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best choice for £(0) is 0. It must therefore be true that e, < lldefllz, that
is, (1—27 )17 < 9*r'~al¢ and this must hold for integers k since we are
assuming that e(L?, L”, a) always holds. Therefore 2*7'~*/ > 1 or ¢fp’ >

For 1< p<L2<g< oo define f by f(2"'~ 'y = oy for 2 <p,
¢ < oo define f bV f(21"‘7’ Ut'oky = ¢f; and for 1< ¢<2<p < oo define
faver—lagl) = ¢F In each case extensmn of f to zero implies sharpness
of the corresponding part of Theorem 1.

Notice, for example in the case 1< ¢ <2 < p < oo, that we have
constructed functions feLip (D, L”; «) for which the best choice for
extension to the point zero does not lie on the convex hull of f(D).
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Conjugate kernels and convergence of harmonic singulatr inegrals
by
CALIXTO P. CALDER O N (Buenos Aires)

Introduction. Tn this paper we shall be concerned with singular
integrals having the form P.V. Q(X’)|X|™™ * f, where Q(X’) is a spherical
harmonic.

The purpose of this pa.per is twofold.

First, to show that it K (X} = (X)) X|™™ for |X|> e and zero
otherwise, there exists a unique radial function k(|X|) ) belonging to I*
such that

PV, [QX)|Y| (e X —Y)AY = E,(X)  ae.
RmM

The function %(|X|) is the same for any spherical harmonic 22X
of a fixed degree.

Second, we shall use this representation to study the pointwise con-
vergence of harmonic singular integrals at individual points by giving
conditions on K (f) only The kernel k(| X]) is also studied.

NOTATION

1. X = (#y, -.-; @) Wwill denote a point in the m-dimensional Bucli-
dea.n space and dX = dw, ... dw, the element of volume there.
. > will denote the surface of the unit sphere in R™, X' any point
there and do the “area” element on X.
3. f¥g will denote the convolution of f and g, namely

ff(x Y)g(¥)a¥;

FOAX) = f(Ay, ...,y Ax,,) for any real 1 and any function f defined on R™.
4. [exp(—i2nlX, 1' (X)) AY = f(X)
RIIL

will be the Fourier tmmfmm used here; <X, ¥) = Zm Yo .
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5. I?, p > 1 will denote the usual I” spaces defined on R™; O the
space of infinitely differentiable and compact supported functlons 0, the
space- of continuous and compact supported functions.

6. If K(X) = Q(X')|X|™™ is a singular kernel, then we write
E(f) =P.V. [E(X-Y)f(¥)dY;

Rr

also K, (X) = K(X) if | X| > ¢ and zero otherwise; similarly K, (f) = K, f.

TN
7. The symbol of K, as usual, will be P.V.K = lim K,, and the
characteristic, the function Q(X').
8. By QUN(X),j =1, L L = ("F7 T = (") wo waite any

m—1 m
complete system. of spherical harmonies of degree » on the unit sphere 3
of R™ normalized by the conditions

f_an)

X)) (X' )do = 6.

~ STATEMENT OF RESULTS

TeEOREM 1. If K, (X) denotes the trumcated simgular Ternel whose
characteristic is 2(X') a spherwal harmonic of degree m, then there ewists
a wunique radial function k(| X|) belonging to L' such that

() E(X) =PV, [K(X—T)e k(s |T))dT.

(i) k(1X]) 45 the same for amy harmonic 2(X') of a fiwed degree n.
THEOREM 2. If fel”, p > 1, p << oo, then
(1) E.(f) converges to K (f) at the point X provided that

lim &= [ K (f) (X—Y)—E(f) (X)d¥ =0
|¥|<s
in particular, if K (f)(Y) is continuous at X.
(ii) 51113 1K) (X)) < C, sup &m [f IE(fX—Y)"aY
|F[<s

C, depends on p only.

THEOREM 3. (Behavior of (e X)) =k, (|X
belong to L{(R™), then 1X1) = k,(|X]). If f and |f| log™|f]

(@) ke *f—Ff a.e. as e 0,
Surthermore if f* = sup [k, * f| we have

(i) 1B(f*> )| <( (,w2 fmdx+ 0,/%) fmdAH- (Ca2) flfllog*" [f1dX,
where Oy, Oy and Cy do 'n,ot dep(md on f.

iom®
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If fel” and p > 1, we have
(iil) %, *f—F a.6. as ¢—> 0 and ||[f*|, < G, ||fll, the constant C, depends
on p only.

1. Proof of Theorem 1. We start proving some auxiliary lemmae:
1.1. Leyma. If f(1X|) is o radial function defined on R™ and Q2(X’)
is a spherical harmonic of degree n defined over the wunit sphere of R™, then
we have for feI?, 1< p < 2:
(i) X)) - X)) = ¥(X)

where (X') is the same harmonic and Y(|X|) is also a radial  func-
tion.

@) ([ reaxnean)” <

- Q(X'),

Ty ( f fuxyrax)”,  1jp+ijg =1,

R
furthermore
N
W) = lim Py (f) = lim 2ni™ =™ f Iy smja—y (27ets) ™2 f (5) ds,

N—»00 N—oo

where the limit must be understood pointwise 1,f p =1 and in mean
of order q if feIP (1/p+1/g =1). The L? means are taken in R™ and
t = |X| - J,  mpa_1 denotes the Bessel function of order n+m|2—1.

(iii) The relationship between f and ¥ is independent of the spherical
harmonic provided that the degrec n has been fived.

Proof. The case p =1 is Theorem (2.6.1) in [1], p- 38. It p #1
and according to Lemma (2.6.5) in [1], p. 37, we have

(11.1) [ exp (—2#|X||¥|<X, ¥ ») QXN f(X) dX

1XI<N

N
= 2(X)2m | YT [ Tumpa@=IX| X)) | XEF(XD X

The Hausdorff-Young inequality gives

12) ([1@E @y (Trar) <o [ 12X PIFOXNP ax )

R 0<|X|<N
and also

v (T)RAE) <0, - [ 1e@)PIf(E)Pax)”

N<]X|<M

( 1o 1Y) —
R™
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According t0 the fact that ¥y, (| ¥]) is radial and taking into sccount
that 2(Y') is homogeneous of degree.zero we geb

ais)  ( [1Pa0x)- YfNum)rIdY)””

R
0|z LTI T——
<ol e if(xprax)”
N v X<nr
o 1riteen 1@l i\
< 0, |z ”"-m*q»;-( [ isiapeax)”

NI X[m0
which shows that ¥, (|Y]) is a Cauchy sequence in L7 which gives (i)
and (ii). Now taking N = 0 we get the estimates for the L” norn. of ¥
letting M tend to infinity.

Notice that the formula for ¥ involves the degree of the harmonic
and not the harmonic itself which gives (ii). In order to got uniform
constants for inequality (1.1.3) we may take 2y (X') & suitable sbherica,l
harmonic of degree n and ' o

(Li4) - 0, = |Z|\w=1n 1.z
19l
The bound C, will depend. on. the degree n ouly. ..

1.2. LewmA. Tet us consider now a complete system of splwmaa] hcw
monics of degree n and also normalized by the conditions

(1.2.1) f.Q’”(X’)D’”(X‘)dc =6y di=1,..,L

Then the followmg relation holds

(1.2.2) 2 {Q (XY = L)12]

(see for example [3], p. 33).

On the other hand, considering K™/ (X 7| =™ ond oy
of this sin. gula.1 Kernel i (X) = |X|~™ Qwi (X ), the symbol

(1.2.3) (P.V. E™))" = ¢ n""”l‘(az/z),l“‘l((n+ m)[2) (K1) =y, (X))
(see [3], p. 36). -
(1.2.2) gnd (1.2.3) give the following lemms:

. ' L :
1.2.4) L ~2 " n, , -
(1.2.4) Lmyma. (IEI/L.)%?K”(K" 'f) =Ff a.e. for fin I?,p> 1.

Proof. According o (1.2.2) and (1.2.3) for all Sfrel® we have

Pz ;KM (®*5)" = (12y/z) Z{mfxnsz(z’) = fX).
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Now taking into account that K™’ maps continuously I*-into L7,
p>1,j =1,..., L, and taking & sequence f, — f in I” and f, e L* N I for
all & we get

(1) |E™ E™if,— KM EY |, >0, j=1,...,L,
therefore ’
L 7 Lo
@) vt (1ZD) 3 MM f, =~ yi*(121/D) Y K™ K™
i=1 i=1

On the other hand, since f,eI* for all k, we have |
L .
v (IZD) Y KM EMf =f,  ae.
=1

Taking I” limit in both sides we get the desired result.
1.3. Lema. If Q(Y') is a spherical harmonic of degree n there exists
a radial function k(|Y|) belonging to I” for all p>1, p oo such that

(1.8.1) PV. [ Q)T R(X—-T)aY = QX)X if 1X]>1
R

and zero otherwise. Furthermore k(| X|) is the same function for any spherical
harmonic of degree .
Proof. Without loss of generality we may assume thab

(1.3.2) f|9(y')wda =1.
P

Let's construet now & complete and normalized system of spherical |
harmonies of degree n, 9™7(X’),j =1, ..., L, such that 2(Y") = QLY. |
Call 6(]X|) the function which is equal to |X|™™ if [X|> 1 and zero z

3

- otherwise; |
(1.3.3) EM(X) = QX)) 0(X), j=1,...,L.
Now, according to Lemma 1.1 ‘
(1.3.4) {EM(X)} = Qe (X)P(XD, §=1,.., L5
‘where

N
P(lX)) =1im 27”7'1X11"m'2f Jnimpr(2|X]s) - ™ 0(s)ds "
and the limit must be understood in I* norm in R™, since 9(1X1) eI”
Again, according to Lemma (1.1)

(1.3.5) (1 X< o0
because 6(|X|)eL*(R™).
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Now, Q™(X')¥P(|X|) may be interpreted in two different forms:
(ol I X)P(1X) = BV E™ *n(1X))",
where #(|X|) is radial and {5(|X))}" = »;' P(X]),
(2)  or simply as (E}7(X))".

On the other hand, 5 (]X|)<L? since ¥(|X|) also does. Consider

L
ZP.V. K™« K™ eI?  for all p > 1,
j=1
since Ep7el?, for all p>1, j =1,..., L.
Now according to (1)

L
= M EME" (5(1 X)) = y2(L/|Z))n (X))

j=1

L
PRA Ry
j=1

a.e. which shows that 5 (|X|)eL”, for all p > 1.

Our next step is to show that # (| X|) belongs also to I*. Consider now
a 07 and radial function 6(|X]) supported on the sphere baving radins #
centered at the origin. According to the smoothness of IM(X) = | X
Q" (X) outside the origin we have
(1.3.6) |E}7(X)—P.V. ™ * 6| < O (L+| X"+,

According to Lemma 1.1 we have also

. R s

(1.3.7) {P.V.E™ % 8)" =y, O™(X") - §(|X])
and )

j=1,...,L.

o @I XVB(X) = 2( X)) 2™ (— X7,

where the symbol * means the Fourier antitransform. The sign — in the
argument of Q™7(— X appears due to the fact that the inversion formula is

[ exp @ni¢X, Y3)f(¥)aY
R
and Lemma 1.1 has been proved for
[ exp (—2mi X, ¥3)f(T)dY.
)

According to (1.3.7) we have

(1.3.8) (B™ % 8)dX = f

N<|X|<M

QU (—X")2(|X))dX = 0.

N<|X|<M

This last inequality follows because #(|X ) is radial and Q™/(—X')
has mean value 0 over the unit Sphere.

icm°®
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‘From (1.3.8) it follows
{RP(X)—P.V. E™ % §}dX = 0,
N<|X|<M
for every pair N, M such that 0 < N <M< oo, but also
(1.3.10)" EP(X)—P.V. K~ * § = E™(y(1X])— 6(1X])).
Taking into account (1.3.6) we see that the following integral is
finite: '
(1.3.11)
[ |&™ (n(1X1)— 8(1X)))|- (1+log* | X|+1og* |E™ (n(|X])— 8(1X]))])dX.
R
This together with (1.3.9) shows that
(1.3.12) K™ K™y (1 X])— 6(|X])) e L%,

(See theorems 5 and 7 in [2], p. 103, and 108, respectively).
Finally, since

(1.3.9) j=1,..,L

j=1,...,L.

L
2K71’fK"’j(ﬂ(|Xl)— 8(1X1D)) = ya(L/1Z1) - (n(1 X)) — 8(1X1)

j=1

it follows that #(|X|)eL.
Now we take n(|X|) to be k(|X|) and the lemma is proved.

1.4. End of the proof of Theorem 1. According to Lémma 1.3:
E\(X) =P.V. [K(X—-Y)k(Y))aY.
Rm
Also according to the homogeneity of K (X)

(1.4.1) e (71 X) = K, (X).

Taking the Fourier transform we get

~ N
(1.4.2) K (X) = 9, Q(X) - b = QX)p B(1X])

also .
K (X) = Q(X)P(1X]),

where ¥(|X|) = 7, k(|1X]).
According to (1.4.2) and (1.4.1) we have

(1.4.3) E(X) = QX) ¥ (X)) = QX )y, k(s X)).
Auntitransforming we have ’
E,(X)=P.V. fK(X-—Y)e—mza(s—l|Y|)dy

RM

a.e.
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This finishes the proof of Theorem 1.
1.5. CoroLLARY. If ¢(|X]) is a radial function defined on R™ such
that

M) [ lgllog* lgldX < oo,
|X|<1
i [ lexn— 12 14 Jog™ || +log* ¢ (1X]) — || "X < oo
» |¥|>1

Then, for any sphemoal harmonic 2(X') we kame .
(YY) =P.V. [QX)|X|"™0(X~T|)dxX,
r™ .

where 6(1X|) is & radial function belonging 1o L. 0(|X|) is the same for any
spherical harmonic of the same degree.

Proof. Without loss of generality we may assume 120, » = 1. Take
K (X) =Q2(X)|X|™™if |X|>1 and zero otherwise.
Now Q(X')g(X)— K,(X) verifies

L51) [ {2X)(X)—E (X)X =0, 0<FN<H< oo.

N<|X|<M

According to (ii) ‘we also have

(1.5.2) jig(x' (1X])—

M
— K (X)|(14log* | X|+logt| 2(X')g (| X|) — K, (X)) dX < oo.

And it Q1(X"),§ =1,...,L,isa complete system of spherieal harmonies
of degree n normallzed by the conditions

(1.5.8) fm»% X)0~(X")do = 8, o

Wwhere Q% = 2, then we have for Q™(X")¢(|X])— EMI(X),5 =1,..., L
relations (1.5.1) and (1.5.2). According to Lemma 1.1 and. to Thearem 1
(LB4)  {2Y/(X)g(1XN)— K2 (X)) = QI (X) (W (| X)) =y, k(1 X},

where k(].X[) is the “conjugate” of K7/, j =1, ..., L. On the other hand
aceording to (1.6.1) and (1.5.2) ,

P.V. K™ % (Q“”'(X’)g.(lX[)——K’{”'(X))eLl, J=1,..,5L,
which says that

I £
70 2 L9 (X QO (WX — 5, (1)
= 7 (LIED (P(1X() =y, k(1K)
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is the Fourier transform. of a function in I', and since k(] X]) is the Fourier
transform of a function in I', Y(|X]) is also the Fourier transform of
a funetion in L'. Taking the Fourier antitransform of y; W(|X|) we get
the desired result. '

2. Proof of Theorem 3. We start with the case L7, with p M 1.

2.1. Let us consider peCy® and
@11) ek (X —T))p(Y)aY = [ B (X —X)p(T)dY .

M R &
Since @ may be represented a.e. as
- L . .
(2.1.2) ot (1Z1/L) D B (E™g) =g a.e.
J==1

taking Fourier transtorms and recalling that k,<L* for each s> 0, we get
that :

F=1

L
(2.1.3) bt ¢ = X rat(1ZD)EPT » B ()}
so that =
‘ L Py N
kot = (IZ1/h - I) D K« E™(g)  ae.

Recalling that k,eL” for all p such that 1 < p< oo and also that
K™ IP for all p such that 1< p< oo, § =1, ..., L, and the fact that
K™ (p) is a continuous operator in IL?, p > 1, by density we prove (2.1.3)
for all feI”, p>1. Holder’s inequality shows that for fixed >0,

b, *f and K™/ x E™/(f) are both continuous functions of X, provided
that feI?, p > 1, in fact

(T * ) (X+h)— (b, * ) (X
<, - ( f\ch(X+h—Y)~ke(X—Y)lqu)”‘l,
RrR™ .

(2.1.4) '
(T« B (f)) (X +B)— (B2 * B (f)) ()
< O,lfly - | [ 12 (X b X)— (X — T)2AT 2.
R

Therefore (2.1.3) holds e;ferywhere, provided that feI?, p > 1. Now,
since K™(j =1, ..., L) are truncated singular kernels with 0™ characte-

rigtic we have

(2.1.5) [sup [K2 * K™fll, < Gy |E™ i, < O O - fll,y  for > 1;
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according to the representation (2.1.3) we have

(2.1.6) I, < Oy Iflly  2>1,
where f* = sup |k, *fl .
2.2. Case when f and [f|log*|f| belong to L.
Without loss of generality we may assume that f>> 0. For a given

1> 0 we are going to make the Calderén-Zygmund decomposition to
f (see [2], chapter I).

(2.2.1) There exists a sequence of non-overlapping cubes {Q;} having
edges parallel to the coordinate axes, such that

(2.2.2) 1< (1)1Qa) [faX < b, 1,
Qg

where b,, depends on the dimension m only.

If we call D, = (J Qg then [f| < 2 a.e. in R™— D,. Now we decompose
1

f = fi-+fs, where
in R*—D,, *

. [ S @,(X) /1Qa) (Y in D,
d=1 Qg

@;(X) denotes the characteristic function of @ ;
0 in R™—D,

(2.2.3)

2 alX) {f (D)= (1/1Qal) [ 2T} = Eyfd(x in D,.

(22.4) f, =

Given a number ¥ > 6m!%, m is the dimension, we will denote by
ND, = | NQg where NQ, denotes the cube centered at the same point ¥,
1

where Q; is centered and having edges parallel to the coordinated axes
whose sizes are N times those of Q.
(2.2.5) We are going to show that E™/(fy), j =1, ..., L, belong to I,

In fact, consider K™ (f,) (X) in R™—ND,
(2.26) E(f)(X) = D EMP@+ D EKM(¥)(XD),

Sy(X) Q=0 Be(X) Qg0
8,(X) denotes the sphere of radius ¢ > 0 centered at X, and S’,,(X )} denotes
its frontier. N
For those cubes @4 such that §,(X) N @, = 0 we have (denoting by #,;
half of the length of the edge of Q,):

(2.2.6") dist(X, ¥,;) > Nt,
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and also &> dist(X, Q) > e-—-2m1/ztd which gives that ¢> 4m'*t; since

Ntd< dlq'tr(X Yd) < E+2m td
Therefore if S,,( )y N Qg #0,

(2.2.7) Qa = 8, (X)— 8, (X) .
Now according to the homogeneity of K™ (Y), we have
@28) | 3 EY@@|<oem [ AT

By(X)n@2gt0 of2<|X-Fi<de

Since fy = 0 in R"— ND,; then
(22.9) lm| 3 KM(¥, (X)) =0 ae. in R"—ND;.
0 % (X)nQg A0

According to the smoothness of the kernels K™ (Y), j = 1, v Iy
and the fact that ¥,;(Y) has mean value zero, d=1,2,

(2.2.10) \K“(Td (X)) =| [EEX=T)— KM (X T} ¥a(Y )ay|

RrRM
< [IE(X—T)— B (X—To)| [¥a(T)|AY .
R™
Also
|E™ (¥y) (X)] < Ol[¥4llx
R‘m——NQd :
Calling
¥(X) = f [ 1B (X —T)— B (X —T)| [#o( D) AT,
d=1 R™
we have B
(2.2.11). . ¥(X)axX < 20/fll, -
RMND,

Now smce K™ (Y) is a singular kernel with 0 characteristic,
th“(f,) = E™(f) a.e. and aceording to (2.2. 9)

Kw(fz) (X)) < (X) a,.g. in R’"—aNDA

§0 that
(2.2.12) [ ¥@max> [ IEM(f)IX
RMIND, RMND,,
(2.2.13)  The integrability of K™ 7(f,) in N.D, will be given by the following
formula

< 018140, [1914X+0, | lgllog*lglaX,

nm nm

(2.2.14) [|E™(g)|aX
8

e ctendta Matharmatica WRWWIR. 1
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where the constants C,, C,, C; do not depend on the function ¢ or on
the set 8.

This is a consequence of the fact that K™(g) is weak type (1 1) a.nd
strong type (2,2).

According to the following inequalities

(8) g1+ g2ll0g™ 19+ gal.
O]9+ 19214 19211og™ 9.l -+ 191108 T |g,)) ,

®  [(@/1Qa) [ifla¥)log* ((1/1Qa) [Ifld¥)ax
(2.2.15) Q Qg . a;

< [Ifilog* |f|ax,
Qg

(¢)  |ND;| < N™|Dyf < (N™/2) fde,
. B
and from (2.2.14) we get

(2.2.16) [ |E™(f,)|dX < 0 fjdx+q fde+0 fflog“Lde‘

ND; RM
This, together with (2.2.12) and (2.2.11) gives

2217  [IE™(f,)|dX <0727 [ faX+0y f fAX+0; [ flog*fax,
»" RM BM ‘
j=1,..., L, and the constants do mot depend on f or A.
Our next step is to represent %, * f, as

(2.2.18) ko * fo = 22| Z]/L) Z‘K?Jf‘* E™(f,)
= -
everywhere. ! T

For fixed ¢ > 0, %,(X) and K’”(X) i=1,..,L belong to I* and
according to the fact that ||f, ] < fyll, and also IIK" y (2" lloo < 1™ (fa)lla
we see that both sides are in L% On the other hand, it is eagy to verify
that the Fourier transforms of both sides are identical, so that (2.2.18)
is verified a.e. But since for fixed ¢ both sides are contiruous funetions,
{2.2.18) follows. (The continuity of the right-hand member follows from
the fact that K™, < A, and E™7(f,) I, ;

- Now using the fact that the operation sup | K™% g1 is weak type (1-1)
j=1,..., L, we get that

L
(2.229) |B(f > D)< (10 Y |1E™ (f)ll,

j=1

<(Cuf#?) [fdX, +(@

RM

fde»L s/z fflog fax.

icm°
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Let us return to f; since f;eI* we have

3220 (B> DI< (@) [RIX<UCotba)lA] [aX.
RrRM
This last inequality is va,lld because fi<iin R”‘ D, and f,<<b,,2
in Dl, and also

(®) 0<f, =fin R"—D, (b) [fdX = [faX.
Q4 Qa

This finishes the proof of the inequalities involving f*. The pointwise
result follows from the fact that if feCf°, k, * f converges everywhere as
e—0; which can be readily checked because in this case the following
two properties are enough:

(a) B(IX]) L

-(b) E(IX]) = e™k(<7|X]).

This, together with the maximal inequalities, gives the pointwise a.e.
result in the different classes.

3. Proof of Theorem 2.

3.1. Let’s consider feL”, p > 1, and let Q2(X’) be a spherical harmonic
of degree n. K, (X) = Q(X")|X|™ if |X| > ¢ and zero otherwise.

The following representation holds everywhere

B11) [EX-Df(T)EY =" [k —1]X Y)E(f)dY,

Rr™ RM
where keI' and K(k,) = K,(X). For fized &> 0 both sides -of (3.1.1)
are continuous functions. The proof of this representation follows very
closely that of (2.1.2) and (2.1.3). Taking Fourier transform in (3.1.1)
we see that both sides are identical provided that feZ®. Now using the
fact that %, and K, belong to L?, 1 < p < oo, for fixed > 0:

(& = ) (D) < IELl - 11l
{(70 * E () (X)] < kllg - IHE ()l < IRl Cp 1 llp-

Now by a density argument together with (3.1.2) we obta.m the result
for I?, p > 1.
3.2. Consider now a mdla.l function §(|X]|) such that

(3.1.2)

() S(IXNeOF, (X)) >0
soy ™ mweedlE) e (XXI<3,
© [8(X)ax =1.
. RM
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Let f belong to L?, p > 1. Now we have

(3.2.2) g™ fk(a'l [YNf(X—T)dY
M

=" [{k(eX])— (e TD)F(X—T)aY+

RM

+em [ 8(e7HY) (F(X—T)aY.
SRS

The first term of the right-hand member of (3.2.2) may be written as
[ (R(1TD—6(|ZD)f(X—e¥)aT.

RmM

(3.2.8)

Without loss of generality we may assume that [|2(Y¥")|, » = 1. Now
we construct a complete system of normalized spherical harmonies of
degree m, Q" (X"), j=1,..., L, such that Q™(X') = Q(X’). That is

(3.2.4) [Ty @mi () do = 8.
2

According to (1.2.4)

L
(3.28) k(Y- 3(1Y)=».*(1Z)/L) ZK”‘“'(K“”'(k— 8 ae.
and also ) .
r
E(Y))— (X)) = ?;Z(IZJ/L)ZK””(K?”—K”'I’U)),

=1

(3.2.6)

since K™ (k) = K (X). :
Since K™/ (4) (X) = @“(—X') ¢(1X|),§ =1, ..., L (see Lemma 1.3,
(1.3.7)), we have .

{EP(Y)— K™ (8) (Y)}dY =0

N<|P|l<M

(3.2.7)

for every pair N, M such that 0 < N < M < oo.
3.3. LeMMA. Oall P} 1o the fumction defined in the Sfollowing way:
If k=1

i l EY(X)—K(8) (X) if 25 < X[ < 24,
0 ' otherwise.
If & =0;
gni _ [KW'(X)“'K’."%) (X) i [X|<2,
° 0 otherwise.

Then K™ (¥p) verifies the following estimates:
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(i) If 1X| > 2+,
P HBR) (X)) < G2 (14 20w Dk Lty ym,
(i) If |X]< 2% and p > 1,

JBM () PaX. < CT @R,

0<|X|<2k+3
(it)) If 2% < |X| < 2%+,
PR(X)| < (141X ).

. The constants Cy, C,, C; do not depend on % or j.

Proof. Suppose | X| > 2*+3; then the following integral is absolufely
convergent:

(3.3.1)

f K"’f(X—Y)T,{Z”'(Y)dYt

RM )
={ [ (E™(X—¥)—E(X)) ’P"”'(Y)in
R
< [IE™(X—-Y)— K™ (X)|| ¥ (Y) | dY.

R

This follows from the fact that ¥{7/(Y) has mean value zero (see
(3.2.7)). On the other hand,

(33.2) [ (X — ) — K™ ()] < €'25 K|

if 28 < | ¥} < 28! and | X| > 2K+,

This follows from the homogeneity of K™’ and the smoothness of
Om(X'). ¢ can be found to be independent of j also, by taking the maxi-
mum of all C; {corresponding to j, 1 < j < L). On the other hand,

(3'33) 2k le—{nH—l) < 0112-k771(1+2—k(7n+1) !ij+l)—1

it |X{ > 2% for a suitable constant .

Now (3.3.1), (3.3.2) and (3.3.3) give (i).

(ii) follows from the continuity of the mapping K™ (f) from L into
Pfor p>1,j=1,..., L

(iii) follows from the fact that

BV (X)— K™ (8) (X)) < C|X|70) i (X >3,
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I X <2, KX ]<D1 and also !.K’” Y (X)| < D, since 8¢C%.
This gives (ili) for a suitable constant C;.
3.4. Bstimate for [ |k(|XY)=—8(|Y))[f(X—¥)dY.

»M
It can be readily checked that
L o
(3.4.1) (1 Z1)— 8( D} < 2 (1Z1/E) ) ) D) B ().
J=1 k=0
Then
(3.4.2) [ IR(¥D—8(YDI If(X~eX)|dY

R™

022 [ 1E™ (24| | f(X — s Y)|dY.

j=1 k=0 R™
Taking into account Lemma 3.3, we have

(3.4.3) qu{m ()| |F(X—eX)|dY

j=1 R™

<0 vaﬂ”nl J 27 M | ) (X — ) Y +

rM

+0y 2 el f
: =1

o< | X< 2k+3

fX—eT)Pax)"
.where 1/p-+1/g = 1.

On one hand, Wé have, for & = 0,
(3.4.4) v PR X)F < {CL/A+1X ™)
if 2% < | X|< 25+

Therefore ' : | _
)|, < 0" 2kt glk-+imig,

On the other hand,

(.45 ([ |f(X—eY)|pdy}””
o<|Picak+3 :

— gkmip 23m/p{(52k+3)—m
: 0<| < a2h+d

(X —T)pax}"
If k¥ =0, we have simply
(3.4.6) oy, < 0.

icm°®
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Finally, according to (3.4.3)-(3.4.6),

XN NI T(b IR (AF{6 oS 1P ¢
R™ . o

00

P:GZ {( r)k+3)

< G,
k=0 : 0<|Fl<s2k+3

[FX—D)Pay}™ +
0D [ (621 (e25) O T f(X - T)| 4 Y,
RrRM

where 4 < const - L-27; b, < const- D- Zl]sp,;”ul,p— f(1+[1*|m+1) 3y
and G’M chosen so that i=1

(3.4.8). Dby = 1.
k=0

Now we have,” according to the convexity of u?, p > 1,

@49 { ] BT (T AT TiaTp

RN

Za (s [ |f(X— Y)PaY+

IY1<5"k+3

Rm

+bk{1)“ f(azk) (L4 (e25 wyrnﬂ) ‘]fX Y)axy

05, > w(s2475™ | if(X Yl”dY+

k=0 . \¥)<ezk+3

+5,D [ (29 (1+<e2’f>~’" 1|Y|’"*‘) I E-DPaT.

R™

Calling A;fiz’(X) = gup ¢ ™ f |f(X—Y)?dY and according to the
fact that ) ) ¢ IFl<e

(3.4.10) AfP(X) > DT [ (e29)™ (14 (s25)™1| Y™+ | f(X—T)PAY
. R™

(since it is essentially a Poisson integral), we have that the last member
of inequality (3.4.9) is dominated by

. SinceZak+bk =1,
k=9

O AP X)
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On the other hand, since 6(|X|)eC%, [0dX =1, 620,
. nm

we have

(3.411) (e [ st ) I f(X~T) ax)’
) R

<e ™ [ 8(eM XN IF(X—T)PAY < OA|fP(X)
R
Finally we get
(3.412) (sup [ e "RIVDAX—T) dY|) 97(07,+ O) A |11 (X).
& RrRM
This, together with representation (3.1.1), gives part (ii) of Theorem 2.,
3.5. Suppose that lim ™™ [ If(X)—f(X—Y)PaY = 0. Then

&0 1F|<s
My =supe™ [ |f(X)—f(X—T)PaY
€ |Pi<se
is finite, since the ratio is bounded as &¢—> co when feI? (which is our
case).
Consider
(351 [RUYDIEX-D)AT—f(X) = [k(E){f(X—D)—f(X)}dY.

R™ R -
Now according to the estimates of the preceding Section 3.4, we

have

352) (| [RIEVFEX—D)—fX)}ax ||’
j:
<20 [ 86 TN X —T)—fEDPIT +

RM

©

+270p }j

k= |¥|<ezk+3

427 MZ’ka [ (e2¥) —"‘(1+(e2k)~m—1;ym+l) LX) —f(X—Y)[PdY.

k=0 RM

2k+3)—m

If(X)—f(X-T)FaY +

Given 7 > 0 there exists &, such that

(3.5.3) 2207 Z by < (n/Mx).

=Ky

icm
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Let’s observe that according to the propertles of the Poisson kernel,
for each k we have
(3.5.4) llnlD j (£2%)~ ’“(1—1—(.52’c —mol g )“if(X) —f(X=Y)dY=0,
R
provided that
lim e [ [f(X)—f(X—Y)PAY =0.

=0 \¥i<s

In the same form for 4, and for each &k we have

(1) "mfa(s-l [TNIf(X—T)—f(X)PAY -0 as e—>0,
(3.5.8)
(@) (e2F0)™ fk If(X—Y)——f(X)I"dY—>0 as &~ 0.
1¥|<a2kt3
Therefore
(3.5.6) hm(UL (ZN{f(X— Y)—f X)}dyi)"

<Im2rCe™ [ (s YDIFX—T)—F(D)PAY +
R"l
Ly .
+2”C§142aklim(a2"“)"" If(X=Y)—f(X)PdY +
k=0 (Vi< e2k+3
ko

+2705, Db Iim D! [ (2% (X —T)—F(D)P %
k=0 R™M
(1+(ezk)——m—1|Ylm+l)—1dY+

+27C2,, Zaksup(ez"“)-’" [ 1f@=7)—fDPa¥+

k"ko |Pl<eak+3

+2203,, 2,‘ bsup D7 [ (257X~ ) —FE)P X
k=kqy RM X(1+ (s?«k)_m"]‘ Ylm'H)'ldY
< 279 '

This and representation (3.3.1) give pa#t (i) of Theorem 2.
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Polynomials and multilinear mappings in topological vector spaces
by
JACEK BOCHNAK and JOZEF 8SICIAK (Krakéw)

Introduction. In our forthcoming papers we want to give a unified
presentation of a theory of analytic functions defined in open subsets
of & complex or real topological vector space F with values in a locally
convex topological vector space F'. As a special case we will get the theory
developed in [1] and [8] for Banach spaces.

In this paper we gather the most important facts about polynomials
and multilinear mappings which are basic for the further developement
of the theory. Polynomials are the simplest analytic functions which are
used to bild up locally any other analytic mapping (by expanding it into

a series of homogeneous polynomials). Therefore their properties should
be éxamined first.

We hope that some. of the results of this paper may be interesting
for functional analysis apart from their application in the theory of analytic
functions.

In Section 1 we give several necessary and sufficient condmons for
a polynomial or multilinear mapping to be continuous (Theorem 1). Also
here the Banach-Steinhaus theorem is extended to homogeneous poly-
nomials of fixed degree % > 1 (Theorem 2).

The natural domains of existence of analytic mappings are domains
in complex spaces. It appears that in order to prove some facts concerning
real analytic functions it is convenient to complexify the given function
at first. The problem of complexification of real vector spaces, multilinear
mappings and polynomials is treated in Section 2.

Section 3 is devoted to existence of Gateaux differentials and their
continuity. This is of first importance when we ask whether a given fune-
tion may be locally developed into a series of homogeneous polynomials.

While preparing this paper we have been much inspired by [1], [8]
and [9].

1. Polynomials and multilinear mappings. In the sequel K denotes
either the field of complex numbers € or the field of real numbers R.
Letters B, F, G will denote vector spaces over K. If the field isnot strictly
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