
d Pr((mf. Let p be a continuous semi-norm on (H4(B), t). By Lemma 1

and Deflnlblon 6,12 18 & boun ed Sﬂbseb of (H ) 16
) { 1 d ( [} H

Hence 3 M >0 such that
N 3"f(0))
m 2NV g M for all m.
?( Zn n!
=1

Thus

Since
m—1

n=0

n=m

this comples the proof.
LemMA 2. Let

1 4f(0)
f= = Hl®)

In .
itive 7 : that 4 = suppy™ < oo;
and (By)a=, be @& sequénce of positive nuwmbers such up Pn

then - 0y
- a7 m,m.
g = Bn \ €y
Proof. Since 40)
feHy(B),  Pn—p— e Z4("E).

Let K< A and (a,)3<ccq. By Proposition 2

“n, 1/n . &nf(o) {i/n o —o.
lim. || B e < supf"lim || —= L 0
00 " oml 6,K+a,B; n >0 : 6,E+ay By

2.
Hence geH,(H) by Corollary .
LEvMA 3. Let p be a continuous semi-norm on (Ho(B), to); then

limp (id%g—ol)lln =0 for each feH,(E).
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Proof. Let (f,)n.o be a sequence of positive numbers such
that suppL™< co. By Lemma 2, Proposition 4 and Definition 6 we get
n

arfon=
{ﬂn 71‘! }n=ﬂ

R R FON°
¢ > 0 is arbitrary, weget < p (¢ T
. n=0

Hence there exists M such that

is a bounded subset of (HB(E), ,tg). Taking §,= c¢", where

is & bounded set of real numbers.

an
p( £(0)

n! ) < Mo

Therefore

lim supp

n—00

n!

( arf (0))1/n <10

This completes the proof.
COROLLARY 3. Let p be a continuous semi-norm on (Ho (B), 1)) and

Ep(ti"?_;(O)) < o

n=0

- let

0 o)
n!

then

We say a series 3, X, in a locally convex topological vector space converges

n=0 oo

absolutely if for each continuous sems-norm P on the space we have Y p(X,)
n=0

< oo.
COROLLARY 4. The Taylor series of SeHy(B) at 0 converges absolutely
in (Ho(B), 1g).

Lewma 4. (Hy(E), t) induces on Py("H) the topology generated by
the norm || [ly.

4"f(0)

n!

Proof. Since p(f) = ”

I is & continuous semi-norm on (H, (¥), T;)
]

it is also a continuous semi-norm on (H,(B), t5). Hence t, induces on Zo("H)
a topology stronger ‘than or equal to the norm topology | |l,. Let C,
= {P, <2 ("B), |P,l,<1}. C, is easily seen to be a bounded subset of

(Hq (B, %). Hence £, induces on Z,("B) a topology weaker than or equal
to the | || topology. :

icm°®
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LEMMA 5. Let (f)ueo be & bounded subset of (H,(E), T,); then

o &7, (0
g =Z————-—f‘( ) eH,(H).
nl
n=0 . .
Proof. Since f,eP(E), for all n, a1, (0)e Z,("B) for all n. Let
Ked s (@) pecf and (B,)a-0 be a sequence of positive numbers suc.h
that & = suppl® < co. Hence dKe X and (f"a,)ascc; . By hypothesis

sup {Z:: ” LMZ(O)

} < o
n 6,dK+ﬁ,1,,Ilm a5y

Since we are dealing with an a-holomorphy type this implies

S, || 7 a00)
sup {2 ‘Bm k ,”:‘ < o0,
" Y=o 6,K+ay,B)
Thus
avf,,(0)
sup {ﬂn ———f—"'(— } < o0
* L 8,K+a,,By
and hence y
3 n
lim —————dnf" ©) 0.
00 n! 0,E+a,B;
By Proposition 2 and Corollary 2 we get
_SEO g,
n!

n=0

PROPOSITION 8. Let p be a semi-norm on H,(F) with the following

e i 2,("E topology weaker
(1) For each n =0,1,..., p induces on «("E) a top

than or equal to the | ||, topology.

@) If .
-3

n=0

O [ 470 )
ZP( n! )<o°’

n=0

arf(0)
o 5H6 (E),

then
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then

2.(f) =Sp (dnﬁo))

n=0
8 @ COMTINUOUS SEMI-NOTM ON (Hg(E), t‘,).

Proof. Since #; is a bornological topology it suffices to show that
- for each bounded set F of (H,(H), t,) we have supp,(f) < co. By Condition
feB

(1) we get for each n that
(# supp (C1) < oo

JeR n!

Now suppose igvppl(f) = co. By (*) and the definition of p, we thus
have for each positive integer m, '
o[ dM(0
sup P (—@) = 00

JeF' ni

n=n,

S (AL (0
Choose f, such that 2 P (%)4) > 2 and take #, such that

P (—-—dnf 1,(0) )> 1
ni

ni

=0

By induction choose, for each %, f,, such that

[ E (0
S (T,
n=ng_q+1 "

and take n, such that

f‘ af,,(0)
P T =21 (m= k).
-1+1
Let
o= ‘fl for 0 < n << my,
feo o m <n<my (B> 2).
By Lemma 5

1 g, (0 «
g=2—%l~(leﬂf,w).

n=0

icm
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But

21(9) = EP(E%) = o

n=0
which contradicts (2). Hence supp,(f) < co and p, is & continuous semi-
feF'
norm on (Hy(B), t).

PropoSITION 9. The topology i, on Hy(B) is generated by all semi-
norms which satisfy the following conditions:

Wp) = p(d_fbf‘l)_) Jor all f<Ho(B).

(2) For each m =0,1,..., p induces on Z,("E) a topology weaker
than or equal to the || |ls topology.

Proof. Proposition 8 says all such semi-norms are continuous. Let
g be a continuous semi-norm on (Ho (B), t;). Lemma 4 gives that

S Q(M) < oo for each f = S 740) Hy(E)

n! n!

n=0 n=0

and Corollary 3 gives condition (2).

By Proposition 8
o1 (@0
».(f) = 2 q(—%)—)

n=0
is & continuous semi-norm on (H,(H), to). Proposition 7 gives ¢(f) < p.(f)-
Hence every continuous semi-norm on (Ho(B), t5) is dominated by a con-
tinnous semi-norm which satisfies our conditions. This proves the prop-
osition.

COROLLARY 5. The t, topology on Hy(E) is the finest Tocally convex
topology on Hy(H) for which the Taylor series at 0 converges absolutely and
which induces on each P;("E) the | |l topology.

Proof. Apply Proposition 9.

ProposITION 10.

(a) (H,,(E), tg) is a complete topological vector space.

(b) (Ho(B), to) is a barrelled space.

(¢) (Ho(B), To) and (Ho(E), &) induce the same topology on all bounded
sets.

(@) (Ho(B), To) and (Hy(B), ) have the same compact sets.

Proof. (a) By using the representation of semi-norms in Proposition
9 and a method similar to that used in Proposition 6 we get the required
result.
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(b) A complete bornological space is barrelled (cf. [5], p. 218).

(¢) Since #, > T, it suffices to show if (f)).y is a bounded net in
(Ho(B), Ty) and f; 0 in (H,(B), Ty), then f, 0 in (H,(E), t;). Suppose
this is not true. Then there exists p a semi-norm on (HB(E), tg) of the
form described in Proposition 9, (fi)s & cofinal subnet of (f;),, and
§ >0 such that

e

an
p(—d—ﬁ;ﬂ) >0 for all led’.

[
-3

n

Since fy — 0 in (Hs(H), Ty) we get that for each n,
& £y (0)
p( n!

-0 agl' - oco.

Hence we can choose for each positive integer k, fi«(fih.s and a posi-
tive integer #, such that
(a) n, =k,

(b) (
N 1 <N,

Not let

Zi"fk<0>)>g
= 2-

n!

fu 0wy,
g =
Yo lf mea<n<m, k22,

By Lemma 5

o d" g, (0
22-‘%)51{0@).

n=0

But

N, (09n(0)
po = (T8 -
n=0
which is a contradiction. Hence we get the required result.

(d) Trivial by using (c) and the fact that #, > T,.

Some of the preceding results suggest further properties of sequen-
tial and bounded convergence so it iy not surprising that we get the
following

Definition 7. A topological vector space V is said to satisfy Mackey’s
convergence criterion (cf. [5], p. 253) if for each sequence of elements of
V converging to 0, (f,)r, 82y, there exists (4,);~, a sequence of positive

numbers such that im1, = o and 4,f, >0 in V ag n - oo.
=00
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PrOPOSITION 11. (8) If (fihes U8 & bounded net in (Ho(B), Ty), then
fi—>0 as T — oo if and only if d*f,(0) — 0 in P4("E) as I - oo for each n.

(b) (Ho(E), Ty) and (Hy(E), 1) both satisfy Mackey’s comvergence
oriterion.

Proof. (a) Use a technique similar to that used in Proposition 10 (¢).

(b) By Proposition 10 (e) it suffices to consider the case (H,(H), Ty).
Suppose limf, = 0. For each positive integer m let

n—0

nlf) = a 210

8, mB,

Let k,, be an increasing sequence of positive integers such that

1
P (fa) <F for n > k.
Take
2 2m’ km<%<km+l,
A PR n < ky;

then 4, oo a8 7 - co. Choose Ke X and (a,),<ci arbitrarily. Since
(fulneo i8 & bounded subset of (Hy(E), Ty) there exists M >0 such that

| &, (0
(S0 Jex
" \m=o : 64K +4a,,B)'
Hence for any s
sup (2 4m ——’—(l ) <M
n | bl mi 6,K+a,B),
' ‘which implies
2°-su j "5a(0) <X
g m |l ke 20
m=8
Thus

hmza " pzi d’"fn(O

8, K4 a,,By

Given & >0 choose m, such that K-+ a,B; « meB; for al n and

2™ < e. Then
Gl 1
NG
n.
n=0

< Pmlf)

0, K+a,By
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for a,erH,,(E), mz=my. I n> k,no we have &, <n < k., for some s > m

and hence
oo

P nfy) < 2°Ds(Fo)+2° 2

N—— e’
Fn

1
<2 g B < et By

af,(0)
m!

8,K4 “mﬂl

Using () we get the required result.

By using condition (3) of Definition 1 and a method used in [15]
for Hy(E) one can show that H,(E) is a translation invariant space and
that the point 0eF i not a special point with respect to the topologies
Ty or t. This result is of importance if one wishes to congider convolu-
tion operators on H,(E) (cf. [15]).

The spaces #,(F) and H,(F). We discuss the relationship between

Ho(E) and H,(E). We show H,(E)c #o(B) continuously. A partial

answer to the opposite inclusion is also given. .
Using [11], p. 206, we can rephrase Lemma 1 of 9, [13], as follows.
LmyMA 6. Let Pyye Z5("H) form = 0,1, ... and supposs lim sup 1P, |[aim
=1;then f = Y'P, is a holomorphic function for all  such that ||z < 1/o
m=0
and is of holomorphy type 0 on the same set. (o is the constant occurring in
the definition of holomorphy type.)

PROPOSITION 12. Let § be an a-holomorphy type j then (H,(E), Ty)
< (#4(B), T) continuously.

Proof. Let feH;(E); then fe s#(E) so fe #y(F) if and onmly if it is
of holomorphy type 6 at each point « of . Let X be the balanced convex
hull of ¢z. By the definition of Hy(E) there 3¢ > 0 such that

Z”: 'f(0) -
pover n! 6,X-+0B; ’

Lemma 6 and the Cauchy-Hadamard formula show fe #4(E). Hence
Hy(E) c #4(E). To prove the inclugion iy continuous it suffices to show
that every semi-norm on (#,(&), 7 o) ported by Ke .o is also 6-ported
by 20K. Given ¢ >0, choose C(e) >0 such that

pN< 0 D' e sup

&"f(w)
xeK m!

m==0 6

for all feH,(B) < o#,(H). Let V = 0K 4202 B, and let o = sup @llay 2em,-
o104

icm

0
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Then ¢ < ;. We show in fact that
NI Eie i} -
(*) P00 Y| == | tor sll FeE(B).
m=0 N 4
It
2‘”: o)) _
ml 8,7 ’
m=0
then (*) hold trivially.
If
E arf(0)
m! 67 ?
m=0 .
then, [137], p. 35—36, implies
i a ' N d o) 72—
d f(m) < Z o ‘d”f( ) “m{ 2K—’;‘2eBl
m! Jleame 2B &L n! - ||o2K2eBy
|| & (0 -
< 2 F(0) o
[Airsd
n=m
for all zeK.
Hence )
5 1
- () )
Sesup| S < My | S0
. xeK - 8 me—0
m=0
' dnf(a)
.
< Z 3) SEI{I%) 1 m! 0,2K-+22B)
=0
< SO —
Y.
<Z(%) 2\ n! a,Vg
=0 n="m
rIO| . j ( 1 )
22 n! e,VQ = 20
n=0
0 (%)n__zgﬂ—x—l @EQ_)_ -
= 2; : 1—2p n! 0,7
Ml = < oo.

Since ()" - 0 as n — oo and ¢ < 3 Wwe have S"}Lp 1—2


GUEST


262 8. Dineen

(0 .
Therefore p(f) < O(e)- € Z l—-———l“ , 1. @. (*) holds. This completes
=

the proof.

The space #(E). We study in the remainder of this section the
vector space of all holomorphic functions an B. We show 7, and T,
coincide on #(E), i. e. the two most natural topologies on # () coincide.
We know already o,(B) = #(E) (c¢f. [13]) and, by Corollary 1, H(E)
= #(E). Hence #,(H) = H(E) =2 (). Proposition 12 says H(E)
< H#(H) continuously so to show (o#(H), 7,) = (H(E), T,) it remaing
only to show (#(E), 5 ,) = (H(H), T,) continuously.

PROPOSITION 13. (#(B), 7,) = (H(E), T,) algebraically and topol-
ogically.

Proof. Let KeX, (a,)%cq" and

pi = 31O

n!
n=0

for all fe #(B). We show p(f) is a continuous semi-norm on (.9? (B, 7 )
Let V be a neighborhood of K. Choose & >0 such that

K40, B,

) R = ()
K+%eB, K+eB, V.
() morem = (555 &
Take n, % positive integer or zero such that a, < }e for all u > n,
Hence
1+e
K+a,B, c (1+%5)K+ a, B, V for all n 3 n,.
For w > n, and ¢ >0 we have
dn 0 dn 1 A
}# | & @) L ff(m)‘u‘
LA S 15K+anB1| 'n,' eeK+ay,By | 20 e 4
<% s |f(a)
— s x)|.
= Qna:ng+£1“El
‘We choose p such that 1 < p < l+ 1s . This gives
arf(o 1
(1) —fvi—) »—sup 1f@)]  for > n,.
n: K+a, By Q zeV
Forn =0,1,...,n,—1
I d~feo 1
) Leill <% s f@),
i K+a,B) 01 o K+01a, By

icm°®
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where g; is chogen such that

0(E+a,B))=V forn=10,...,7,—1.

Thus

»(f) = 2!

by (1) and (2). Let O(V) = S

K+nnBl

< 2 (e7)sup 1 (2)]+ sup (@) Z«—

n=ny

TH+ 2 (1/e™. Anappllca.tlon of Proposi-

tion 1 gives the required result

3. ¢-f-HOLOMORPHY TYPES AND BOREL TRANSFORMS

Definition 8. An oa-holomorphy type 8 is said to be an a-B-holo-
morphy type if it satisties the following conditions:

(1) For each n, Z4("E)> Px("E) and [P, <
P,e Zy("E). '

(2) For each n, #;("E) is dense in (Z("B), || [ls)-

Condition (1) is natural since the nuclear norm on #,("B) (cf. [17],
§ 43) can be regarded as the largest norm on #/("E). Condition (2) is
necessary to define the Borel transform in a one to one way. If,
however, 6 is an a-holomorphy type which satisfies only condition (1)
by taking the closure of #,("E) in (#,("BE), || ll) we get an a-p-holo-
morphy type.

By ([3]; p. 35) Zy5("B) =~ #("E') hence wé can regard Z,("E)
as a subset of #(™E'). We denote by ]] lly the dual norm on 2,("B).
We define’ : #,("B) -2 ("E') by n! T,(y) = T,(¢") and we denote
the 1mage of 2("B) under * by #, ("E'). We norm Z,("E') by | [,
where ||T,]® = 1/nl||T,|l. We also denote the inverse of * by V

By con(htlon (1) for any o-f-holomorphy type 6 we ha.ve Hy(E)
< Hq(B).

Definition 9. A function f on ¥ is said to be an e.mponmtml func-
tion if 3 peB’ such that f(r) = exp(p(2)] for all veB.

We denote by W the vector space spanned by all the exponential
functions. We note W < Hy(FB) = Hy(E) -for any a-f-holomorphy type
(ctr [3]).

Lemma 7. If 6 is an o-B-holomorphy type, then the closure of W in
(Hs(B), t5) is Hy(B). (Hence the closure of W in (Ho(B), T,,) s also Hy(B).)

[Pally for all
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Proof. By Propositions 3 and 7 and definition 8 it suffices to show
¢" belongs to the closure of W for each peE'. Lot p be a semi-norm on
(Hs(B), %) of the form :

() =§’p(‘inﬁfo))

n=0

(see Proposition 9). For 1 a non-zero complex number we have

exp(Ap)—1 ST ST
A ) Do) S )

Since
ad n
wp@H ), p(T) <o
n=0 N
Hence '

exp(lg)—1
p(REAL

—(P)—)'O' a8 A0,

8o ¢ belongs to the closure of W. Now suppose ¢™ belongs to the
closure of W for » < k. For A = 0 we have

k
o exp(Ap)— Y (Mgit) » ke

p( = —* ) <A 2 i 2p( )

e S il g

i=Jc+2
Hence ¢"*! belongs to the closure of W and this completes the proof.
Definition 10. The Borel transform of an element T of (Ho(B), t)f
Is the function T detined on B’ by T(p) = T(exp p).

By Lemma 7 a function # on B can be the Borel transform of at
most one element of (H,(X), 4| Since (H,(E), t) < (Hy(B), Ty) conti-

nuously deﬁn,’ition 10 also defines the Borel transform of the elements
of (Hy(B), Ty)".

I T,eZ,("E)", then T, can be extended to a continuous linear
R n
funetional on (H,(E), t,) by the formula Th(f) = Tn('i f'(O)). ‘We note
n!
that

- * " 1
Tn(?’) = Tn(GXPW) = Tn (%) = an((pn) = Tn(‘p)

Hence the Borel transform is'an extension of the mapping * defined
previously.
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PROPOSITION 14. If T ¢(H,(B), &), then T et (E') and &*T(0) e Py ("E').
Proof. Denote by T, the restriction of 7' to £,("E). Then

- . had i’n n b .
T,ePy("H), T,ePy("E') and T(p)= ____(q3 ) = T,.(p) .
n! .
n=0 n=0

Definition 8 gives ||T,,/lx < [|T,/ly and by ([3], p. 35) we see that Hl;,LHN,
= ||T,|. Hence

- a1 1
”Tn” = ”-Tm.”N = 9’1—‘ “-Tn”N’ < ﬁ‘ ”Tnﬂe' .

To show Te # (B') it suffices therefore to show

limsup || T, /5" < co.
N—>00

If not I (n;)72, & sequence of positive integers increasing to infinity
such that
T % > 5.
Choose P, e #; ("B) such that ||P, ||, = 1 and T, (P,,) > (j/2)" and
let f = Z(Z/j)”*ani. f belongs to Hy(E). But
j=0

O [2\m o[ 2\ [ 5\
= — = — = =
o 2(]) T”f(P”)/z(j) (&) -~
= =
which is a contradiction. Hence Te #(K'). Also Q“T(O) = n!fne?g’("E’).

PROPOSITION 15. Let Fe ' (E') and F, = d"F(0)e Z("E'). The'{b
F is the Borel transform of an element of (H,, (&), T,,)’ if and only if A Ke X
such that for every & >0 we have

lim sup (7, F P < 1.
N—-00

Proof. We use the identification obtained in the preceding .prop-
osition. Suppose F = ?[', where T'e(H,(H), Tﬂ)’. Let p be a semi-norm on
Hy(B), 6-ported by Ke 2 such that 1T < p(f) for all feH,(E). For
each &>0,d C(e) >0 such that

)

ITHI<p(H<OE) D)

n=0

d"f(0)

n!

8,K+eBy

for all fe H,(E). Now

0.

L S - SO

prpurs pryary n=0

T(p) =
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For P, ePy("B) we get |T(P,)| = [T (Po)l < O (&) |Pullo, ez, THUS [ Tolly, 4o
< O(e) and this implies !

Timsup (|[F,,]|7"F+ Pl < limsup O ()™ = 1.
N->00 N~+00

]}[euce the only if part is proved. Conversely, suppose there exists
Ke A such that for every s >0
limsup (|| 7,55 < 1.
N> .

Define T on H,y(¥) by the following formula:

(f) =‘i‘%(d—§@)

n=0

Let ¢ > 0 be arbitrary, choose C(z) > 0 such that | F, [ +%1 £ O (e)2"
for all.n. Then

o

3 F, (&"fw))J B Z"’w z, &f(0)
< Zn 2\
& n! n! L ! o krem || - M |loEtem
00 ) dn 0 oo An
=2 ”Fn”e \K+8By _-{_f__) <C(6)2 d f(o) .
L ! |lozres, “~ n! ||o2r 28,

Hence T e(Hy(E), Ty)'. Also we have

2p) = 70r) = 3 2(%) -3 b - Fo).

n=0

Definition 11. If

o1 F, .
F= Y te#(E), Fpe?y(B) md KA

n=0

such that for every ¢ >0 we have
i gup (|27, 5+ Py < 1
n->00

we say F is of 0'-compact exponential type in B.
COROLLARY 5. There exists & one o one correspondence between the
elements of 0'-compact exponential type in B and the elements of (H o(B), Ty)'-
EX%EPLE 4. The nuclear type is easily seen to be on o-8-holomorphy
type. ¥ is the current type by [3], p. 35. Thus fe 5 (') is of N'-compact
exponential type in ¥ if and only if 3K e F such that for every & >0

icm°®
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we have
(*) lim sup (|| 4 (O)¥ <+t < 1.

By [3], D 35, we see this is equivalent to
limsup (4"f (0)llg4m,)"™" < 1.
100

By using Cauchy’s inequalities we see this is equivalent to the fact
that for every & >3 C'(s) >0 such that

7@ < 0'(e) exp (llx+2llel)d

i.e., f is of compact exponential type in E in the usual sense (cf. [3]
and [15]). .

ExAMPIE 5. The compact type is an a-f-holomorphy type. Condition
(1) is satisfied (cf. [3], p. 11) and by the definition of the compact type
condition (2) is satisfied.

a-B-y-holomorphy types and partial differential operators. If T,e
#,("B)’ the function

T,:H, (BE)—~C,

A

defines an element of (H,(H),1,)'. Hence, for Ppe Fo("E) and veE,
T,(v_,P,) is & complex number. The function y(T,){P,) whose value
at @ is T,(r_,P,) is then a well-defined function on F and can easily
be shown to be an element of Z(™ "E).

Definition 12. An a-p-holomorphy type § is an a-p-y-holomorphy
type if it satisfies the following conditions:

(1) Zy(E') is a translation invariant space with respect to differen-
tiation, i. e., it Pe Py (B'), peB and 1 is a positive integer or zero, then
d'P(p) e 2o (B).

(2) I T,e#, ("EY, then for m = 0,1, ... the mapping »(T,) maps
Z,("E) into (" "E) continuously. (We take #(iH) =0 for j<0.)

Tt is possible to replace condition (1) by the following stronger but
more elegant condition:

1) (@o("E), || |")ino s & holomorphy type.

Condition (2) is used to get a relationship between elements of #, (E')
and partial differential operators.

ExampLE 6. The nuclear type form an a-f-y-holomorphy type. By
[3], p- 35, (Zx(E), 1Y) = (ZCE), | ) hence condition (1) and (1)
are satisfied. Condition (2) is also proved in [3] and [15].

n!

&”f(O))
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Definition 13. Let 6 be an a-§-y-holomorphy type. .
0

(a)FPy(E) = [] P5("H) is called the set of all 0-formal power series
0

on H. We define sealar multiplication and addition coordinate-wise and
give #7,(E) the product topology. Hence FPy(H) is a Fréchet space.

(b) @ is an n-homogencous partial differential operator on F2,(B) it
it satisfies the following conditions;

(1) @: FPo(B) >FP,(H) is a continuous linear operator.

(2) The restriction of @ to #,(H) iz translation invariant (we iden-
tify feH,(H) with an element of ##,(E) by taking the Taylor expan-
sion at 0), 1. e., if &eB, Pe 2y(H) and if (v_.P)(a) = P(a+£) for all ach,
then Q(r_.P) = 7_Q(P).

B) [ P("BYy = Py(™"B) for m =0, 1,... .

‘We denote by PD,(E,) the set of all n-homogeneous partial differen-
tial operators on FZ,(H).

(c) @ is a partial differential operator if it is a finite sum of homoge-
neous partial differential operators on #2,(E). We denote by PD,(E)
the seti of all partial differential operators on # #,(E). )

‘We define the Borel transform of elements of & #,(E) in the usual
way. It is easy to check that there is a orne to one "correspondance
between 2, (B') and F2,(H).

If Q<PD,(E) we denote by f(Q) the scalar valued function: defined
on Z5(E) by f(Q)(P) = Q(P)(0).

ProrosrrioN 16. (a) 8(Q) e #,(E), Ty)' for all Q<PE,(H,).

 (b) The mapping Q<PDy(E,) »@)s Py("E') is a one to one linear
onto mapping.
Proof. (a) B(Q) is linear since @ is linear. Let P = iPi, where
P;e#,(B),i =1, ...,m. By condition 3 of Definition 13(b) we get
B(Q)(P) = Q(P,)(0) = Q(P,).

Now let P,c #,(B), P, —0 in (H,(E), Ty a8 a —+ co. By condition
1 of Definition 13 (b) we have

Q( d"P,(0) )‘ < cl d"P,(0)

n!

n!

1B(Q)(Po)| =
Hence $(Q)<(#;(B), T,).
A\

L]

(b) By (a) B(Q) is well-defined for QePD,(E,). Since
N\ " 1
(»—) — Q"

n! n!

BQ) (@) = B(@)(expy) =@
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we have
1‘"4

/\ 1
G = @(el) = Q-

n!

/\ . . '
Thus B(Q) is an n-homogeneous function and sme% (Q)e(i’o\(E), )

we get that ﬂ(Q)e.%,("'E'). Tt is one to one for if p(Q;) = (@), then
B(Q,) = B(Q,). Hence for every Pe#y(B), £<E we have

Q:(7_¢P)(0) = @s(v_:P)(0),
Q:(P) = Q(P) =~ @ = Q..

B(Qu)(7_:P) = B(Q2) (v_¢P);
Qu(P)(&) = Qa(P)(£)s

There remains to show that the mapping is onto. Suppos.e P, e Zy("E).
By Definition 12, p(P,): #,("E) > #,("™B) is well-defined and con-
tinnous and hag an obvious extension as a continuous linear mapping
from FZ,(E) into F7,(B). It & neB, Pe Py(E), then

(r_e[r (B (B)]) (1) = (B (P)(E+1) = Palr—s-rP)
=P, (1_,7_:P) = [y(B) (7_P)1 ().
Hence

[y (B (P)] = 7(B,) (_P).-

Thus y(i’,,) is an n-homogeneous partial differential operator on
FP,(E) and

ﬁ[y(/;a.mw) — ALy (P01(e") = [y (B ()1(0) = Py(6”)

v o 1~ -
=P, ("”—) = —P(g") = Pulo).
n! n!
Hence the mapping is onto.
COROLLARY 6. There is a one to one correspondence bef/wse.n ﬂ'w eleme;z}:s
of PD,(B) and the elements of Py (E). This correspondence is guen by the
linear mapping

/\ ’
QePDy(B) (@) ¢ P (B),

h Q)(P) = Q(P)(0) for all P < Zy(H). .
! W;fﬁ((gl, Q,ePDy(E), then we denote by Q.* @, the mapping from FP(B)

i lled the con-
into F F,(E) defined by (@i @2)(f) = @1(Q=()- Qu* €, 1s ca
ﬁlz&m ;} Q)l and Q, and it iz easily checked that @ Q,<PD,(H). For
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@, pell’ we mote 7_expy = exp ¢(v)-expe. Hence Q,(exp ¢)(r)

=Q:(7_563p 9)(0) = exp ¢(2)Qs(exp ¢)(0) =exp ¢ ()-H(Qs)(p) and
N

[B(@*Q:)1(p) = [B(Q1*@:2)1(exp @) = [(Q*Q,)(exp #)1(0)
AN
= [Q1(Qa(exp 9))1(0) = [, .(exD ¢ (2): #(9) () 1(0)
2\ O
= B(Qa)(9) @1(exp ¢) (0) = §(Qs) () 'ﬂ@)@) .

Therefore

o~ NN
B(Q:1%@2) = $(Q1)8(Q,).

EPR.OPOSITION 17. (a) 2y (B') is a commutative algebra under pointwise
multiplication.

(b) PD,(B) is & commutative algebra under convolution.
(¢) The mapping PDy(E) - Py (E')

Zay
@—£(Q)
8 a 1—1 onto linear and algebraic isomorphism.
Levma 8. If Py, PyePy(B'), P, #0 and P, = f?' € #(E'), then
Pye Py (B'). )

Proof. Using Liouville's theorem we easil
; | y get Pye Z(E') (cf. [11
P. 225). By condition (1) of definition 12 it suffices 1?0 show for som]f;

&eE that d" P, ("B'), n = '
Hznce 3(£)e Po ("B'),m =0,1,...Choose £ F such that P, (£) +# 0.

Py(§) = ?“22 « Py (°F').
Now

&P, (&
P;(») =f2% (x— &)  for ¢ =1,2,3.

By hypothesis

@P(¢)e #y(E)  for all j,i =1, 9,
and . ‘
TP, (£)e 2(H)  for all j.
Suppose '
dP(&)e Py (;B) for j<h;

icm
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then
k+1l 3i Fh+1—1
. d’f+1.P1(§)-2 d‘P.z(f) a Pa(lé:)
dIP(8) & i (k19!
(k+1)! Py(8) )

Since 2, (E') is an algebra by using induction we get the required
result. :

Definition 14. A function f on F is called an 6-exponential polyno-
mial if there exists geF', PeP4(H) such that f(z) = P(x)e™.

~
If Q is a partial differential operator on F Z4(H), (@) Py (E")

c Py (E'). Hence we can associate with it in & nunique way a convolution
operator Oy on (Hy(B), Ty) (cf. [15], D. 9). O is in fact the restriction
of Q to Hy(E) c Hy(E) c FP(H). Also it ve (FP(B)), then 5Py (E)
« #y(H') and by Proposition 15 we can associate with it in a unique
way & continuous linear functional », on (En(E), Ty). vyis the restriction
of v to Hy(E).

PrOPOSITION 18. Let § be an a-f-y-holomorphy type and let Q ePD, (H);
then:

(a) Bvery solution of @ can be approwvimated in FPy(E) by 6-exponen-
tial polynomial solutions of Q.

(b) If @ +# 0, then Q maps FPy(H) onto itself.

Proof. (a) If Q =0, then (a) is true since the Taylor expansion
converges in F%,(H). Suppose @ 0. Let veFP,(B) be such that
{v,f> =0 for all 6-exponential polynomial solutions f of @. By ([15],

£ . . AN A
p. 18) we have that —<— e# (E'). Since vy = and () = (@) we
N B(0y) .
500 that —— < #(H'). Lomma 8 implies —— ¢ #y(H'). Hence, by
@ ﬂ}@\)
Corollary 6, 3 Q,, Q,<PD,(B) such that v = #(Q,) and
S y 03
hgn =— =2
B@)  B(@)

Hence §,*Q =0Q,.
Now if heFP,(H) and @ (k) = 0, then :
Oy By = [Q,()1(0) = (@u+@)(R)(0) = [@:(@(W)1(0) = 0.
An application of the Hahn-Banach theorem completes the proof.

(b) We note #%,(E) is a Fréchet space. To show @ is onto it suffices
(cf. [4], D. 308) to show '@ is one to one and Im’Q is closed for the weak
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topology on FZ,(E) defined by F&#,(H). Sinece @ is a linear operator
we get Im*Q = (Ker@)'. Let ve(KerQ):. By the first part of the prop-
osition there exists @y, @,<PD, (E) such that @.*Q =@, and B(],) =
Therefore

QB> = B @, Q)
= [:(@(N1O) = [(Q:*Q)(£)1(0)

=@&.(0) = B(R)(f) = »(f)
which implies

tQﬂ(Qﬂ =.
Hence v<Im'Q and Im'Q = (KerQ):. We have proved

I'Q = {»eFP,(B)’ such that <», f> = 0 for all feKer@}

-, Q Q{Nﬁ%(y)’ such that <, f> =0}, .

Hence Im'Q is the intersection of weakly closed sets and hence is
weakly closed. Now suppose Qv = 0. Let Q,ePDy(H) be such that £(9,)
=v. For {eH, feP)(H), we have :

(@) (NI(E) = [(@*Q) (v_:)1(0)= [Q,(Q (v_1(0)
=F@)Q(r—ef)] =2[Q(r_4f)] = 0.

Hence
9.xQ =0
. 7N H
and this implies §(Q,)-(Q) = 0.
AN

. N\

Since @ 3£ 0 and $(Q,), (Q)e #(B') we get ﬂ/(a,) =9 = 0.

Exawpre 1. The compact type form an a-B-y-holomorphy & e.
We have geen already that it forms an a«ﬂ-holonfo);phy typrelf ])i:‘oryfhe
{sake of simplicity we assume F is a reflexive Banach space. Hence B,
is "(]f): E’) eompact. We denote by # (B,) the set of all ¢(H, B') continunous
fm_mtlons on B, and by (%(B,), ¢(H, E')) the space ¥(B,) with the sup-
norm topol,ogy over B,. Since the norm topology on E is stronger than
the ~a(E,E) topology and the polynomials of finite type are o(B, T)
fzontmuf)us on, E we can by using the restriction map imbed Zy("E)
isometrically in (¥ (By), o(B, E')) for each n. Hence if Toe( Po("B), (1)
we can extend it by the Hahn—Banach, theorem to be a continuous ﬁnea«r
functional on (¥(B,), ¢(H, X')). Thus there exists a Radon measure /z
on (By, o(B, F')) such that ‘

* TAP") = [ P,(2)du(z)
llfe<1

for all P,ePy("E)
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and ||T,/lo- < llull where ||| is the norm of x as an element of (%(B,),
o(B, B')). If u satisfies (*) we say u represents 7', and write u ~ T,. By
the Hahn-Banach theorem
I Toller = inf [lul]
a1y,

and there exists u a Radon measure on (B, o(H, E)) such that u ~ T,
and |ull = [Tylle- .

Definition 15. Let PeZ("E’). P is said to be an n-homogeneous
integral polynomial on E' if Ju a Radon measure on (B, o(¥, E')) such
that

(*) Plg) = for all peB'.

[ <o @ du(@)
i1
We denote by #;("E’) the space of n-homogeneous integral poly-
nomials on B'. We say u a Radon measure on (B, o(E, B')) represents
P (and we write P ~ u) if () holds.
We norm Z;("E) by ||P|; =+ inf:]]p][, where Jju|} is the norm of x as
.

an element of (¢(By), o(E, E)).

LeMMA 9. ( Py ("B), || |©) is isometrically isomorphic to (P CEY N )
for each n.

Proof. Let T,e(#("E), | llo). By our previous remarks there Ju
a Radon measure on (B, (B, E')) such that u ~ T, and [u] = |Tall-
For geB we have

Ti(p) = %!"Tu(w") =$ f <¢; 2" dp ().

i1
Hence )
T,e®,('B) ad L ~T,.
Therefore
A lall — alle 50
L= =T .
ITallz <=5 -l Tl

-~ m
Conversely suppose T, e % ("E') and u ~ T,. For X ¢}eZ/("E) we

i=0

define ;
m m m
(> ) =t Y Talo) =t [ D', o du(a).
i=0 =0 llei<1 i=0
Thus

m - m

(%) 733 o2)| < wiul- || X o
i=0 =0
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and so T, has a unique extension Tj, to an element of (& ("H), | |J.

1 1
Also  Ty(9) =;JT:(<P") = T, (p) = T,(p). Hence Zu("H')
o #,("H') as sets. By (x+) wehave that [T, < n![ju]] = n! |2, There-
fore [T, = 1Tz

PROPOSITION 19. (Z;("H'), ||.I)om 48 @ holomorphy type.

Proof. Since (.@I(’,”E’), lll;} is linearly isomorphic to { #o("EY, | ller)s
forn =0,1,..., (Z;("E), |l Il is & Banach space for n = 0, 1, ... Because
Z,("B) ~ C we have Z;('E')~ C. It suffices therefore to verify con-
dition 3 of Definition (1). Let Pe #;("E') and u ~ P be such that fju|
= ||P|;. By [13], p. 18, we have for I< n, ¢, yeB'

d'P(y)(p)
5 =0 [ o ldpa).
: i<
~ Now u is a Radon measure on (By, (B, B')) and @ — (y, x>t 0p
is an element of #(B,), hence du’ ()= (y, 2)" "0} du(x) defines a Radon
measure on (By, o(E, H')) and

aP
TEOD _ [ wtan o),
' Jlll<1
Therefore

al-P(W) ’ 1
a «Z,(F) and “T @'P(y) N1<IWH < OF ) pl™"

Thus
@P(y)
|, < 2Py
This completes the proof. '

OOROLLARY 7. (2;("E"), || 1), 48 an a-holomorphy type.

Proof. Since (Z("E), || )2, is an a-holomo

| ; - rphy type one need

only use the relationship between £;("E'), 2, ("H') and Z,("B) and
Proposition 19 to get the required result.

To shqy (9’0(’%.})_, I )2, is an a-8-y-holomorphy type there. remaing
only to verify condition (2) of definition 12. Let T,e?y("H') and let
u 'TJT"’ llell = IT,)lc-- Suppose P e Zo("E) and 4, is the symmetric
n-linear form on "E such that 4,, = P, (cf. [11]). Then for &<FE

a*(v_P,, "
T @a1(6) = 2,[ R 0y = [ L) )40
izl :
=or f A (&)™ (@) dp ().
i<t - )
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We note y{(T,) maps Z,("E)into £,(" "E) linearly. If P, #;("E)
we thus get )

yé}llgl[y(Tn)(Pm)](é)KUﬁ I [ Anl&m " (@) dulo)

fizi<1

<O Ml ull < O %HP"LI[' ITalle -

Hence y(T,) maps (Z(™E), | |) into £;(™"E) continuously and

linearly. Thus it has a unique extension to a continuous linear mapping
from (Fo(™H), ||| into (LPo(™"B), ||| This completes the proof.

4. EXAMPLES ON #(E) AND #(E)

The examples here try to show the difference between the finite
and infinite dimensional theory.

Definition 15. (¢f. [12] and [13]). (a) For » =0,1,..., 7, will
denote the topology on # (E) of uniform convergence on compact subsets .
of E of each derivative or order < #.

(b) 7, will denote the topology on #(E) of uniform convergence
on compact subsets of # of each derivative.

In the following E will denote a complex separable infinite dimen-
sional Hilbert space with inner product denoted by ¢ , ). Since Ec~FE
isometrically we freely use « as an element either of ¥ or E'. If 4 is a subset
of B we denote by {4} the vector space spanned by 4 and if B is a closed
subspace of B we denote by Projd n B the projection of 4 onto B. We
need the following result which can easily be proved by contradiction.

LEvma 10. If K is o compact subset of B and (X,);_., is an orthonormal
subset for B, then, given any positive real number a, Ang = ny(a) such that
ProjK n {X;} = {&, lall < a} for i > 0.

ProposITION 20. (#(E), 7,) is not barrelled for n =0,1,..., cco.

Proof. Let (X,);-; be an orthonormal basis for E. By considering
the polynomials X7 and using Lemma 10 we get the required result for

n =0,1,2,... For n = oo we take (a,); ¢y and consider the set
|| F0)
B = {fe.?f’(E) - < 1}.
. ' Z ! a, By

n=0
By applying the result for » = 0,1, ... we complete the proof.
We note that in the proof we actually show that Jo # 7, # T2
# ... %9, #7,. Since (cf. [12]) these topologies have all got the same
bounded sets this implies (cf. [5], p. 226) that (af (B), 7,) is not a bor-

Studia Mathematica XXXIX,3 4
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nological space for # = 0,1, ..., co. We denote by (¥(B), 7,) the set of
all continuous complex valued functions on # with the usual definitiong
of addition and scalar multiplication and with the topology of uniform
convergence on compact subsets of B. For EF a separable Hilbert spé.ce
(¢(B), 7o) is a barrelled, bornological space (cf. [10]). Thus (cf. [12))
we have an example of a closed subspace of a barrelled bornological space
which is neither barrelled nor bornological. For other examples of the
above we refer to ([6], § 27 and § 28). It is also of interest to compare
the proof that (¢(E), 7, is barrelled with Proposition 21 below.

In [3] and [13] we see remarks and examples that if fe #(H), then
f need not be bounded on bounded sets. Our aim now is to prove that
if ¢ is any closed non compact subset of F there exists fe f(E) such
that sup|f(z)] = oo.

zeC! )
ProrosrrioN 21. Let E be a comples infinite dimensional Hilbert

space and O a closed non-compact subset of E; then there emists fe# (B)
such that sup|f(z)] = oo.
26

We first need the following preliminary lemma:

LOEQM]?IA 11. Let E be a complex infinite dimensional Hilbert space.
If (Bo)ieq is & sequence of positive real numbers and (X, )5r, 18 an orthonormal
subset of B, then identifying B and E' we get

f= g xmerm)

if and only if
sup g™ < oo,
n

Proof. Suppose f =n§,p’,,X:s #(B); then f has a positive radius
of convergence about zero. Hence

X y
]_imgup M "
N—>00 n!
Since
anf(o) [
n! =8 ;‘/n
we geb

limsup A" < oo,
N—>00

To show fe #(E)

it suffices by Propositi - foi ¢
b v position 5 to show.for each KK,

lim |8, T3, 5 =0,
N->00 ,

Holomorphy types 377

i. e., to show )
linlﬁ;lm/n”XnHK—}-anBl =0.

N+

Now
Xl o, = KSB(ZI:LBIKXM | < sup [{ Xy 2D+ -
By Lemma 10, sup|[{X,, 2> =0 as n-— co. Since (a)pecr and
sup fU™ < oo we get tf;eK required result.
" Proof (of proposition). We first consider the case when ¢ is not

bounded. Henge € is not bounded in the weak topology on E and thus
there exists yeH such that sup|{y, #)] = oco. Since yeB « o (E) this
zel .

proves our result when C is not bounded.

Now suppose € is & bounded subset of H. Suppose ¢ = {X, | X|| < M}.
This means in particular that all coefficients of elements of C relative
to any orthonormal expansion will be bounded by M. Since C is not com-
pact there exists 6 > 0 and a sequence (y,)n-, of elements of ¢ such that
Wn— Ymll = 6 for all n # m. Leb ¥y = a0y, |loa]l =1 and Y, = €, %+ Dy,
where @, | @, for » > 2. Since sup|a,,| < M by taking a subsequence
if necessary we can suppose lima,, exists and equals M, ..., (3). By (3),

3 n, such that |a,— M| < §/32 for n > n,. Hence
10— Prull = Y — Yl — |0, — G| > 06— 6/32 = 156/16 .
and so without loss of generality we can assume
1@, = 6/3  for m = n,.

By the method of induction we can, using the above procedure,
choose for each integer % a positive integer mn;, #,eE, M; such that
k

o] = 1, @ L@; for & <k, and y,, = _5;’ iy By, Where
i<

(4) i, — M| < 8/32%  for i <k

and |ay,,] > 6/3.
We claim. there exists N a positive integer such that

(5) |M, < 6/32 for i N.

If not chooge r a positive integer greater than (M64/6)? and s,y ..., 8,
which do not satisfy (5). Now

gy

Yng, = 2 Qing, X «

=1
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Therefore

g,
uyns,ng 2 |aing |2

and

o3 S angg 1> Y (8/64)° > (MO4[3)(3[61)* = M* (b (5)).
=1

i=1 .
This is impossible, hence our claim is true. Let f, = (16/30)" and
f= 2 B.o". By Lemma 11, fe #(E) and for k> N

Fa = | 2ﬁ9<w1,y,,,c> |=| 2‘ Bi<ay, Z Gy 0|

| 3 8,01y | > Bl 3 Wyl
j=N

j=N
k-1
> (168/368)F(5/3)*— 2 (16/38)(8/16)> (16/9)*  (by (5)).
j=N

Hence [f(y,,)—~ co a8 k-> co which gives sup If @) = oo.
xeC

In finighing this section we discuss some topological properties of
the algebras #(E) and #y(E). We show (cf. [9]) that (#(E), 7,) and
(o (B), 7 ) are both complete m-convex topological algebras. This shows
that the uniqueness theorem for norms on a Banach algebra (ef. [7])
cannot be extended to complete m-convex. topological algebras. We
also characterize the set of continuous multiplicative linear functionals
and the closed maximal ideals on the spaces {#4(E), 7 ,) and (#(E), 7 ).

PROPOSITION 22. (.%”(E), 7, n) is & complete space for each n.

Proof. Trivial.

PROPOSITION 23. (a) (W(E), T, 0) i8 an m-convex lopological algebra.

(d) (+#(B), 7, ) i8 an m-convex topological algebra.

Proof. Our multiplication is pointwise and it is well known that
the product of two holomorphie functions is again a holomorphic function.

It suffices therefore to show that in each space there exists a fundamental
set of neighborhoods of zero (U,),.4 such that U, U, = U,.

(a) Let U,x ={f, sup [f(#){ < &}. Then as K ranges over & and

e over all positive numbers less than 1 we get a fundamental family of
neighborhoods in (s#(F), 77,) which satisfies our conditions.

(b) Let Vg, ={fe9f Z—TSUP ldf (@) < }

i=0
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Then as K ranges over X, n over all positive integers and & over
all positive numbers less than 1 we get a fundamental family of neighbor-
hoods of zero in (#(E), eo) which satisfies our conditions. It is easy
to check that Z,(E), the set of all compact polynomials, is an algebra
when B is a Hilbert space. Hence #(H) iz also an algebra and so
(#4(B), T) and (#o(B), T,) are both m-convex topological algebras.
Wo now obtain a one to one correspondence between the points of H
and the continuous multiplicative linear functions on (fc(E), (,) and
(#6(B), T ). Since (#4(E), 7,) and (#¢(B), 7 ) are both semi-simple
commutative translation invariant topological algebras this gives (cf. [1])
a characterization of the closed maximal ideals of the spaces.

PROPOSITION 24. v is a continuous multiplicative linear funclional
on (#o(B), T o) and on (%O(F T ) if and only if 6B such that »(f)
= f(&) for oll fet (B

Proof, If »(f) =f(£) for all fe #(E), then » is obviously a conti-
nuous multiplicative linear functional on (#¢(B), 7 ) and on (#¢(B), 7).
Gonversely if » is a continuous multiplicative linear funcfional on

(#c(B), 7,), then v restricted to B’ is continuous. Hence I £eF such
pe
that v((p) — g, & for all pel. Let P = Y ¢e #,("E); then

i=1

»(P) = va st =P(§).

q=1

By continuity »(P) =P (&) for all PeP¢("E). If fe#(E), then

< [&*f(0 <1 A F(0
v(f)=2v( :;( ,))=Z J;(!)(E)=f(§).

i=0

Hence »(f) = f(&) for all fe #(H). Since 7, =7, this also proves
the result for (#g(B), T )

Examples on #,(B). We now give a number of examples which
emphasize the difference between the current and the nuclear type.

Definition 16. We say a holomorphy type o has Cauchy tnequalities

if, for each n, JC(n) such that for all fe #°,(H) we have

d”f 0)

% G (n)sup|f(@)l.

llell<1

LeMMA 12, If o has Oauchy inequalities, then (P, ("H), || ||») 48 iso-
morphic to a subspace of (P ("E), | || for each n.
Proof. By definition of a holomorphy type Z,("E) < Z("E) and

< o™l But also [P,y < G(W)SUP [Py (@) = C(n)||P,]. Hence the
required result,
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We see later that the nuclear type has not got Cauchy inequalities.
We now give a number of examples on #(F) which are a consequence
of this and all of which are impossible for the eurrent type. Our basic

technique is the following lemma. We again assume E to be a complex

infinite dimensional Hilbert space.
LeMMA 13. Let (X)), be an orthonormal basis for B, (1,); & sequence

of comples numbers and m & positive integer = 2. Then P = Y 2, X7 ePy("E)

n=1

if and only if 2 Mnl < oco. In this case ||y = 2 1A
n=1
Proof, By the definition of Zy(™E) we see PeZPy(™H) iff P
= Z w;f", where Zj|w;] < oo, f;¢E and ||f]] =1. For each j since

B E
B = Zli,ixj; where (Z [M’jlz"llz <1
“ 2

In particular, we have |4, ;| < 1 for all i and j. Now

= 2 wj</gfy

P(X,) = Zz,.x;n(X) =

Zw:f 1,9

Therefore -
4 < D) o] 1™
and -
*) 2 Wl Zg]l o™ o] waw,tZ{zl,lm
;} wlz’m,ﬁ jlwl
=1 i=1

since m >2 and 2 P <.
i=1
Hence PeZy("E) if and only if ZIM < oo. If Pe?y(™E), then

1Py < 2 14;] by the definition of the nuclear norm. Also ||P|y = inf 2 o]
where the infimum is taken over all representa.tlons of P. But (*) 1mphes
VPlly> 54l honco wo gt [Pl = 5713 |

By taking P, EX" we see [|P,lly =n and |P,| =1, hence the

nuclear type does not have Cauchy inequalities,

icm
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ExAMPLE 9. We give an example of f on F such that
(1) fe#(B).
9) A" f(x)ePy("B) for n =0,1,...
am 1/n
o 1| ZL0] " -
n—->00 N

n

(4) limsup(sup Mlu

n—+ro0 llzl<e !

Note. If we replace the nuclear type by the current type (3) and
(4) are incompatible. Thiz example shows that there are two different
and natural ways to define bounded nuclear entire functions on a Banach.
space (cf. [3]). One can also define natural topologies on these spaces
and using the technique below it is possible to show these topologies
do not coincide on the nuclear polynomials and that they do not have
the same dual spaces.

CONSTRUCTION. Let (x,)o., be an orthonormal basis for B. We parti-
tion this basis as follows:

and all xeH.

b

< oo for any fixed ¢ > 0.

By gy B3y Dyy Wgy Ly Tgy By Ly = - -
AR gL i et

u e T 3 ST
i. 6., the ni'-partition class o, has n! elements. Let P, =L 3 o and
+ Y p n * . m m! %S”m m
f= Y P,. Then P, ePy("E) and by Lemma (13) [P,lly = 1.

m=1

Proof. We first show fe # (H). It suffices to show Lim ||P,, ™ = 0
. n—>co

Suppose . # = Y A;#;¢H. Then
=1

= Mg, om=2 3.

Unom, m! Tm<om,
For m =2, |0 <

1 we have
Pl <= N <o 3 P<

m Imtom, im m
Hence

Brll =

sup [P, (X)] < v

X<t

1/m an 0

Since lim(—z‘—) =0, we get fe#(H) Now -§~)=Pn and
M~>00

|Plly = 1 for all n hence hm||Pn[|”” 1, 1. e., (3) is true.
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We prove (2) and (4) together. Since we can differentiate term by
term we have for any zeF

DRSS oF
(*) por _-1’_2(1 P,(x)
91,’ 2 ! 2 i <$z,m,w>m‘ (m—n+1).
Now each _Z' o <@y, ,m>m—nm...(m—n+1)€yf(nE)’ 50 d”f];(m)

!
3 arf(
= Z’ 0 (%), Where g¢,,(2)eZy("E) for all m. Therefore to show

m=0 n!

Py ("E) it suffices to show

Dlgm(@)ly < o0

m=0

and this we actually show in the proof of (4). Let # = ¢ } A,2;<H, where
i=1

i‘ A4 < 1. By (*) we get

i=1

a"f(=)
n!
(o) ) ' ©
1 . L 1
Tpeoy, ip+100+1 m>nt2 oy,
We consider (a), (b) and (c¢) separately:
1 1
® o Yl =P, heme |— Mor| — [Py =1,
TS0y, ) : ineoy, N
1 1
(b) ;,T[_ 2 é’]“in+1m"m'—1 < Q%y— 2 V'inﬂl
U418 41 N Cinf1%9p41
1 12 1/2
o 2
<ol X w7 3 )%
In+18%n+1 I +1%0 41

Bty the Cauchy-Schwarz inequality and since o,,; has (n+1)! terms
we ge '

1 . 1)t
0V < 0 (4" = o L,

* ©

icm

(e)

)

mznt2

Hence

and

forn =0,1,...

and
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1 - m
Xi3 —nN M—n
m! Z T, zim ¢ (%)

TnEm,

|

3L e

MEAEL el

1 -n
< Z ey 2 Opo™ Mim‘z

mn+2 1n8%m,

N
3
"y
i
=

|

m>ni-2 ) m=n+2

) <l+e

'\ af(@)

()

sup l

lizli<e

<14pe

ifn

@*f(z)

lim sup (sup ;
nl

n-+o0 llell<e

N

(n+1)""
v (n))*®

and all 2, ||jz]| < ¢. Therefore

1 Q'm——
nl (m—mn

e?

-+

nt

(1 o
~ Ty E el

=1<.oo,

i. e, (2) and (4) hold. This completes the proof.
Our next example shows that the conditions in the definition of
#y(B) are independent.

ExAMPLE 10. We give an example of f on H such that

(1) fe #(B).
(@) d*f(z)ePy ("E) for n =0,1,2 ...

(3) lim

n~00

CoNSTRUCTION. Let (w,

Then

1ln

af(0)

:n,Y

N

f= 2 miap

m=1

Lim ™2 P, V" = limm"
oM+ m—ro0

and weH.

1 1jm
(‘m) =0.

n

(since m =

T

n+2)

1
—
n!

(by Lemma 12)

Q.

Y2ty Oy Py be as in Example 9 and take

283
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«

.Hence fe #(B). Since |P,lly =1, (3) holds. By (*) f has infinite
radius of convergence hence we can differentiate term by term to get

@f(@) _ 3
mz=n

n!
where

mm/z

oy 2 G’?m;‘m <@y, Y™

TmECm,

O =

d"f(2)

n!

Since g,, <#;(*B) for all m to show eZy("E) it suffices to

prove

D Nmlly < .

mz=n+2

By Lemma 13 for m > n-t-2

A mm?
(417 ='—’”T 2 Kw’:m’ m>l’"r—nozL.

Let' Ty,
[=] oo
© =0 Y ki, where D IaP<1.
1=1 =1
Hence
P — mf2
- DT e——— e . m )
oy === Ml e ror < gp 3 gnonp,
Ly B0y, : imeam "
mm/zgm»n
L
nl(m—mn)!
Since
M2 _m—mn |1/
hm(LQ__ " =0
meoo\ 0L {(M—m)!
we have
.
D lgmlly < oo.
mz=2n+2 .

typel;lfaolii ;:;ei %iwfs ;}xgmple to show that fe #(¥) can be of nuclear
nt o t i i
olowing To ut not at another point of B. We firgt need the
T —_
30 >ELMA0 . ;2.4;,, Let B = C; then Zy("E) = Z("E) Jor m =0,1,... and
h uch that for each n we have [P,y < TP, all P, e (*E).

1IcM
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LemMMA 15. The nudlear polynomials Py (H) on a separable Hilbert
space form an algebra and 3 G > 0 such that for each m and m positive inte-
gers or zero

1P, Prally < C ™| Pliy Pl where Ppe? ("),

Proof. To show #y(B) is an algebra it suffices to show
PP, ePy(""E) if P,cPy("B) and P,,<Py("E). Let v and y<ll = F'.
Then z"<Py("E), y"ePy("E) and a"y™eP (" E). By restriction
@y eP (MM, y}) = Py("™{w,9}) and so there exist (g).e{®, 9
such that

oty = Y™, where Dl < oyl + e
i=0 1==0

By Lemma 14 |o™ 4™y < O™ ™[a|™ |ly|™. We can extend by the
inner product formula ¢;e{z-y} to B'. Hence s™ y™ = 3 ¢i*™ as elements
of P(TE), oy Py (Y™E) and i

o™ ¥l < 2 llgal™*™ < O™ [l ly ™+ &

P, Py (™B).

Thus
(%) o™ g™l << O™ Jal™ g™
Now let P,ePy("E), P,,cPy("B). Given ¢ >0 choose a representa-
tion of P,, 3 ¢}, and a representation of P, Y v, such that
i : 7

IPolly < ) pdl" < IPally+ e

(%)
Polly < ) ™ < [Pl e

where ¢;, @;<F for all i, j. Since the series in (+*) are absolutely convergent
we get P, P, c?("*"H) and P, P, = Y ¢iyl (*) implies ¢fy]*eZy("""E)
for all ¢,j and & '
lef 4l < O™ llgall™ [l ™
We thus have
ety < 0™ 3 ligd™ sl
i3 i
= 0"*”‘2“%“’”' Z g™ < O™ (1 Pplly+- &) (Pallav - 8) -
T ]

Since 2, ("t™H) is a Banach space and s >0 was arbitrary we get
P%-PME_WN("""""‘E) and “Pn-Pm”N < Gn+m“Pn“N' ”Pm”N

ExXAMPLE 11. We give an example of f on F such that

1) fe £ (B),
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@) é"f(meg»N (*B) for n =0,1,...,

) } ,0)
n:

(4) fe oty E’)-

CONSTRUCTION. Lt %y, Y1, Ys, ... be an orthonormal basis for B. We
partition (y,)2., such that the 'n”‘-pamt'bt@on dass o, has n! elements (as in
Examples 9 and 10). Let

_fml Zyt for n=2 and f = 2

< 0" for all » and for some C >0,

Proof.

Il = sup [P, (2) < sup
llefl <1

lizll<1

. 2% @),

Suppose = -—Zzlym—{—l 2;, where (Z]l )2 < 1. Then
i=0

]

3 Sue]ek

i=1

sup | P, (#)] < sup
flzil <1 00
%’ 2121

which implies
lim ”Pu”U" =0.
n—o0
Hence
fe #(B).
By Lemma 15 P,eZy("E) and

1Pally <

Nl i

2?/“

'Lnsa

Hence (2) and (3) are true. Since J has infinite radius of convergence

#f@) = D P, ()

mzn

To show (4) i 2
one gots (4) is true we show d*f(z,) ¢ 2, (*B). By the usual procedure

N : 2
&f(@y) =”§;”7g v,
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Since the y,’s are all orthogonal Lemma 13 implies Ef(2,) ¢25 ().
Hence f¢ # y(E). This completes the proof.

In this section we only considered functions defined on a separable
Hilbert space. This makes the geometric reasoning behind the proofs
very apparent and should help towards giving one an intuitive feeling
for holomorphic functions on infinite dimensional space.

Since writing this paper we have been able to extend Proposition
21 to & large class of Banach spaces which includes all separable and all
reflexive Banach spaces. Also we have been able to show that (H (To)s Tw)
ig' not bornological.

The results in this paper are taken from my doctoral thesis at the
University of Maryland, 1969. I wish to thank my thesis advisor, Pro-
fessor Leopoldo Nachbin, for introducing me to this subject and for his
constant encouragement and guidance at all times. I also wish to thank
Professor John Horvath for his advice and encouragement.

I wrote my thesis while on leave of absence from the University
of Maryland at Instituto de Matemética Pura e Aplicada, Rio de Janeiro.
During that time I was supported by the Conselho Nacional de Pesquisas
of Brazil and the National University of Ireland.
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Differentiation in locally convex spaces
by
WIKTOR SZCZYRBA (Warszawa)

In this paper we shall present an approach to @ theory of differen-
tiation in a few important classes of loeally convex spaces. Differentiation
in Banach spaces is one of the most useful tools of non-linear analysis
(cf. [7], [87 and [10]). Our main goal is & natural generalization of this
theory to a greater clasy of locally convex spaces. We give one of the
possible realizations of this program. The other approaches can be found
in reviews [1], [2], [15] and papers [3], [4], [9], [11], [14], [18] and [20].
The main idea of the differentiation is an approximation of a given map
by a linear map. This approximation can be defined in many ways. The
definition which is used in this paper can be found also in [14] and [18].
It is valid for an arbitrary locally convex space. However, it is not possible
in the general case to obtain the mean value theorem and some results
connected with it. Therefore, we consider only two classes of locally
convex spaces: metrizable, quasi-normable spaces and DF-8 spaces
(DF spaces which are also Schwartz spaces).

We obtain the mean value theorem, the Taylor formula with the
estimation of the remainder, and theorems on partial differentiability.
The class of spaces which we consider in this paper includes normable
spaces, Fréchet-Schwartz spaces and their duals (e.g. &, &, &, &').

The results of this paper are very close to those of paper [16], which
dealt with a different model of the theory for F-§ spaces.

1. Notation. We shall consider topological locally convex spaces
over the field of real or complex numbers, called in thiz paper locally
convew spaces. We shall assume the Hausdorf axiom. Let F be a locally
convex space; 4 (H) denotes the set of all closed, absolutely convex
neighbourhoods of zero in B. If Ues (E), then |||l is the seminorm gen-
erated by U and By : = E/N(U), where N(U) = {¢<E; ||y = 0}. The
symbol B will stand for the completion of . #(E) will denote the set

of all closed, absolutely convex bounded sets of H.

If E is a locally convex space, then X, (H,) is the dual space to B
endowed with the weak (strong) topology. Let F' be a locally convex
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