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A generalization of the mean ergodic theorem
by
D. LEVIATAN (Urbana, Il1.) and M. 8. RAMANUJAN (Ann Arbor, Mi.)

§ 1. Introduction. Let F be a Banach space and V be a continuous
linear operator of F into F; i.e. V be a continuous endomorphism on H.
Suppose N is the null space of the operator I—V, where I is the identity
operator; let B be the range of I—V and let R denote the closure of R.

One version of the mean ergodic theorem is. the following:

(I+V+ ... +7V" e
" .

If {T,x} is weakly relatively compact then T,z — Pw, where the conver-

gence is pointwise and P is the projection of X onto N parallel to R.

Viewing the above as pointwise (C, 1) summability of {V*#»} to Pz
suggests generalizations, replacing (C,1) by (sealar) matrices of the
Toeplitz type and results in this direction can be found in Cohen [1].
A partial generalization of Coben’s result is due to Kurtz and Tucker [5]
who consider transformations of {V™z} by operator-valued Hausdorff
summability matrices, but retaining the condition of uniform bounded-
ness of [V™]. o

A generalization due to Yosida [9] is to replace, in the case of (C, 1)
summability, the uniform boundedness of [|[V"|| by the weaker hypo-
thesis, [|[V*||/n — 0.

The present paper attempts a general theorem, involving (a) re-
placing (C, 1) summability by general operator valued matrices of the
Toeplitz kind and (b) sacrificing the uniform boundedness of ||V to a less
restrictive growth econdition involving both the operators {V"} and the
matrix under consideration. The main result in this direction is in The-
orem 1 and two particular cases of this situation are given in Section 4.

§ 2. Preliminaries. Let  be a Banach space. Let 4 = (4,;), n, &
=0, 1,... be a matrix of operators 4,, each of which is linear and
continuous on FE into E. If for each convergent {v,} in E, the sequence

Let {|V"} be uniformly bounded. Let T, o =

0
Wnks Y = > Ao, exists and converges with limy, = lims, then 4 is
E=0

said to be a Toeplitz matriz.
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The following lemma gives a characterization of Toeplitz matrices.
LEMMA 1. The matriz A = (4,;) 18 Toeplitz if and only if

@ 2 A tp| < M for o <1, k=0, 1,... and n,r =0, 1,...;
(ii) hm!A & =0 for each k =0, 1, 2,... and each vl
and
(iif) )__J‘ Ao (n=0,1,...) exists for each © B and lim E’Ankm = 2.

n k=0

For a proof of the lemma see Zeller [10].

§ 3.1Ergodic Theorem. We now prove our main result.

TamoreM 1. Let B be o Banach space and V be a continuous endomor-
phism of E. Suppose that A = (A,z) is a Toeplitz matriz of continuous linear
operators on B and that V commutes with each A,y . Let {y,} be an increasing
sequence of mon-negative reals. Assume that

o0
() T,o = 3 Ay V' ewists for each veE and each n and {T,z},
E=0
n =0,1,... is weakly relatively compact;
(ii) ];EO lpp—Anesr lYegr > 0 as n — oo;

(i) |7 < 7ar

Then for each zeEB, T,» —Px, where P is the projection of E onto
the null space N of (I—7V).

Proof. First suppose zeN. Then 2 = Vo = Vo =... = V'o = ...

Thus 7,8 = ) A%, and since 4 is Toeplitz, T\ -2 = Pux.
. k=0

Next assume seR; then for given ¢ >0 we can find y < E such that
le— (I=V)y| < & Writing 2 =2—y-+ Vy, we get

Tpo = D Ay Vi(y—Vy+2o) = g A (VFy— VE+y) 4 g A, V2

k=0
= 2 (Api— Ay, 1) ka+ZAnkV 2
k=0 k=0
(where we put 4, _, = 0). ,

Since {T,x} is weakly relatively compact for each x, the operators
{T,} are uniformly bounded. The uniform boundedness of the operators
{T,}, the hypothesis that A iy Toeplitz and satisties conditions: (ii) and
(iii) and the fact that |2|| < ¢ show that T, - § = Pa.

Thus the theorem is proved for z¢N and ¢<R. Next we shall show
that E admits the algebraic direct sum decomposition B = N@R.
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For each xe B, {T,o} being weakly relatively compact has a weakly
convergent subsequence whose limit we shall denote by @,. We shall
prove that m,e N. Using the commutativity of V with each 4,,, we see
that

I—-V)T,z = 2 A (VE—TV* g — 6
k=0
by (11) and (iii). Taking limits (through subsequences, if necessary) we
see

(I—=V)zy, =80, 1ie, xeN.

Next we claim that s— 2,eR. First we can find a continuous linear
functional 4, on E such that (R, #,> = 0; in addition, if s—=,¢ R, we
can choose #, such that {s— @, £,> = 1. Since #, is - orthogonal to E,
{I—=TV)w, 8y = 0; i.e, (B, &> = (Va, £,> for each » in H. Using
again the commutativity of V with each 4, we now obtain

Ty, B0y = ( f 4 V0,8 = 3 Vdyo, %}
k=0 k=0

Z Az, £>, by continuity of &,
k=0

(o]
= 2 Aw, £o),  since {w, &) = (Vu, &0y
=0

= <2 2% :60>, again by the continuity of &,.
k=0

Letting n — oo (if necessary through the subsequence) and using the
fact that the matrix A is Toeplitz, we get that

{@oy Bop = <@ £o)-

Thus {&—,, &> = 0, setting up a contradiction. Therefore x— @,¢R.
Also, that NnR = {6} follows from the fact that for each xeXN,
T,% — », while for each » in R, T,z - 6. Finally, since & = (2—2,)+ %,
it follows that B is the algebraic direct sum, of ¥ and B and this
completes the proof of the theorem.
Remark. One can easily see that F is actually the topological direct
sum of ¥ and R.

§ 4. Two special cases of the matrix 4. In this section we shall deter-
mine increasing sequences {y,} satisfying condition (ii) of Theorem 1 for
two general classes of maitrices.
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First we observe that {y,} has been determined for Cesiro, Abel
and Borel methods in two different contexts in summability theory by
Cooke [2] and Lorentz [6] and so we only quote these. For (0, r),r > 1,
v, = 0(n) and for r <1, y, = o(n"). For the Abel method y, = o(n) whlle
for the Borel method v, = of l/n

‘We shall consider now suitably restricted operator valued Hausdorff
methods and scalar valued quasi-Hausdorff methods.

(1) Hausdortf method (H, u,). The matrix H =
ig given by the lower-semi-matrix H,; = ( ) Ay 0k

(H,y) of this method

<n=0,1,2,...

where p, are continuous linear operators on ¥ into B and 4°u, = u,

Ay, = py— pipy a0d A"y = A(4" ). We assume that H is Toeplitz

so that by a known theorem of Kurtz and Tucker [4] there exists a fune-

tion y on [0,1] into B+(H, E) (*) such that y is of bounded semi-varia-
1

tion in the sense of Gowurin and . = [ "wdy(t), n =0,1,2, ...,
0

2(0) =0 and x(1) = I and x(t)# i3 continuous at £ = 0 for all w<E.

Suppose now that y is of finite variation (in the usual sense) and

let V¢ denote the variation of % in [0, t]. Then we can show that if

1 dvt

f Vt — < oo and y, = o(l/_), then the corresponding Hausdortt

method satisfies condition (ii) of the theorem. The proof basically rests
on fhe known. estimate (see Lorentz [6]) that for 0 <t <1

2 A
,; |2 (2) <y

—Pajor (0)]

where
k -
Pult) = (AP 0, papa(t) =0

and 4 is an absolute congtant independent of » and 7.
(2) Quasi-Hausdorff method (H*, u,). The matrix H* =

method is given by the upper-semi-matrix

:Lk““()Ak— M1y k>'n'7
where the x, are scalars. By a known result of Ramanujan [7] the matrix
1
[ t"dm(t), n =0, 1, ... where m(t) is
0

m(0) =0 and m(1l)—
1. The integral considered is in the Lebesgue-Stieltjes sense.

H* is Toeplitz if and only if u, =

a scalar function of bounded variation in [0, 1],
—m(04) =

(*) For notations and terminology, see Tucker [8].

(Pnz) of this
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— t)k—ntn+1’ k

Let g (t) = (fb) (1

> n. Then it follows from a known
At
S Vn Vit

where A 1s an absolute constant, independent of » and ?. Suppose now

theorem (see for instance Hardy [3], Theorem 139) that ¢, (f) <

that f —=——= < oo and that y, = 1/%). Using the above estimate
on an(t a.nd the fact that y, = l/%) one can prove that
& ¢
(@) - D) 1= Qs O < s, 021
k=n -
and that for every fixed ¢, 0 <t <1,
(b) D ()= Gnss D70 88 1 > oo,

k=n
Then by an application of Lebesgue’s dominated convergence theorem
it can be shown that the matrix H* satisfies condition (ii) of the theorem.
In conclusion the authors express their thanks to the referee for
hig helpful criticism which resulted in the present form of the paper.
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