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Differentiation in locally convex spaces
by
WIKTOR SZCZYRBA (Warszawa)

In this paper we shall present an approach to @ theory of differen-
tiation in a few important classes of loeally convex spaces. Differentiation
in Banach spaces is one of the most useful tools of non-linear analysis
(cf. [7], [87 and [10]). Our main goal is & natural generalization of this
theory to a greater clasy of locally convex spaces. We give one of the
possible realizations of this program. The other approaches can be found
in reviews [1], [2], [15] and papers [3], [4], [9], [11], [14], [18] and [20].
The main idea of the differentiation is an approximation of a given map
by a linear map. This approximation can be defined in many ways. The
definition which is used in this paper can be found also in [14] and [18].
It is valid for an arbitrary locally convex space. However, it is not possible
in the general case to obtain the mean value theorem and some results
connected with it. Therefore, we consider only two classes of locally
convex spaces: metrizable, quasi-normable spaces and DF-8 spaces
(DF spaces which are also Schwartz spaces).

We obtain the mean value theorem, the Taylor formula with the
estimation of the remainder, and theorems on partial differentiability.
The class of spaces which we consider in this paper includes normable
spaces, Fréchet-Schwartz spaces and their duals (e.g. &, &, &, &').

The results of this paper are very close to those of paper [16], which
dealt with a different model of the theory for F-§ spaces.

1. Notation. We shall consider topological locally convex spaces
over the field of real or complex numbers, called in thiz paper locally
convew spaces. We shall assume the Hausdorf axiom. Let F be a locally
convex space; 4 (H) denotes the set of all closed, absolutely convex
neighbourhoods of zero in B. If Ues (E), then |||l is the seminorm gen-
erated by U and By : = E/N(U), where N(U) = {¢<E; ||y = 0}. The
symbol B will stand for the completion of . #(E) will denote the set

of all closed, absolutely convex bounded sets of H.

If E is a locally convex space, then X, (H,) is the dual space to B
endowed with the weak (strong) topology. Let F' be a locally convex
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space; then L(H,F) (L(H, E; F), L™(B, F)) denotes the space of linear
(respectively: bilinear, n-linear) continuous maps from # (resp. Fx E,
Ex ... X B) to F. These spaces, endowed with the simple convergence
topology (weak) or the bounded convergence topology (strong), will be
denoted by: L,(H, F), L(¥, B;F), L;(E,F), L,(EF), L,(E E;F),
L} (B, F), respectively.

2. Theory of differentiation in locally convex spaces.

Definition. We say that a map T from an open set 2 of a locally
convex space F to a locally convex space F is Gdieaus-differentiable at
a point e,eQ if there exists a VT (e,) e L(E, F) such that the map

Esh—>r(eg, h): = T(eg+h)—T(e;)— VT (e)heF
has the following property: ‘

‘ltin;(—]t;r(eo,th)) =0, 1eR or teC.
This definition is the same as in the case of normed spaces (of [13]).
We take the following definition of Fréchet differentiability (cf [2], [14],
[18]):
Definition. Let T be a mapping from an open set 2 = B to F.
We say that T is Fréchei-differentiable ai a point e, if there exists
a mapping LeL(E, F) such that the map ‘ ‘ -

B> h-> (0, h) : = T(6g+h)—T(e,)—LheF

has the following property: for eve‘ry‘ Vet (F) there exists a Uest (H)
such that for every Moore-Smith sequence {%,},., convergent to zero
in E we have

lim lIr(eos Pa)ll —0.

ed |hlly

',Ehe mapping L is called the Fréchet derivative of T at ¢, and is denoted
by T' (&) or DT (e,). The derivative of T — if it exists — ig determinated
uniquely.

ProrosrITION 1.

1° Let T be a Fréchet-differentiable mapping at €y; then T is also Giteaus-
differentiable at e, and DT (é,) = VT'(e,).

2° If T is Fréchei-differentiable at ey, then T is continuous at €.

' 3° A linear combination of mappings differentiable ot e, is differen-
tiable at e, and its derivative is a linear combination of derwatives.

4° The superposition rule holds: (T,0T,) (e,) = T, (Ts(e0)) 0 T 1 (60)-

.. Studia Mathematica XXXIX,3
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PrOPOSITION 2. Let B be a metrizable locally convem space and F an
arbitrary locally conves space. Let Q = T be an open set and let f be a mapping
from QX H to I satisfying the following conditions:

1° for every eeQ f(e, - )eL(H, F),

2° the mapping 236 — fle, ) eLy(B, F) is continuous af eye L.

Then f is continuous ab every point (6, h), hed.

Proof. We shall prove that f is continnous at the point (¢, 0). Let
(6ns P e (€0, 0). IE F(ny hy) + 0, then there exists a Vet (E) such that
F(ny Boy) ¢V for a certain subsequence (ng)i-, (*). It fo]low§ from 2° th:?nt
f(6ny ) = fleyy ) in Ly (T, F); hence, the set {f(e,, O, s _boun-ded in
L,(B, B). Since B is a quasi-barrelled space, this set is equicontinuous.
Thus there exists a Ues () such that f(e,, u)eV for welU,neN. Bub
this contradicts (). q. e. d.

Definition (¢f. [12]). A locally convex space B is called quasi-
normable if for every equicontinuous set A < E' there exists a Vet (B)
such that the topology induced in 4 by the topology of B, is equivalent
to the-topology of uniform convergence on V.

TeMMA 1 (cf. [12]). A locally convex space E is quasi-normable if and
only if for every U.e (B) there emisis Ven (B) such that for every 4 >0
there exists @ bounded set B, such that V < AU+ B;.

The class of quasi-normable spaces includes all normable and all
Schwartz space (cf. [12]).

Lemma 1 implies

LEMMA 2. Let B be a quasi-normable spase, F' a normable space and 4
an equicontinuous set in L(H, F). Then there ewists a Vet (H) such that
the topology in A induced by the topology of L,(B, F) is equivalent to the
topology of wniform convergence on V. .

Definition. Let T be a mapping from an open set & = B t? x.
We say that T is continuously differentiable at egeQ if T i Idiferentla.ble
in some neighbourhood ¢ of ¢, and the mapping E = 0> ¢— T (&) eLy(E, )
ig continuous at 6,. .

PropOSITION 3. Let I be o metrizable locally convex space and lot H,
G be arbitrary locally comvew spaces. If T s @ mapping from Q,c B
(60¢ 2,) to T continuously differentiable at ey, and Ty is a mapping from Q= F
(Ty(e0)eQs) to G continuously differentiable at Ty(e), then the mapping
T,oT, is continuwously differentiable at eq.

The proof follows from Proposition 2.

TaroreM 1. Let B be o quasi-normable metrizable space and F o locally
convew space. Let T be o mapping from an open set Q < Bio F continwously

_ differentiable at some neighbourhood of e Q. Then for every Ve () there

5
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ewist U, W e (B) such that for every e,ce,+ U
sup 1T’ (e)h— T (62) hlly o>

Proof. Let Vet (F). Applying Proposition 2 to the mapping (e, h)
— T'(e)heF, we find, that there exists a U e (E) such that the set
A:={T (6o+ %oy, = L(E, Fy) is a set of equmontmuous mappings.
Let U e (B) o that U+ U = U, and let 6 — e,<6,-+ U; then T (6) — T'(e,)
in L,(E, Fy). We infer from Lemma 2 that there exists Wes (H) such
that for A the L,(E, Fy)-convergence is equivalent to the umform con-
vergence on W. g.e.d.

We can express this theorem in a weaker form.

THROREM 1. Let E be a metrizable quasi-normable space and F a locally
convex space. Let T be a mapping from Q < Eto F continuously differentiable
at eye Q. Then for every V et (F) there exists a W e (E) such that

?.?3”11 () —T (eo) hlly 57> 0-

THEOREM 2 (Mean Value Theorem). If the hypothesis of Theorem 1
i8 fulfilled, then for every Vet (F) there ewist U, W et (H) such that, for
every e eeq+ U and heW,

1T (6,4 A)— T (ex)lly < O lIbl
0: = sup||T' (e, + ksl < oo.
k,seW

where

Proof. Applying the mean value theorem (cf. [8]) to the mapping
[0,1]2%t— T(e,+th)eFy, we have i

1T (ex+h)— (é&)llv\ sup IZ" (61+ OR) By < supl "(ex+K)slly Ikl
for every Wes (E) and. every heW.

By Proposition 2 there exist M < oo, Uy, Wyet (H) such that,
for every eee,+ Uy, []T(s)s]ly<M113||W Let U, We./f(E) that U+ U
[ Ulai W = Wy n U; then, for every eleeo—]— U, sup 1T (s ) s|ly < M.
q.e

, ERema.rk. In this proof we make no use of the quasi-normability
of E.

TEEOREM 3. Let the hypothesis of Theorem 1 be fulfilled; then for every
Vet (F) there exist U, Wet (E) such that, for every e,ce,+ U, Y et (E)
and he¥, we have |r(e,, h)|ly < O(ey, X)||hlly, where

(*) Oley, X¥): = sup |T'(e;+k)s— T (e)slly amd  Lim Cey, ¥) =0
heX 8 W ‘ YeN(E .
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Proof. The derivative of the mapping H> e g(e): = T(6)—T (e;)e
is g'(e) = T'(e)— T’ (e;). Applying Theorem 2 to g, we have

r(ex; My = flg(er+B)—g(ellr < sup IIT (ex+F)s—T" (e2) slly |1kl -

E SE
Formula () folows immediately from Theorem 1. g.e. d.
THEOREM 3'. Let E be o metrizable quasi-normable space, F a locally
convex space, and T:E > QT a mapping continuously differentiable

at 6,¢ Q. Then for every Vet (F) there exists a W e (B) such that, for every
Yer(B) and heY, we have |ir(eg, By < C(X)|hllw, whers :

lim 0(Y) =0.
PeN(E)

0(X): = sup |T" (64 k)s—T (6o0)slly  and

ke¥ ,5eW

This theorem follows from Theorem 1’ and Lemma 2. Let us notice
that Theorem 38’ is valid if we replace the Fréchet dlfferentla.blhty by
the Géateaux differentiability. Thus we have

THEOREM 4. Let B be a metrizable quasi-normable space, %F a locally
convex space and T : B > Q — F a mapping continuously Gdie w-d@fferm—
tiable at eq< Q. Then T is Fréchei-differentiable at ey and VI (&) = T’ (6q)-

From Proposition 2 we obtain

LeMMA 3. If B is o melrizable locally convew space and F a locally
conver space, then the spaces Ly (B, Ly(B, F)) and L,(E, B; F) are canoni-
cally isomorphic.

Similarly, Ly (E; F) = Lb(E, Ly(... L( B, 17’)))

PROPOSITION 4. Let B be a metrizable locally convex space and F
a locally convex space. Let f be a mapping from QX BX ... X H io F (2

n
an open subset of H) which satisfies the following conditions:

1° for every ec$, f(e, ...,")e L™ (B, F),

2° the mapping L3¢ —>f (6 +vvy YeLF (B, F) is continuous at eoef.

Then the mapping QX BX ... X B2(e, by, ooy by) > F(8 hyy ooy By) €F
is continuous at the point (60,1;»1, veey b)) for every hjeB, j=1,...,n
The proof follows by induction from Proposition 2 and Lemma 3.
Detinition. Let B be a metrizable locally convex space. Let T be

a mapping from a subset of B to F, differentiable at a neighbourhood £
of 6,¢ . We say that 7T is twice differentiable at e, if the mapping B o Qee

"\ > 1T"(6)eLy(H, F) is differentiable at ¢,. The derivative of thiz mapping

is called the second derivative of T at ¢, and is denoted by T (e,) or D2 (e,).

Of course, T" (e,) e L(E, B; F) (cf. Lemma 3).
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PropoSITION 5. Let B be o metrizable locally conver space and F
a locally comvex space. If a mapping T : B > Q- F is twice differentidble
at e,eQ, then T’ (6,) is o symmetrical bilinear mapping.

Proof. For every Vet (¥) and h, seE the mapping
R*>(a, b) =g (a, b) : = T(ey+ah-+bs)eFy

is twice differentiable. Since
9"(0,0) (e, )y, 8) = T (e0) (ah+-fs) (yh-+ ds),
;ve infer from the symmetry of second derivatives in normed spaces that

IT" (60} (B, 8)—T" (€0) (s, Wl = 0.

o By v, 6, eR,

.e. d.
k The higher order derivatives are defined by induction.
Definition. Let F be a metrizable locally convex space and F
a locally convex space. Let T be a mapping from an open set Q< ¥
to F. We i that T is n-times differentiable at e, Q if T is (n—1)-times
differentiable at some neighbourhood ¢ of ¢, and the mapping F > 0> ¢
— T (g)e L}~ (B, F) is differentiable at ¢,.
The derivative of this mapping is called the n-th order derivative
of T at ¢, and is denoted by T™(e). By Lemma 3, T (¢,) e L*(B, F).
PROPORITION 6. An n-th order derivative is an n-linear symmetrical
mapping.
If E =R (or C) and T is a mapping from an open set I = R (C)
n-times differentiable at ¢,eI, then — with regard to L} (R, F) == F —
we have

T (e,) _hm (T("—l)(e +h)—T"V(e)), heR (C),
where T:; = T.

LeMumA 4. Let B be a quasi-normable space and F a normable space.

Let A be an equicontinuous set of m-linear mappings from EX ... X B
D —— e —

3
to F. Then there ewisis a Vet (B) such that the topology in A induced by

the topology of Ly (B, F) is equivalent to the topology of uniform conwvergence

on VX ...xV.
|
n

Proof. Let Ues (E) and Ves (H) be such that for every 1 >0
there exists a bounded set Bl such that V <« A(U+B;) (Lemma 1). Let
7 i = {feI*(B, F): [f(vy, ..., o) <L, 056 V,§ =1, ..., n}.Then }(T n B,)
eV AT q.e. d.

icm°®
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LemmA 5. If B is a meirizable locally convex space and F a complete
locally convex space, then the space Ly (B, F) is complete.

Proof. It is known (cf. [5]) that under this hypothesis the space
L, (¥, F) is complete. Applying Lemma 1, we finish the proof.

If F is a complete locally convex space and f a continuous mapping
from [a, b] = R to F, then we can define & Riemann integral of f (see
[1]). (If F is Banach space, this construction is effected in [4].) The
following rezult is valid:

" LEMMA 6. Let F be a complete locally convexr space and f a mapping
(p+1)-times differentiable, fromla, b[ to F. Then for every t,,te]a, b[

we have:
7t) Zf""

THEOREM 5 (Taylor formula). Lef E be a metrizable locally convex
space, F a complete locally conver space and T a mapping from an open
set Q< B to P, (p+1)-times continuously differentiable on Q. Then for
every 6 e S2 there ewists o U e (H) such that for every he U )

» -
1

7!TU‘)(eU)(h,

+ f e (s) ),, ds.

T(eo+h)—T(eo) =

k=1

B+

i v .
+U HTS)T(P+1>(3(,+ sh)ds) (By ..., ).
o N
Proof. Let Uet (H) be such that e,--2U = Q and let heU. The
mapping ]— 8,14 6[ 2t — f(1) = T(ey+1th)eF is (p+1)-times differen-
tiable and f® (1) = T (¢,+1th) (R, ..., h). Applying Lemma 6, we obtain
the theorem. q.e. d.
‘We shall use the following notation:

»
@ (e, h): = ‘ T® (e)(hy ...y h).

1
) — -
Tleth)— > 2
=0
THEOREM 6. Let B be a metrizable quasi-normable space and F a com-
plete locally convew space. If a mapping T': E > Q — F is p-times continuously
differentiable on Q, then for every e e and every Ve (F) there ewist
U, Wen (B) such that for every Y et (H) and every ecey+ U, heY,
[ (e, 1)l < (e, X) IRl
where
1
Ole, ¥): = — sup [T%(e+k) (g, -
D’ ke¥,qeW

Besides lim C(e, ¥) =0,
Fed(B)

s @) =T () (g1 -5 Gl


GUEST


296 W. Szezyrha

Proof. For every Vet (F), U, W, Yet (B), ¢c6y+ U, heX, we have
by the Taylor formula:

1 fl (1—sy?
10 (p—1)
< Ge, Y) (Ibli)” -

Tt follows from Proposition 3 and Lemma 4 that, for every Ves (F),
there exist U, Wes (B) such that, for every éee,+ U, lim C(e, ¥) = 0.
g e d Ted(E)

Definition. Let B, G, F be locally convex spaces and 7' a mapping
from 2 = B X G to F. We say that T is partially differentiable at (5, go)e 2
in the direction of the space X if the mapping e — T'(e, go)< F is differen-
tiable at e,. The derivative of this mapping is called the partial deriva-
tive of T at the point (e, g,) in the direction of the space ¥ and is denoted
by Tgless go) oF D,T(ey, go)- Similarly, we define the partial derivative
in the direction of space G. The mapping T, which is differentiable at
(€0, 9o), 18 also pa.rtlally differentiable at (eo, go) in the direction of both
spaces and: T (6o, go) = Tx(eos 9o) 0mz+ Te(eo, go) 07‘(3‘: where g % Ar6
plO]erﬂOnS from ExG on E and @, respectively. Similarly, Tz(eo, o)
= T’ (69, 8,) Om, Talos §o) = T (6o, §0) © iz, Where ig, ig are injections
B, @ into ExG.

In the following we shall use the fact that the finite product of metri-
zable quasi-normable spaces is also a space of this type.

TerOREM 7. Let B, @ be a metrizable quasi-normable spaces and F
a locally conwvex space. A mapping T:EXG>Q—~F is continuwously
differentiable on Q if and only if it is partially continuously differentiadle
(in both variables) on L.

Proof. We shall prove that the continuously partially differentiable
mapping is also differentiable. Let (e, go) € 2, heH, se@,

T {24+ hy go-+ 8)—T(¢0, go)— D1 T (6o, go)h— DT (eq, go)$

= D T (e, go+8)h— DT (¢y, go) h'H ((30; Fo1$), )‘I""((eoy Go)s )
From Proposition 2, Theorem 3, Lemma 2 and the continuity of
the partial derivative we infer that for every Ve (F) there exist Wes (G)
Qe (B) such thabt DT got8)h— Dy T (6, go)hlly < a(s)lhllg, Where
a(s)—~0 for s >0,
1
(60, 9o+ ), Blly < ID1 T 0o+, go+8)h— D, T(a, go)hlly
+ D2 (o0, g0+ 8)h— DT (60, g0l < B B, 8) il o(6) o
where f (h, ) =0 for h—> 0, s >0,

oy h)_T(p) (6)(h,

(T® (64 sh) (h . ) ds i

2 (e, )]y =

) ISl y{8)~> 0 for s >0,

”"((30’ go)s § ”V <y(s where

icm°®

Locally convex spaces 297

Hence T is differentiable at (¢, go) and
T (60y go) = D1T (€4, go) © 71-+D3 T (g, go) © 7.

The continuity of the derivative follows from this formula. q. e. d.

Simultaneously, we have proved

TeroREM 7. Let B, G, F be spaces which satisfy the hypothesis of
Theorem 7. If & mapping T:EXG > Q- F is partially differentiable
at (&g, go) n the first variable and partially comtinuously differentiable in
the second variable on some neighbourhood of (e,, ¢,), then T is differentiable
at (8o, go)-

The above rezults can be extended to higher order derivatives and
several variables. In this case partial derivatives do not depend on the
order of iteration, e.g. D%T(e, g) = D3 T(e, g). This fact follows from
the symmetry of the n-th order derivative (Proposition 6).

3. Some properties of DF spaces.

Definition. A locally convex space F is called a DF space if it
satisfies the following conditions:

1° F has a countable base of bounded sets,

2° every strongly bounded set in ' which is a countable union of
equicontinuous sets is also an equicontinuous set.

It can be shown that the strong dual to & metrizable locally convex
space is a DF space and that the strong dual to an F-8§ space (Fréchet
and Schwartz space) is a DF-§ space (i.e. a DF space which iz also
a Schwartz space). In addition, it is reflexive and therefore a barrelled
space; cf. [5], [12].

Lemma 7 (cf. [12]). Let B be a DF space, and (V;)i2, a sequence of
netghbourhoods of zero in H. Then there evist Ve (E) and a sequence
4 >0, =1,2,..., such that 4,V < V;,j=1,2,...

LemmA 8 (cf. [12]). Let B be a DF space. A conver set U < H i
a neighbourhood of zero in B if and only if, for every absolutely comvex
bounded set A in B, U ~ A is a neighbourhood of zero in A equipped with
the induced topology.

LeMvA 9. Let B be a DF space and G & locally convew space. Let
A < L,(H, @) be a precompact set; then A is a set of equicontinuous map-
pings.

Proof. We must show that for every Wet (G the set Vi = N HW)
ed
is' @ neighbourhood of zero in ¥. In the light of Lemma 8 it is ,sufiicient
to show that for every absolutely convex bounded set B « F there exists
a Ues (H) such that B ~ U< V. Let BYy = {feL(H,G): f(B) = W}. By
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is a neighbourhood of zero in IL,(H, G) By the precompactness of A there
, foed such that 4 < f] Bl,). Let Uet (B) be such

exist fi,...

that (@)l <% for j =1,.. ,n a.nd ze¢U. Then for every y eBn U
and fed we have |f(y)lp<1l;i.e. BnUc V. q.e. d.

ProrosITION 7. Let B be @ DF-S space and G a locally convex space.
Let f be a mapping from QX B (Q < E) to G which satisfies the following
conditions:

1° for every eeQ, f(e, -)eL(E, G),
2° for every Wed (G) the mapping Q26— f(e, *)eLy (B, Gy) is uni-
formly continuous on an open neighbourhood Op of ¢,eQ (i.e., for every

&¢>0 and A % (B) there exists a Ue# (H) such that, for every e, 6,¢ Oy
such that e;—e,eU, we have sup|f(e,, h)—f(6s, b)|lp < &).
hed

Then for every WeA (@) there ewist U, Vet (H) such that, for every

€1, 6s¢6- V), 23:79 Ilf(ers 2)—f(eay Bl < 1.

Proof. Let (4,);2, form a base of bounded sets in E. Let We.#(G).
For every ¢eN there exists a ¥, eaV(E) such that, for every e,, e,¢0y,
6,:—6:eY;, hed,, we have |f(e;, h)—fles, h)lp < 1.

By Lemma 7 there exist Ysm(E) and a sequence 1, >0, i =1,...,
such that 4, Y « ¥;,4 =1,2,... We see that the mapping Fy > Op> ¢
= f(e,*)eLy(B; Gy) is uniformly continuous on Op in the topology of
the space Hy. Let Vet (B), V<X, e+Vc O, and let V be precom-
pact in the topology of Ey (the property of Schwartz spaces); then
f(es+ 7V, -) = Ly(E, Gy) is a precompact set;, as the i image of a precompact
set under the uniformly continuous mapping. From Lemma 9 the set
6o+ V,-) is a set of equicontinuous mappings. Hence there exists a
Uet(B) such that |[f(e;+o, b)jlw < 4 for heU, veV. Thus [If(e, B)—
—1(6a; Bl <1 for heU, 6y, 6,e6,+ V. q. e. d.

Definition. Let B, ¢ =1, . _ n, and let & be locally convex spaces

and k an n-hnear mapping from H E; to . We say that & is hypoconti-

nuous if,- for every Wes (@) a.nd for an ambltra.ry system of # bhounded
sets 4, ..., 4,, A; = B;, there exist U,,..., U,, U, et (H;), such that,
for every 1 <j<n, ey, .. e)lp <1 for e ed; i #j 6 sU

We say that the family H of n-linear mappings from H E; to & is

equikypodontinuous i for every Wen (@) and for an arbltra.ry gystem

of bounded sets (4,2, (4; = ;) there exist (T, i1y Uses (B;) such that,

for every heH, 1<j<m, 6 yeU; and 6;e 4, for 4 54 j, we have |h(ey, ...
sellw <1
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Leanva 10 (cf. [12]). Tet By, i = 1, ..., n, bo DF spaces and lst G be

n

a locally comvex space. An n-linear mapping h: [[B;,— @@ is continuous
=1

if and only if 4t is hypocontinuous. A family H of n-linear mappings from

n
T[1E; to G is an equicontinuous family if and only if it is an equihypocon-
=1
tinuous family.

LemMA 11. Let B, i =1, ...
convex space; then

Ly (B, Ly (B, -y Ly(Byy @)

Proof. n =2. It is obvious that L(H,, B,; @) c L(H,, Ly(H,, ).
Onb ‘the other hand, the mapping heL(E;, Ly(H,, d)) determines the
bilinear mapping % : By X H, - G. We shall show that % is hypocontinuous.
We infer from the continuity of 7 that, for every Wes (G), A,<Z(H,),
A<#(H,), there exists a U et (E,) such that h(e)e,e W for e; Uy,
6,¢A,. But A, iy a precompact set (¥, is a Schwartz space); hence h(4,)
is a precompact set in L,(H,, ¢). By Lemma 9, h(4,) is a equicontinuous
family of linear mappings. Thus there exists a U,est (H,) such that
h(4,) U = W. Applying Lemma 10, we have the continuity of %. We
have proved the algebraic isomorphism. The topological isomorphism
is evident. For » > 2 we prove the lemma by induction. q. e. d.

Levwva 12. Let B be a DF-8 space and G a locally convex complete
space. Then the space Ly (E,G) is complete.

Proof. The completeness of IL,(H, @) follows from [12]. For mulm-
linear mappings we make use of Lemma 11. q. e. d.

, 1, be DF-8 spaces and let G be a locally

= Ly(Byy ..oy By @)

Lemma 9 can be generalized to n-linear mappings.

Lemma 13. Let B be a DF space and G a locally convex space. Let
A < Ly (B, @) be o precompact set. Then A is a set of equicontinuous map-
pings.

Proof. n = 2. It is sufficient to show that 4 is a set of equihypocon-
tinuous mappings (Lemma 10), i. e., that for every We.s (G) and every
Be%(E) there exist U,, Uyes (H) such that, for every fe 4,

(1) Fl@, y)e W,

@) fle,y)e W,

We shall prove (1). Let 4¢B, f,(y)
Let Wet (@) and V: = N (W
3

forweB, yeU,,

forze U,, y «B.

i = f(@, y)- The set {f,} = L(E,H).
). 4 iz a precompact set, and there-
Yed

k
fore there exist f,, ..., fyeA such that 4 = U (f;+ $BY), where BY =
‘ =
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{feL(B, B; @) : (B, B) = W}. Let U () be such that [f; (s, w)l < §
for uy, useU, j =1,..., k Let Bc nU, n>1. Then, for every fed,

1
every xeB and ye(—v; U) N B, we have f(z,y) « W. Hence (% U) Nn B

< V. It follows from Lemma 8 that V is a neighbourhood of zero in E
gl) is proved. In the same way we can prove (2). For n > 2 the proof.
is similar. q.e. d. ‘
From Lemma 13 we have
ProPOSITION 8. Let B be a DF-8 space and G a locally convew space.
Let f be a mapping from QX BX X E to @ (Q < E) which satisfies the

following conditions: "

1° for every ec®, fle, -, ..., ) <I"(E, &),
.2° Jor every Wen (@) the mapping Q>e->f(e)e L (B, §) is uniformly
continuous on some neighbourhood Oy of a point e,.

Then, for every Wes (@), there exist U, Vet (B h
e W , y, Vet (H) such that, for every

sup J(elyhl!'": Ln) J (627;1'11"'7“/11)[“; gl-
the fo]lowmg notion.

Definition. Let B, F be locally convex s 3 i
' paces .and T a mappin,
ﬁqm an open sgt 0 c F to F, differentiable on 2. We say that T is lofallﬁ
uniformly continuously differentiable in a neighbourhood of e, if for
every Wea (F) there exists a neighbourhood 0 of e, such that the
. mappmg‘ Op>e— T'(6) e Ly (B, Fy) is uniformly continuous on O .

Obviously tllle lo.ca,l uniform continuous differentiability in a neigh-
bourhood of ¢, implies the continuity of the derivative at this point
. ngOREM 8.ALm) E be an DF-8 space and F o locally comves space.
nuouslye;f;nap};_mb% from an open set Q < E to F, locally uniformly conti-

vfferentiable in a neighbourhood of e,c Q. Then.

there exist U, V, Q e (B) such that: ’ HJor overy W e ()

1° for every ece,+ V, T'(6)eL(Hy, Fip),

90 , ’ ,
. ztha ma,ppmg. 6o+ Voe—T (e)e L(H, Fyy) is uniformly continuous

6 topology of uniform convergence on Q, 4. 6., for every ¢ > 0 there exists
a Pe# (H) such that for every 61, 62€6,+V, €, —6,eP,

Shl:%)ﬂT’ (e)h— T (8,) Bl < e.

)

Proof. 1° follows immediately from Propogition 7.

2° Let U, ¥ be such as in Propositi
! position 7. Let @ = U and let Q be
brecompact in Hy. Then we get 2° from the fach that for an equicgnti-
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nuous family of linear mappings the simple convergence topology is
equivalent to the precompact convergence topology [5].
THEOREM 9 (Mean-Value Theorem). Let the hypothesis of Theorem
8 be satisfied. Then for every W e (F) there ewist U, Ve# (E) such that,
for every ecey+V, Yet (E) and ke, we have | (e, W)lw < O(e, Y) Bl
where C(e, ¥) = sup [T (e-+k)s— T (¢)sll-
keY
8cW
Besides lim C(e, ¥) = 0 and, for every ueU,

Fe(B)
sup||T’ (e+ %) sl -

1T (e+u)—T (o)l < Allully, where A =
k,8eU

This theorem is equivalent to the following fact: a mapping from
a DF-S space to a locally convex space which is loeally uniformly conti-
nuously differentiable in the sense of Gateaux in' the neighbourhood of
¢, is also Fréchet-differentiable at &,.

PROPOSITION 9. Let B, F be DF-8 spaces and G a locally convex space.
Let T, be a mapping from an open set £, = B, 6,2y, to F, and let Ty be
a mapping from an open set 2y = F, T,(6)) € Ry, to G Let Ty be locally
uniformly continuwously differentiable in a neighbourhood of ey, let T be
uniformly continuous 'in a neighbourhood © of & and let T, be locally
uniformly continuously differentiable in o neighbourhood of fy = Ty(e,). Then
T,0T, is locally uniformly co'nt_inuomly differentiable in a neighbourhood of 6y.

Proot. Let Wes (). Let us take V, @ e (¥) as in Theorem 8. Then
we have ||Ti(f)sllw<1 for fefo+V,seQ, and the mapping e+7V 2
5 f— Ty(f)eL(Fg, Gy) iz uniformly continuous in the norm topology in
L(Fy, Gw). Let Z, P be such that 1Ty (e)Bllg < 1 for ecey+P, heZ, and
the mapping ¢,+P2e— T;(e)eL(Ez, Fy) is uniformly continuous in the
norm topology in L(Egz, Fg). We infer from the uniform. continuity of
T, on O that there exists a Y e (F) such that: 1° Ty (e)efo+ V for ecey+ ¥,
9° the mapping e,+ Y2e—>T;(6)eF is uniformly continuous on ¢+ Y.
Let B = Y N P; then from the inequality

175 (T (62))0 T e2) h— T (T (ea))o T (62) b
< |(Z4{s00) — To{Ts () Ti o) By + | To( T () (T3 02)—Ti o)

it follows that the mapping e,+R>e— To(T:(e))oTs(6)eL(Ey, Gr) is
uniformly continuous. Hence, the mapping e,+ R> e~ (T,0T,) eLy(B, G)
ig uniformly continuous on 6, R. q.e. d.

If B is a DF-S space, F a locally convex space and T a differentiable
mapping from an open set @ < F to F, then we can introduce the notation
of the second derivative of T in the same way as we did in Section 2 for
a mapping from a metrizable space. We can also prove that the second
deriv ative is & bilinear eontinuous symmetric mapping from H X FE to F.
A gimilar result is valid for the »-th order derivative (see Lemma 11).
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Definition. Let T be a mapping n-times differentiable, from an
open set QX E to F. We say that the n-th derivative is locally uniformly
continuous in o neighbourhood of eyeQ it for every W e () there exists
aneighbourhood &y, of ¢, such that the mapping 0y, 2e — T™ () e L} (B, Fyy)
is 1_1nii0rmly continuous on @y} If B is DF-8 space, then from the local
@form continuity of T™(-) in a neighbourhood of ¢, we infer the local
wiform continuity of T, 7@, ... T @1 in a neighbourhood of e,. Hence
we can introduce the notion of & mapping n-times locally uniformly
continuously differentiable in a neighbourhood of e,.

THEOI.%EM 10. Let B be a DF-8 space, F a locally convex space and
.’Z.’ & mapping from an open set 2 = H to F, n-times locally uniformly con-
tinuously differentiable in & neighbourhood of e, Q. Then for every W e (F)
there exist V, U, Qe (E) such that: '

1° for every eco,+V, T™ (¢) < L (Byy, Frp),

2°. the mapping e,+V>e — T™ ()L™ (By, Fry) is umiformly conti-
nuous in the topology of the uniform convergence onQ X ... X Q in I* (By, Frp).

n

The proof follows from Proposition 8 and Lemma 4.

THEOREM' 11. Let B be o DF-8 space, F a complete locally convex space
and T a mapping from an open set @ = Hito F, (p-+ 1)-times locally uniformly

continuously differentiable in a neighbourhood of epeR. Then there exists
o Ues (B) such that for every he U we have

21 , f1—s)
T(eg--h) =ZFTW(%)(7@, ...,h)—}~(f(1—s)~1’(ﬂ+”(eo—|—sh)ol3)(h, e B).
k=0 0

p!

Besides, for every W e (E) there emist U Ven (B) such that, for
ever
Qe (B), eceo+V, heQ, we have ’ & Y

(e, Wy < Ole, Qb and  Lim G(e, Q) = 0
Qed’(E)

(cf. Theorem 6).

This theorem follows from Theorem 10 and Lemma 12.

Using the results of this section, we can pr i

i prove that the mapping

T :'E‘XG-—>F (E and & being DF-8 spaces) which iz partially locally
umformly eontu'mously differentiable in a neighbourhood of (6, g) in
both variables, is also differentiable at (6, 9) (cf. Theorems 7 and 7).

5. Differentiability on dense subspaces of DF-§ spaces. k

LeMMA 14. Let E be a barrelled space, and (Bo)acsr @ base
: o) ae of bounded,
sots in B. Let F be a linear subspace of B siuch that “ d

(*) UB,nF =E.
acsd
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Then F is a quasi-barrelled space.

Proof. Let A & F be an absolutely convex closed set which absorbs
all bounded sets in F, i. e., for every ae & there exists 1, >0 such that -
2o(B.n F) c A. Since 1,(B,n F) c 4, we infer from (*) that 4 is an
absorbing set in B. Hence et (H). But A = 4 n F (4 is closed in F).
Thus 4 is a neighbourhood of zero in F. g. e. d.

Remark. It follows from condition (x) that F is dense in H. We
also infer from (#) that every element of ¥ is the limit of a bounded Moore—
Smith sequence whose-elements belong to F.

If B is a DF-S barrelled space (e. g. the strong dual to an F-§ space)
and F its subspace which satisfies condition (%) of Lemma 14, then F is
a DF-S space. Indeed : 1° F has a countable base of bounded sets and
is quasi-barrelled, and thus it is an DF-§ space; 2° every subspace of
a Schwartz space is also a Schwartz space.

To the space F we can apply the theory developed in the previous
section. We shall need the following ‘

LEMMA 15 (cf. [12)). If E is a locally convex space and F ils subspace
of type DF, then, for every bounded set A in F, there exists a bounded set
B < F such that A < B.

COROLLARY 1. If E is a locally convew space, F its dense subspace of
type DF and (B,)seq & base of bounded sets in E, then every bounded set

A < Eis contained in one of seis Ba 0 F. Obviously, we have | JB,n F = E.
aes?

From Lemma 14 and Corollary 1 we get
COROLLARY 2. Let E be a barrelled DF space and F ils dense subspace.
F is a DF space exacily if \J B, n F = H. Mgreover, F is quasi-barrelled.
aed

Lewvma 16. If B is a locally convex space, F' its dense subspace of type
DF and G a complete locally convex space, then Ly (B, ) = Ly(F, ).

Proof. L(E, @) < L(¥,Q), but every mapping feL(F,@) can be
unigely extended to feL(F,H). We have proved the algebraic isomorp
hism. The topology of L, (E, @) is not weaker than the topology in Ly(F, G),-
but from Lemma 15 we see that these topologies are equivalent. q. e. d,

A gimilar result can be obtained for n-linear mappings.

EXAMPLES.

1° B = &'(R™ (the space of distributions with compact supports
endowed with the strong topology), F = €5’ (R™) with the topology indue-
ed from E. . i

These spaces satisfy the conditions of Corollary 2, because every
digtribution with a compact support can be obtained as the limit of a se-
quence of functions belonging to Co(R™) (cf. [19]).
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2° B = & (R") (the space of tempered distributions endowed with
the strong topology), F' = 0f° (R"™) with the topology induced by E.

6. Supplementary results. The theory developed in the previous
sections can be extended to all quasi-barrelled DI spaces if we make
stronger assumptions. :

PropostTION 7. Let B be a quasi-barrelled DF space and G a locally
conves space. Let f be mapping from 2x B (2 < B) to G which satisfies
the following conditions:

1° for every ecf, f(e, *)eL(F, @),

2° for every Wes (@) the mapping Op2e — f(6, +) e Ly (B, Gp) 45 unmi-
formly continuous on some neighbourhood O of ege 2,

3° for every bounded set B < Op,f(B,-) is bounded in L,(H,Gy).

Then for every Wet (@) there ewist U, Vet (B) such that, for every
61y €xceo+V, 3}:1113 If (61, B)—F (6a, B)llwr < 1. '

LevMA 17. If B is a quasi-normable space, 2 a neighbourhood of zero
in B, Ye# (B) and Y+Y < Q, then there ewists a Vet (B) such thai,
for every A >0, there ewists a bounded set B <= 2 such that V < AY+B.

Proof. From the quasi-normability of ¥ we infer that there exists
a ¥V < Y such that for every A > 0 there exists a bounded set A such
that ¥V = 1Y 4 A. Of course, wecantake 0 < A<<1. Then V <« A ¥+ A4 n 2
and B =4 n Q. g.e.d.

Proof of Proposition 7'. It is known that a quasi-barrelled
DF space is quasi-normable. Let W e (G). As in the proof of Proposition
7, there exists a Y et (H) such that 1° Y+ Y eOp— ¢, 2° the mapping
By o0p> o> fle, ) eLy(EB, &) is uniformly continuous on Oy in the
topology of Ey. Let V be such a neighbourhood of zero in E that Lemma
17 is satistied. Then, for ec6,-+V, wehave e = ¢,-+y -+ b, wherey e4, Y « ¥,
beB; c Op—e6,and Y et () are such that

sup sup I(F B+ 9+ 60)—F (b+e0)) allw < 1

beB; aed;

(ef. the proof of Proposition 7). Hence, by 3° we have

sup |[f (e, a)llw < L+supllf(e+ d)ally < oo.
eegg+ ¥V eedg
acd; beB} ’
Thus the set {f(6, - )lueysr < Lo(H, Giy) is bounded and hence equi-
continuous. q.e.d. :

This proposition can be extended to the case of n-spaces. It can
be shown from Lemma 10 that, for & quasi-barrelled DF space B and
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a locally convex space G, Ly(E, Ly(E, @)) ~ L,(B, B; @). A similar result
is valid for n-linear mappings.

In this way we can obtain by stronger assumptions the Mean-Value
Theorem and the other results which follow from it.

The class of quasi-barrelled DF spaces includes, for example, all
spaces which are the inductive limits of sequences of normed spaces
(e. g Zx(R,), Dp(R™, ef. [19]) and all spaces which are the inductive
limits of sequences of locally convex spaces where the tramsition maps
are weakly compact (cf. [17]).

Tn the next paper it will be shown that in the case of complex spaces
one can obtain interesting results concerning the connection between
differentiability and analicity.

T would like to express my thanks to Professor K. Maurin for his
inspiring interest in this work.
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INTRODUCTION

The paper consists of two parts. Tn the first part the problem of
the construction of a continuous tensor product of Hilbert spaces is con-
gidered. There are two natural ways to approach this problem.

The first way is by defining in a given Hilbert space $ the so- -called
tensor structure, i. e., by assigning to every partition of a certain Boolean
algebra a unitary mapping from % onto an infinite (incomplete) tensor
product of Hilbert. spaces [8]. The notion of tensor structure appears
in a different form in a paper by Araki and Woods [1]. The authors have
found the general model for tensor structures. They show that in the
most interesting case of a non-atomic Boolean algebra (the “continuous”
case) the Hilbert space is in & natura al way isomorphic to an exponential
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