

A generalization of the mean ergodic theorem

by

- D. LEVIATAN (Urbana, III.) and M. S. RAMANUJAN (Ann Arbor, Mi.)
- § 1. Introduction. Let E be a Banach space and V be a continuous linear operator of E into E; i. e. V be a continuous endomorphism on E. Suppose N is the null space of the operator I-V, where I is the identity operator; let R be the range of I-V and let \overline{R} denote the closure of R. One version of the mean ergodic theorem is the following:

Let
$$\{\|V^n\|\}$$
 be uniformly bounded. Let $T_n x = \frac{(I+V+\ldots+V^{n-1})x}{n}$.

If $\{T_nx\}$ is weakly relatively compact then $T_nx \to Px$, where the convergence is pointwise and P is the projection of X onto N parallel to \overline{R} .

Viewing the above as pointwise (C, 1) summability of $\{V^n x\}$ to Px suggests generalizations, replacing (C, 1) by (scalar) matrices of the Toeplitz type and results in this direction can be found in Cohen [1]. A partial generalization of Cohen's result is due to Kurtz and Tucker [5] who consider transformations of $\{V^n x\}$ by operator-valued Hausdorff summability matrices, but retaining the condition of uniform boundedness of $\|V^n\|$.

A generalization due to Yosida [9] is to replace, in the case of (C, 1) summability, the uniform boundedness of $||V^n||$ by the weaker hypothesis, $||V^n||/n \to 0$.

The present paper attempts a general theorem, involving (a) replacing (C, 1) summability by general operator valued matrices of the Toeplitz kind and (b) sacrificing the uniform boundedness of $||V^n||$ to a less restrictive growth condition involving both the operators $\{V^n\}$ and the matrix under consideration. The main result in this direction is in Theorem 1 and two particular cases of this situation are given in Section 4.

§ 2. Preliminaries. Let E be a Banach space. Let $A=(A_{nk}), n, k=0, 1, \ldots$ be a matrix of operators A_{nk} each of which is linear and continuous on E into E. If for each convergent $\{x_n\}$ in E, the sequence $\{y_n\}, y_n = \sum_{k=0}^{\infty} A_{nk}x_k$, exists and converges with $\lim y_n = \lim x_n$ then A is said to be a Toeplitz matrix.

The following lemma gives a characterization of Toeplitz matrices.

LEMMA 1. The matrix $A = (A_{nk})$ is Toeplitz if and only if

(i)
$$\|\sum_{k=0}^{\infty} A_{nk} x_k\| \leq M$$
 for $\|x_k\| \leq 1$, $k = 0, 1, ...$ and $n, r = 0, 1, ...$;

(ii)
$$\lim_{n\to\infty} A_{nk} x = \theta$$
 for each $k=0,\ 1,\ 2,\ldots$ and each $x\in E$

(iii)
$$\sum_{k=0}^{\infty} A_{nk}x$$
 $(n = 0, 1, ...)$ exists for each $x \in E$ and $\lim_{n \to \infty} \sum_{k=0}^{\infty} A_{nk}x = x$.
For a proof of the lemma see Zeller [10].

§ 3. Ergodic Theorem. We now prove our main result.

THEOREM 1. Let E be a Banach space and V be a continuous endomorphism of E. Suppose that $A = (A_{nk})$ is a Toeplitz matrix of continuous linear operators on E and that V commutes with each A_{nk} . Let $\{\gamma_n\}$ be an increasing sequence of non-negative reals. Assume that

(i)
$$T_n x = \sum_{k=0}^{\infty} A_{nk} V^k x$$
 exists for each $x \in E$ and each n and $\{T_n x\}$, $n = 0, 1, \ldots$ is weakly relatively compact;

(ii)
$$\sum_{k=0}^{\infty} \|A_{nk} - A_{n,k+1}\| \gamma_{k+1} \to 0 \text{ as } n \to \infty;$$

(iii)
$$\|V^n\| \leqslant \gamma_n$$
.

Then for each $x \in E$, $T_n x \to P x$, where P is the projection of E onto the null space N of (I - V).

Proof. First suppose $x \in N$. Then $x = Vx = V^2x = \dots = V^nx = \dots$ Thus $T_n x = \sum_{k=0}^{\infty} A_{nk} x$, and since A is Toeplitz, $T_n x \to x = Px$.

Next assume $x \in \overline{R}$; then for given $\varepsilon > 0$ we can find $y \in E$ such that $||x - (I - V)y|| < \varepsilon$. Writing z = x - y + Vy, we get

$$\begin{split} T_n x &= \sum_{k=0}^\infty A_{nk} V^k (y - Vy + z) = \sum_{k=0}^\infty A_{nk} (V^k y - V^{k+1} y) + \sum_{k=0}^\infty A_{nk} V^k z \\ &= \sum_{k=0}^\infty \left(A_{nk} - A_{n,k-1} \right) V^k y + \sum_{k=0}^\infty A_{nk} V^k z, \end{split}$$

(where we put $A_{n,-1} = 0$).

Since $\{T_n x\}$ is weakly relatively compact for each x, the operators $\{T_n\}$ are uniformly bounded. The uniform boundedness of the operators $\{T_n\}$, the hypothesis that A is Toeplitz and satisfies conditions (ii) and (iii) and the fact that $\|z\| < \varepsilon$ show that $T_n x \to \theta = Px$.

Thus the theorem is proved for $x \in N$ and $x \in \overline{R}$. Next we shall show that E admits the algebraic direct sum decomposition $E = N \oplus \overline{R}$.

For each $x \in E$, $\{T_n x\}$ being weakly relatively compact has a weakly convergent subsequence whose limit we shall denote by x_0 . We shall prove that $x_0 \in N$. Using the commutativity of V with each A_{nk} , we see

$$(I-V)T_nx=\sum_{k=0}^{\infty}A_{nk}(V^k-V^{k+1})x\to\theta$$

by (ii) and (iii). Taking limits (through subsequences, if necessary) we see

$$(I-V)x_0 = \theta$$
, i. e., $x_0 \in N$.

Next we claim that $x-x_0 \in \overline{R}$. First we can find a continuous linear functional \hat{x}_0 on E such that $\langle \overline{R}, \hat{x}_0 \rangle = 0$; in addition, if $x-x_0 \notin \overline{R}$, we can choose \hat{x}_0 such that $\langle x-x_0, \hat{x}_0 \rangle = 1$. Since \hat{x}_0 is orthogonal to \overline{R} , $\langle (I-V)x, \hat{x}_0 \rangle = 0$; i. e., $\langle x, \hat{x}_0 \rangle = \langle Vx, \hat{x}_0 \rangle$ for each x in E. Using again the commutativity of V with each A_{nk} we now obtain

$$egin{aligned} \langle T_n x, \hat{x}_0
angle &= \Big\langle \sum_{k=0}^\infty A_{nk} V^k x, \hat{x}_0 \Big
angle &= \Big\langle \sum_{k=0}^\infty V^k A_{nk} x, \hat{x}_0 \Big
angle \\ &= \sum_{k=0}^\infty \langle V^k A_{nk} x, \hat{x}_0
angle, & ext{by continuity of } \hat{x}_0, \\ &= \sum_{k=0}^\infty \langle A_{nk} x, \hat{x}_0
angle, & ext{since } \langle x, \hat{x}_0
angle &= \langle V x, \hat{x}_0
angle, \\ &= \Big\langle \sum_{k=0}^\infty A_{nk} x, \hat{x}_0 \Big
angle, & ext{again by the continuity of } \hat{x}_0. \end{aligned}$$

Letting $n \to \infty$ (if necessary through the subsequence) and using the fact that the matrix A is Toeplitz, we get that

$$\langle x_0, \hat{x}_0 \rangle = \langle x, \hat{x}_0 \rangle.$$

Thus $\langle x-x_0, \hat{x}_0 \rangle = 0$, setting up a contradiction. Therefore $x-x_0 \in \overline{R}$. Also, that $N \cap \overline{R} = \{\theta\}$ follows from the fact that for each $x \in N$, $T_n x \to x$, while for each x in \overline{R} , $T_n x \to \theta$. Finally, since $x = (x-x_0) + x_0$ it follows that E is the algebraic direct sum of N and \overline{R} and this completes the proof of the theorem.

Remark. One can easily see that E is actually the topological direct sum of N and \overline{R} .

§ 4. Two special cases of the matrix A. In this section we shall determine increasing sequences $\{\gamma_n\}$ satisfying condition (ii) of Theorem 1 for two general classes of matrices.

First we observe that $\{\gamma_n\}$ has been determined for Cesaro, Abel and Borel methods in two different contexts in summability theory by Cooke [2] and Lorentz [6] and so we only quote these. For $(C, r), r \ge 1$, $\gamma_n = o(n)$ and for r < 1, $\gamma_n = o(n^r)$. For the Abel method $\gamma_n = o(n)$ while for the Borel method $\gamma_n = o(\sqrt{n})$.

We shall consider now suitably restricted operator valued Hausdorff methods and scalar valued quasi-Hausdorff methods.

(1) Hausdorff method (H, μ_n) . The matrix $H = (H_{nk})$ of this method is given by the lower-semi-matrix $H_{nk} = \binom{n}{k} \varDelta^{n-k} \mu_k$, $0 \le k \le n = 0, 1, 2, \ldots$ where μ_n are continuous linear operators on E into E and $\varDelta^0 \mu_k = \mu_k$, $\varDelta^1 \mu_k = \mu_k - \mu_{k+1}$ and $\varDelta^n \mu_k = \varDelta (\varDelta^{n-1} \mu_k)$. We assume that H is Toeplitz so that by a known theorem of Kurtz and Tucker [4] there exists a function χ on [0,1] into $B^+(E,E)$ (1) such that χ is of bounded semi-variation in the sense of Gowurin and $\mu_n x = \int_0^1 t^n x \, d\chi(t)$, $n = 0, 1, 2, \ldots$, $\chi(0) = 0$ and $\chi(1) = I$ and $\chi(t) x$ is continuous at t = 0 for all $x \in E$.

Suppose now that χ is of finite variation (in the usual sense) and let V_0^t denote the variation of χ in [0,t]. Then we can show that if $\int_0^1 \frac{dV_0^t}{\sqrt{t(1-t)}} < \infty$ and $\gamma_n = o(\sqrt{n})$, then the corresponding Hausdorff method satisfies condition (ii) of the theorem. The proof basically rests on the known estimate (see Lorentz [6]) that for 0 < t < 1

$$\sum_{k=0}^{n} |p_{nk}(t) - p_{n,k+1}(t)| \leqslant \frac{A}{\sqrt{n} \ \sqrt{t(1-t)}} \,,$$

where

$$p_{nk}(t) = \binom{k}{n} (1-t)^{n-k} t^k, \quad 0 \leqslant k \leqslant n, \quad p_{n,n+1}(t) = 0$$

and A is an absolute constant independent of n and t.

(2) Quasi-Hausdorff method (H^*, μ_n) . The matrix $H^* = (h_{nk}^*)$ of this method is given by the upper-semi-matrix

$$h_{nk}^* = \binom{k}{n} \Delta^{k-n} \mu_{n+1}, \quad k \geqslant n,$$

where the μ_n are scalars. By a known result of Ramanujan [7] the matrix H^* is Toeplitz if and only if $\mu_n = \int\limits_0^1 t^n dm(t), \ n=0,\ 1,\dots$ where m(t) is a scalar function of bounded variation in $[0,1],\ m(0)=0$ and m(1)-m(0+)=1. The integral considered is in the Lebesgue–Stieltjes sense.

Let $q_{nk}(t) = \binom{k}{n} (1-t)^{k-n} t^{n+1}$, $k \ge n$. Then it follows from a known theorem (see for instance Hardy [3], Theorem 139) that q_{nk} $(t) \le \frac{At}{\sqrt{n} \sqrt{1-t}}$ where A is an absolute constant, independent of n and t. Suppose now that $\int\limits_0^1 \frac{d|m|}{\sqrt{1-t}} < \infty$ and that $\gamma_n = o(\sqrt{n})$. Using the above estimate on $q_{nk}(t)$ and the fact that $\gamma_n = o(\sqrt{n})$ one can prove that

$$(\mathrm{a}) \qquad \qquad \sum_{k=n}^{\infty} |q_{nk}(t) - q_{n,k+1}\left(t\right)| \, \gamma_k \leqslant \frac{C}{\sqrt{1-t}} \,, \qquad 0 \leqslant t < 1$$

and that for every fixed t, $0 \le t < 1$,

(b)
$$\sum_{k=n}^{\infty} |q_{nk}(t)-q_{n,k+1}(t)| \, \gamma_k \to 0 \quad \text{ as } \quad n\to\infty.$$

Then by an application of Lebesgue's dominated convergence theorem it can be shown that the matrix H^* satisfies condition (ii) of the theorem.

In conclusion the authors express their thanks to the referee for his helpful criticism which resulted in the present form of the paper.

References

- [1] L. W. Cohen, On the mean ergodic theorem, Ann. of Math. (2) 41 (1940), pp. 505-509.
 - [2] R. G. Cooke, Infinite Matrices and Sequence Spaces, London 1950.
 - [3] G. H. Hardy, Divergent Series, Oxford 1949.
 - [4] L. Kurtz and D. H. Tucker, Vector-valued summability methods on a normed space, Proc. Amer. Math. Soc. 16 (1965), pp. 419-428.
 - [5] An extended form of the mean ergodic theorem, Pacific J. Math. 27 (1968), pp. 539-545.
 - [6] G. G. Lorentz, Direct theorems on methods of summability I, Canad. J. Math. 1 (1949), pp. 304-319.
- [7] M. S. Ramanujan, On Hausdorff and quasi-Hausdorff methods of summability, Quart. J. Math. (Oxford) (2) 8 (1957), pp. 197—213.
- [8] D. H. Tucker, A representation theorem for a continuous linear transformation on a space of continuous functions, Proc. Amer. Math. Soc. 16 (1965), pp. 946— 953.
- [9] K. Yosida, Mean ergodic theorem in Banach spaces, Proc. Imp. Acad. Tokyo 14 (1938), pp. 292-294.
- [10] K. Zeller, Verallgemeinerte Matrix Transformationen, Math. Zeitschr. 56 (1952), pp. 18-20.

UNIVERSITY OF ILLINOIS UNIVERSITY OF MICHIGAN

Reçu par la Rédaction le 22.2.1969

⁽¹⁾ For notations and terminology, see Tucker [8].