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On the extension of Lipschitz-Hélder maps on IF spaces
by

LYNN WILLIAMS, J.H. WELLSand T.L. HAY D E N (Lexington, Ky.)

1. Introduction. Let (M,,d,) and (M,,d,) be metric spaces and,
for each subset D of M, and positive number «, define Lip (D, M,; o)
to be the set of all maps f: D> M, which sabisfy a Lipschitz-Holder
continuity condition of order a, that is,

dz(f(ml)yf(wz)) < [dy(@y,2:)]"  for all @y, zseD.

The statement that “extension holds for a” or simply “e(M,, M,; a)
holds” means that, for arbitrary D < M,, every map in Lip (D, M,; a)
extends to a map in Lip (M,, M,; a). The problem of extending Lipschitz
(contraction) and Lipschitz-Holder maps was first considered by Mac-
Shane [5] and Banach [1] in the case M, is the real line, and it follows
from a well-known result of Kirszbraun [4] that e¢(H, H; 1) holds for H
a Hilbert space. A review of other related results and a basic bibliography
to the subject is given in [2]. In [3] it was shown that if M, is an I? space,
2 < g< oo, and M, is a Hilbert space H, then e(L% H;a) holds for
0<2a<q/(g—1); and also ‘that e(L?, H; a) holds for 0 <2a< ¢ and
1< ¢<2. In this paper we generalize these results as follows:

TurOREM 1. Let (M,, d;) be a metric space and let (X, p) and (Y, v)
be two o-finite measure spaces. Then

(a) e(L(u), L (»); a) holds for

Ho0<a<q/pif l<g<2 and 2< p< oo;

() 0<a<qgpif 2<p< o and 2 < g< oo;

(i) 0< a<g/p F1l<p<2 and 1< ¢<2;

(iv)o0<a<gp ifl<p<2 and 2<qg< oo,
where 1/p+1/p" =1/g+1/¢ = 1. Furthermore the range of a is sharp
if the respective LV spaces are infinite dimensional. Also

(b) e(M,, I’ (»); o) holds for 0 < a<<1[p when 2 < p < co and for
0<a<l/p when 1<<p<2. ‘

We shall show in Section 2 that this extension theorem is a direct
consequence of the following fundamental L space inequalities:
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TumoREM 2. Let (X, u) be a o-finite measure space. Ohoose a fimite
6L Wy, &gy .eey By in LP(u) and non-negative numbers oy, g, ..., 6, Such

that > ¢, = 1. Then

n n
(4) Sagle—aln <2 Daluly, 1<p<2;
=1 de=1
M
(B) > wm—wm <2 Z” ledly, 2<p< oo
ii=1 i=1

n
(©) Zcm,‘umi—wn”»z \ il ~Zc,w,n,,, 1<p<2, f> 05

e
(D) 2 o llo;— ) > 22 alo— Doy, 2<p< oo, f=p.
'L]—l J=1
The connection between these inequalities and the problem of extend-
ing Lipschitz-Holder maps is provided by a general theorem of Minty [6].
Suppose Y is a vector space over the reals and X is a set. A map
@: YXX XX — R is called a H-function provided that
(i) for each z,, ,¢ X, @ is finitely lower semicontinuous and convex
on ¥; and
(ii) for any sequence (¥, %), ..., (¥n, #,) in ¥ XX, any <X and
any sequence ¢y, ¢y, ..., ¢, of non-negative numbers with }'¢; = 1 one has

n n
(1) Zocqﬂn Yis 0 @) > 2 Y 0 Bly— > oy 4y, ).
fi=1 i=1 j=1
THEOREM 3 (Minty). Let Y be a linear space, X a space and ® a K-
function on ¥ XX XZX. If (yy, %), ..; ¥n,2) 7}3 o finite sequence in
Y X X such that D (y,—y;; 4;, #;) <0 for a,ll 35, 1Kt j<n and if weX,
then there exists a vector ye¥ such that @ (y,—y; 2;, ©) <0 for all i,
1< i< n. Moreover, y can be chosen in the comvex hull of Yy, Yo, «ovy Yn}r
In Section 3 we establish the inequalities of Theorem 2 by application
of a multiple-component version of the Riesz-Thorin interpolation theorem
[3]. Finally, Section 4 is. devoted to the construction of examples which
establish the sharpness of the range of «.

2. Application of Minty’s criterion for extension. We shall show that
inequalities (A) and (D) of Theorem 2 imply part (i) of Theorem. 1.

Let f be a Lipschitz function of order « from a subset D of L%(x)
into L7(»), where 1< ¢<2, 2<p< o and 0< a< ¢/p. Let § = qfa
and note that g > p. Define
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@: L (p) x L (») x L4(») > R
by
Dy; @y @) = i — ll— ;1.

. By virtue of (A) and (D) we have

N ey ®(yi—yy5 @, 2 ess lyi—yillo— 2 036, (2, — @) — (a;— )|
i,j=1

=1 i,i=

>3 ), alli— _chy,ﬂz-z 2 ellos—all

—220@(?/1 chijwnw

t=1
so @ satisfies (1) and is clearly continuous and convex in y; hence @ is

a K-function. In order to extend the domain of f to a point ZeL"(u)\D
it is enough to show that ﬂ Sj # 9, Where

Sy = WeLlP(»): ly—f@)ly < le—2l}-
Fix @yeD and define Sy = Sy N Syg, for weD. Then Q St
= ﬂ S and, sinee L7 (») is reflexive, Sjey I8 weakly compact. So we
ea.n eonelude that ﬂ %z 7 O provided the finite intersection property

holds. To this end choose g finite set @y, %5, ..., 4, in D, and note that,
for 1<4, j<n, :

B(f(a)—f (%)) @5 @) = If () —F(@llg— llzs— 2,1 < O
becanse
I () — F (@)l < Nl 5" = flowy— o2
In view of Minty’s theorem there exists a y ¢ L”(») such that Q( flae)—
—y; 2,2 <0 for i =1,2,...,n Therefore

02 |1f(z) ~1/]|£-llm-—zil“ or llf(wz)—JHp < llw—2lig
for ¢ =1,2,...,n so that ye ﬂ 8}(zy- Moreover, y can be chosen in the

convex hull of {f(x,), f(zs), ..., f (mn)} It follows that f can be extended toz
with f(2) =w in the closed convex hull of f(D) = {f(#): zeD}. A simple
Zorn’s lemma argument now shows that f can be extended to all of L?(u)
in such a way that the Lipschitz condition is preserved and the range
of the extension is contained in the closed convex hull of f(D).

We omit the entirely similar arguments which show that (ii) follows
from (B) and (D), (iii) follows from (A) and (C), and (iv) follows from (B)
and (C).
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In order to see that Theorem 1 (b) follows from (C) and (D), simply
note that @: L”(») X M, X M, — R defined by @ (y; @1, 25) = Iylls— dy(2yym,)
is a K-function, where f = for 2<<p<< co and 29" for 1 <p<2.

3. Proof of Theorem 2. We need the following generalization of the
Riesz-Thorin. interpolation theorem given in [3].

Let (X, #1), (Xay #2); .-y (X ) be a finite sequence of o-finite
measure spaces, P = (Py, Pay ---, P,) an n-tuple of numbers in [1, co]
and A = (A, Ay, .-y 4y) & sequence of positive weights. For each r, 1<
< 1 < oo, define LF7(2) as the linear space of all vectors f = (fi, fa, ..., f),

freLPk(p,), such that 7
Wl = { D [ 1flrap) ™ 2" < oo.
In case r = oco we (1e];f1ne‘\k
I1fltp,c0 = Jax IJfkll,,k~

Introduce a second sequence (Y, »,), ( Y2 s ¥2)y vry (¥, v,) of o-finite
meagure spaces and define the space s (n) ina gmnlaa way. These spaces
are Banach spaces. A vector with measurable components is termed
a measurable vector and a vector whose components are simple measurable
functions is a simple measurable vector.

THEOREM 4. Let T be a linear transformation from the simple measuradle
vectors on X = (X,)i, to the measurable vectors on Y = (Y,)t.,. Let
1<Py Q;< oo, 1<K 00, 18,00 for ¢ =1,2 and se 1/P
= (1=0)[P,+1/Ps, 1/Q = (1~1)[Q1-+1[Qs, 1[r = (L—1t)[r +1t[ry 1fs
= (1—1)/s;+ /sy, where 0 <t <1. Suppose there exist constants M, and
M, such that

(2) \Tflays, < Milfllpys, fori=1,2
and any simple vector f. Then
(3) I1Zfllg,e < M3~ "M iflip

and if P< oo, T can be extended uniquely to I (7).

For a proof of inequalities (A) and (B) we refer the reader to [3].
We proceed to establish (C) and (D).

Fix a positive integer n and choose positive numbers ey, ¢y ..., ¢,

n
such that ' ¢, =1. (We lose nothing by agsuming ¢; > 0). For (X, u)
i=1

a o-finite m;a,sure space and 1 < p, ¢ << oo define L"%(¢*) o be the space
of (n—1)-tuples (1, 7%, ..., f!) in which f’ is an (n—j)-tuple of elements
of L”(u). On this space introduce the norm

n—1

Wlho = (> X oyl g, 1<q< oo

=1 Jsm

icm
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and
Ifllpe0 = max Ifi_ill,.
Li<n—
i>i

Let M (c?) denote the subspace of L»?(¢?) consisting of the simple
measurable vectors and define I7%(c) to be the space of n- t-uples (915 92y
.y g,) of p-integrable functions on X with

lotha = | Zal-ngiuz)”“, 1<q< o,
9110 = s lgills -

We let M (¢) denote the corresponding space of simple vectors.

Congider the linear operator 7T': M (¢?) — M (c) defined by

i—-l
kay—k;

(Tf); B’%f,

1<j<mn,

it being understood that the summation is zero if the upper index is zero.
In the following two lemmas we establish the continuity of 7' at the end
points 2 and oo which allows us to apply Theorem 4.

Levvia 1. {{Zflle,e < fllg,e for feM(e?).
Proof. Let {,)> denote the inner product in LZ(u). Then

o Sociti-Seita]

= 5:01{2 CopgrFls I — ZZ TG I

=1 1,1=1 =11

{wm=§

|

-1 n—j

Ciyj Cm<f’{7 ijm> -+ Z C1Cm <f7'k—k7 f,ni,,,,_)}

m=11i=1

e 1+70k+1<fufk>+2 E e ffns Fid—

=1 k=1

n-j

M:

j=

-

1,k=1

j—1

S

—7

2 0504 0o {< I 1>+ I 17200}

M:

7

00,6, Fity Tty + T FEd+ e Fhd +
+ <f1];—7’ f}:——i>_ <f7'i»m fl::—1> - <f1{—ja f7‘i—-i>}+

+ Zn,‘ {es
=1

i>i

il
-

k=

-
5

-2

I<i<j<k<n

e {fio) > + 0 {fi-or -}

3 — Studia Mathematica XXXIX. 1
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Since this last sum is equal to

n—1

201 o(t— D a)<fie i == D D aeofia fiD
k;é'l.7 i=1 k#i,7
7>l i>1
we have‘
ITf Rz = Ifle— Y el —{fio fld—<Fhu i —

Ii<j<k<n
=i Py Bl P>+ s o+
i J+ s T+ ST T+ o FE D)
= Ifl5.— - 2 N | Ay e A

Ii<f<k<n

‘ < IFIRs-
LemMMA 2. If 1 <7
Proof. We have

<00y then | Tf o0 < NS lho0 for feM(c?).

n—q
1f o = max | | 2 0i £ 2 o ffnl,
i &
n—j

> eonill b+ Zchu ol }

1<7 'n{

3

]2 o { n;af 170} = 11, co-

In order to apply the interpolation theorem to the operator T, suppose
1<p<2 p' <P < co; then set L—t = 2/f and observe that

(L—1)/2+1 = (1+1)/2 =1—(1—1)2 = 1—1/p=1~1/p’
=1/p=1—t)/p-+tp = (1—1)/2+1/p.

Hence there is a number r, 1 < » < _’p, such that 1/p = (L—1t)/2--t/r.
By the preceding lemmas we have ||Tf 2,2 < 1flle,2 A0 1Tl 00 < 11 flly, 00 ToT
feM(c?). Thus, by Theorem, 4, .

1Tl p < 1 £ lp, 55 y BB

Now if 2<p< oo and p<ﬁ< oo, set 1—1 = 2/8 and choose 7,
P<r< ocosothat1/p = (1—17)/24 ¢/r. Again, by application of Theorem 4,

we have
1T o, < 115 llp, -

l<p<2

icm
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If %y, @5, ..., @, are simple measurable functions on X, then

By — wn)

is an element of M(c%), where in our notation af = Bj— DBy g

B = (B~ gy By —Dgy ovy By— Ly Ly— Dy -+

‘We now compute ]]Tm][f,, s and Hm]]ﬁy g

el = Z%HZ vees E ]
- 3] Sesta-s- ooz
‘ - zum o#;“llci(mf—mi)u:
= Sl Saw—slf - Sofla—Seal,
and ‘
el o =;’ 2 eilei-dy = 2 2ol =%:i,12:]1 ol

Hence we have

n n . n

% g

2 ;05 llae;— ;|15 > 2 Z cillm,-——z €|,
=1 A i

_where B>’ for 1<<p <2, and f=p for 2 <p < co. : ]
Therefore (C) and (D) hold for all simple funections #,,...,#, on X,
which is clearly sufficient to complete the proof.

Insight into the above argument may be obtained by considering
the case n = 3. In this situation, I*?(c*) is the space of 3-tuples (f, fa, fs)
= ((ﬁ,fé),ﬁ) with weights ¢,6,, ¢,€s, €265, I”%(¢) is the space of 3-tuples
(g1, g2y gs) With weights oy, ¢,, ¢s, and the operator T' is given in matrix
form by

4. Sharpness of Theorem 1. We begin with the construction of some
sets in finite dimensional 7P space which exhibit “nice” geometrical prop-
erties.
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Corresponding to the 4 x8 matrix

11 1 1 -1 -1~-1-1
1 01 —-1-1 1 1-1 -1
A4d=17y 1.4 1 1-1 1-1
1 -1 1-1-1 1 1-—1

define an operator T on the set of all matrices over R as follows:

If B = (by) is an nxm matrix, then T'(B) iy the 4n X8m matrix
(b;A) with the obvious identification between a = X matrix of 4x8
wmatrices and a 4nx 8m matrix. Let X' = 4 and define X* = T(X*)
for k > 1. Note that X* is a 2%% x 2% matrix each of whosoe entriey is 1.

We omit the straightforward arguments for the mext two lemmag.

LevmA 3. If k> 1, then

92k
ZX;“J- =0 or 2%

1=1

for 1<j <2

and the second possibility holds for exactly 2* choices of j.

TEMMA 4. If k21 and 1 < r < 5 < 2%%, then
o3k

21 b —XE P = 2% g9,

For k=1 define the 2% vectors o, ef, ..
o2

(z:bc)7 ' 9~ 3kip (Xic’i_z—-zk EX;CJ);
r=1

. zlec in By, by
1<) < 2%,

Of course (¢f); denotes the j-th component of 2. We record the egsential
properties of these vectors.

LeMmA 5. The points {eF ﬁikl satisfy the following conditions:

(a) Bach component of 2§ is 0 or 42737,
o2k

b) Yo =0;
=1
(©) [lefl, = (1—2- %y,
(d) []z{.‘-ﬂzﬂ]p = U’ for i #4; and
(¢) min max [e—afl, = (1—2 )1,

m;k 1<i<a2¥

.I.JI.OOf' Part (a) follows from Lemma 3 a.ncl (b) follows from the
dgﬁmtlon of '2¥. Also, by Lemma 3 we see that 2F has 2° zero entries,
50 that [[of]l, = 2798k _gkylp — (1 _g~2kylip, By Lemma 4, |&f—2|
= 2—%/10(2(876-1)/17) (2) =211 = g1l Y

icm°®
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In order to prove (e) suppose there exists 2<%y such that

max [e— &k, < (1—27")Y7 = max [i2f],.
1<k 1<i<2?k

Let @; be the linear functional on I, such that [P ] =1and &;(<F)
= ||f|, for 1< i< 2%. By virtue of (a ) we have

&, (x) = (=, zk) 93klp . o—3k(p— l)/p(l 2" 2k) —1/p" _
for zelly. Also,

(1= 272117 > o 2], >

@y %> a
@,(2) > 0 since ‘

|®,(z— z"’)] > (1—27%) @, (2).

Hence we have the contradmtlon
T g2k }

0<Zqﬁ (2) = a- Z’<z,zf> —a- <z,2‘zk> =0.

This proves (e).

Tet ¥, ef, . ,ezqk denote the 2% unit vectors in thé standard basis
for Iy, that is, (e ;= o for 1< j 2%

Lo 6. The followi-ng hold for {ef}:

) llef—efll, =27, @ #j;
(&) ek, =15
(b) lim min max |léf—yl, =
koo yam . 1<i<o?k
2

Proof. Only (h) requires argument. For each k> 1 the min max is
assumed at some point § = (y1, Ya, .-+, Y,m) for which 0 <y,;. Choose s
so that y, < y; for 1 <j < 2% Then

max [y—efll, > {(1—y2+ D9} = {(1—y P+ @ 1)y
1<k j#s
Now the function (1 —1)?+ (2% —
tatt = [(2%—1)HP-D 1 177! = ¢7? so if we define w* = (¢, ¢y -y
then
min max |jéf—yll, =
yslf;k 1<i<2?k

.

1) assumes it minimum for positive
—1
&

et — ek, = {(1— ¢ )P+ (@F—1) o™}

and this expression tends to one as k— oo.

Suppose e(L4 L¥; a) holds, where 1< p, ¢<2. Let .d
and set D = {dé¥: 1< i< 2%). Define f: D — Iy, by f(def)
IIf (dek) *f(def)llp = =, = 27 = a2

_ = @k — g = lldef — oy
$0 feLip (D, [y; a). By assumption the map f ean be extended to zero
50 a8 to preserve the Lipschitz condition. Aceording to Lemma 5 () the

— glja'—1ig

= 2% Then
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best choice for £(0) is 0. It must therefore be true that e, < lldefllz, that
is, (1—27 )17 < 9*r'~al¢ and this must hold for integers k since we are
assuming that e(L?, L”, a) always holds. Therefore 2*7'~*/ > 1 or ¢fp’ >

For 1< p<L2<g< oo define f by f(2"'~ 'y = oy for 2 <p,
¢ < oo define f bV f(21"‘7’ Ut'oky = ¢f; and for 1< ¢<2<p < oo define
faver—lagl) = ¢F In each case extensmn of f to zero implies sharpness
of the corresponding part of Theorem 1.

Notice, for example in the case 1< ¢ <2 < p < oo, that we have
constructed functions feLip (D, L”; «) for which the best choice for
extension to the point zero does not lie on the convex hull of f(D).
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Conjugate kernels and convergence of harmonic singulatr inegrals
by
CALIXTO P. CALDER O N (Buenos Aires)

Introduction. Tn this paper we shall be concerned with singular
integrals having the form P.V. Q(X’)|X|™™ * f, where Q(X’) is a spherical
harmonic.

The purpose of this pa.per is twofold.

First, to show that it K (X} = (X)) X|™™ for |X|> e and zero
otherwise, there exists a unique radial function k(|X|) ) belonging to I*
such that

PV, [QX)|Y| (e X —Y)AY = E,(X)  ae.
RmM

The function %(|X|) is the same for any spherical harmonic 22X
of a fixed degree.

Second, we shall use this representation to study the pointwise con-
vergence of harmonic singular integrals at individual points by giving
conditions on K (f) only The kernel k(| X]) is also studied.

NOTATION

1. X = (#y, -.-; @) Wwill denote a point in the m-dimensional Bucli-
dea.n space and dX = dw, ... dw, the element of volume there.
. > will denote the surface of the unit sphere in R™, X' any point
there and do the “area” element on X.
3. f¥g will denote the convolution of f and g, namely

ff(x Y)g(¥)a¥;

FOAX) = f(Ay, ...,y Ax,,) for any real 1 and any function f defined on R™.
4. [exp(—i2nlX, 1' (X)) AY = f(X)
RIIL

will be the Fourier tmmfmm used here; <X, ¥) = Zm Yo .
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