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Since, in view of (3.38),

2@ _ ht t—1
ity

Lty

there is an integer #, such that

(3.39) 2 << 2.
tﬂ t].
‘Thus, by (3.38), we have
© N
(3.40) Ne > — >— = N;.
. L2

It follows from (3.39) that t, = x/n,e[t, ?,]. Consequently (3.37) holds

for n = n, and t =1, that is (*) holds for all z > N. The theorem is
proved. .
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Sequence spaces and interpolation problems
for anmalytic functions

by
A. X. SNYDER (Bethlehem, Penn.)

'§1. INTRODUCTION

1.1. DEFINITION. Let w = {z,} be & sequence of distinet points
in the disk D = {z: |2] < 1} with [z, - 1. For 1< p < oo let H” be the
usual Hardy class of analytic functions on D with boundary values in
I7. Let H?(w) = {{f(2,)}: f e H"}.

The purpose of the present work is three-fold. First, an examina-
tion of the sequence space structure of H? (w) is given. Then in the confext
of general FK spaces some results, many of which were suggested by
properties of H”(w), are considered. In particular the conull property
of FK spaces is examined. (See [6] and [10] for previous work on the
conull property. J. Sember in [4] studied the conull property in its
relation to variation matrices.) Finally, it is shown that there exists
a sequence w such that H®(w) contains all bounded sequences and H™ (w)
does mnot, answering & natural question on interpolation by analytic
functions.

In § 3 it is shown that H?(w) is & BK space. If p < oo, then HF (w)
has the AD property. If 1 <p < co, then the coordinate projections
are fundamental in H? (w)*, but H'(w)" is not separable. :

In § 4 H? (w) is considered in the context of the conull, conservative,
coercive, and wedge properties, and in terms of three new sequence space
properties. In particular, it is shown that H” (w), for 1 < p < oo, iy conull
if and only if H? (w) contains every sequence of bounded variation. The
fact that HP (w) may be coregular for p < co shows that Theorem 6 of
[6] fails in the context of non-conservative spaces. (Recently, J. Sember
has anpounced an essentially different example of this failure. See 4.12
for an outline of some of his results.)

Let 8" denote the sequence &f = 0 for k # mn, &y = 1. It is shown
in § 5 that {6} is a basis for H? (w), p < oo, if and only if 2w = {z,} is an
interpolating sequence. ' :
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In § 6 it is proved that H?(w) may be coercive without H™ (w) being
coercive. :

Some questions for further research are given in §7, along with
a discussion of the possibility of extending the consideration of H?(w)
to the context of abstract Hardy classes on compact abelian groups.

The present work was motivated by certain interpolation questions
for analytic functions, for instance the existence of interpolating sequences.
The latter led to the study of summability properties of H*(w). In par-
ticular, in [7] it is shown that if H'(w) is contained in the convergence
domain of a positive regular matrix, then } (1— |z,]) = co. The latter
result would be immediate if H'(w) is conull whenever ¥ (1—|z,|) < oo.
However, H' (w) may fail to be conull. k

Some of the results in this work were presented in a seminar at Lehigh
Univergity during the academic year 1968-69. The author acknowl-
edges, with thanks, helpful conversations with G. Bennett, W. Ruckle,
and A. Wilansky during the seminar and during the preparation of the
manuseript. )

§ 2. PRELIMINARIES

Let D denote the open unit disk in the plane. For 1K p < o let
L? denote the usual Lebesgue class of complex-valued functions on the
interval [—m, =]. The Banach space I” may be identified in the usual
way with a class of functions defined on the unit circle {z: [¢] = 1}.

The Cauchy kernel is the family of functions {C,},0 <r <1, de-
fined by ’ :

1
R —nLi<®.

C.(t) = ——
+(0) 1—re

Let 2z = r6c D. Let

C,(t) = C,(9—1),

—nSt< .

"Henee, if fe L' -and the Fourier coefficients of f vanish on the negative
integers, then the formula '

16 =5 [ 1o ma

-TC

yields the analytic function on D with the assigned boundary valueé I
For 1< p < oo, the Hardy class H” consists of those analytic func-
tions f on .D for which

[Ifeeé®)an
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is bounded as # — 1; H™ is the class of bounded. analytic functions on D.
As in [2], p. 39, H” may be identified, via the Cauchy kernel, with the
class of all functions in I” whose Fourier coefficients vanish on the nega- -
tive integers. This identification will be used liberally in what follows.
Note that H? iz a closed subspace of I”, hence a Banach space under
the I? norm ||-|i,.

For each complex sequence x = {x,} and each positive integer n
let =, (z) = ,. An FK space (BK space) E is a linear subspace of the
space of all complex sequences which is a locally convex Fréchet space
(Banach space) such that each functional =, is continmous. In the FK
space context let E' denote the set of all continuous linear functionals
on E. In the context of BEK space let E* denote the conjugate space of
E. In an appropriate setting, the symbol 1 will denote the constant se-
quence {1,1,1,...}. Let &" denote the sequence &} = 0 for & 5 n, §; = 1.

. n
Let ¢ =1— 3 "
k=1 .

Define the following frequently occurring FK spaces with corre-

sponding norms or families of seminorms:

(i) s = the space of all .complex sequences; {lzal};
(i) 6y = {mes: ]ifmn = 0}

¢ = {wes: li;nmn exists}, |zl = sup 12| 5

m = {zes: {x,} is bounded};

(iii) bv = the space of sequences of bounded variation

o .
= {mes: kg[%ﬂ“%] < oo};

el = s+ ) 11—l
k=1

Let B> denote the linear span of the sequences {6"}.

Make ‘the blanket assumption, unless indicated otherwise, that every
FK space considered contains 1 and E.

Let A = (a,;) be an infinite matrix. The A-transform Az of a sequence
z = {z,} is the sequence

(3 aus)

For any FE space E let B, = {wes: AwcE}. Then B, is also an. FK
space with appropriate seminorms. The matrix A is called conservative
it ¢ < o3 regular if in addition lim Az = limg for all mec. Let ].iinm = lim Az
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for all zec,. Call a conservative matrix A conwll if
el
Iiml =

lim 6%;

otherwise coregular. Call A coercive if m < ¢ .

See, for example, [9] for a discussion of the elementary properties
of FK spaces and matrix transformations. )

An FE space B is called conull if y" — 0 weally in H; otherwise F
is called coregular. Some properties of conull and coregular Spaces are
developed in [6] and [10]. A space F is called conservative if ¢ = B 5 coerc-
we if m = B. It is well-known that a conservative matrix 4 is conull
if and only if the F'K space ¢, is conull. ¥ is said to have the AD property
if B> is dense in B. A sequence {¢"} in a Fréchet space F is called a basis
(unconditional basis) if for each zeF there exists a unique sequence {t.}
of scalars such that .

z = Ztkw",
k=1

With.the series converging (converging unconditionally)- in F. In the
terminology of [1], a wedge space is a BEK space in which |16™] — 0.

A sequence w = {z,} in D is called an interpolating sequence it H™ (w)
= m. See [2] or [5] for a discussion of interpolating sequences. L. Oar-
leson has given the following characterization: {#,} is interpolating’ if
and only if ) :

int [ [| 22
™ k#n
If ]zn.} —1 exponentially, i. e. if there is a constant d < 1 such that
1— |24l
1— lsz
for all n, then {z,} is interpolating. In the case of sequences {z,} satisfying

f) <2, <%, <1 for all n, the latter is a characterization of interpolat-
ing sequences. .

0.
1—-2.2, =

<d

§ 3. THE SEQUENCE SPACES HP? (w)

3.1. TEROREM. Let w = {2,} be a sequence of distinet points in D

arfd let 8 = {feH”: f(2,) =0 for all n}. There exists a norm on H? (w)
with the following properties:

(i) H?(w) is & BE space congruent to the quotient space H®[S;
() if 1 <p < oo, then H®(w) is reflomive; L
(iil) H*(w) is a Hilbert space congruent to the orthogonal complement

of 8 in H2

i
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Proof. Let feH? and zeD. Then

1@ == [ r0GEH <iflicd,

27

where 1/p-1/¢ = 1. But for each z the function C,cL,, so “evaluation
at 2” is a member of (H?)*. It follows that § is a closed subspace of H.

Consider the map f — {f(z,)} of H? onto H? (w). The kernel is precisely
8, so the map f+ 8§ — {f(z,)} is an isomorphism of H®/§ onto HP(w).
Let H? (w) have the norm of H?/8 induced by f+ 8 — {f(2,)}. Then H* (w)
is & Banach space. Since the mappings f— f(z,) vanish on 8, it follows
that {®,} — =, is continuous on H?(w) for each n. Therefore, H* (w) is
a BEK space.

If 1 <p < oo, then H”, hence H?[S, is reflexive. Then property
(ii) follows from (i). Property (iii) also follows immediately from (i).

From now on assume that > (1—|2]) < oo. Among other things
k=1

this assumption guarantees that B e H? (w).
For the purposes of 3.2 below define the following Blaschke prod-

uet:

Bl = [ [ 222
) 1 4 2] 1—22
Further, let B, denote the product obtained by deleting the factor corre-
sponding to k = n in B. Let P, be the product of the first » factors, and
let P be the product of the factors for &k > n. . ‘

3.2. THEOREM. (i) if p < oo, then HP(w) has the AD property;

(i) if 1 < p < oo, then {m,} is fundamental in HP (w)*;

(iii) if p =3, then

2\1/2

A=l and  |m,ll = L
1By, (2] (

nyo_ .
”6 ” - l_lznlg)llzry

(iv) if 1< p < oo, then

1
ozl 1Ba (2]

Proof. It is not hard to see that P, > B in H* on the circle. (See
[2], p. 65.) Hence, |Py(1—P™)|,~0, so P™ 1 in H". Therefore,
there exists a subsequence {P"#} such that P™® —1 pointwise almost

everywhere on the circle. o
Let feH? be arbitrary. Then fP™<H” and fP"® - § pointwise
almost everywhere. By dominated convergence, fP"  f in H®. By

o™ =
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3.1 (i), it follows that {(fP™)(z,)} - {f(2,)} in H*(w) as k- co. But
{(fP"¥) (2,)} « B™, so B™ is dense in H?(w), i. e. HP (w) hag AD.
Conclusion (ii) follows immediately from 3.1 (ii).

Let 8 = {feH*: f(z,) = 0 for all n}, and let (f, g)

1 ki
=g L1l
the usual inner product for H®. By 3.1 (iii) H*(w) is congruent to S'L
the orthogonal complement of § in H®. The congruence is the map
f--{f(2,)} on §*. Note that

B, = |2,/ B+ (B, | |B

and

”zm,lB} Bn_ Izni-B) ]

! (By B,)— |2, " (B, B)

1 Y By— €
= |z |+ —— e di— 2 2
el 5 f T Rl = e

But BH* = S, s0 B,—
ence &% so .

2P =0

[en| Be 8L, Now B,/B,(s,) interpolates the sequ-

_ B,—[%|B
Jo == B, (2,)

and f, interpolates 6" as well. Hence

- (fn!fn) — V(Bn7 Bn'_ Izn]B)

e 8t ;

6™1F = If, )8
IF = Il B, T
(Buy By)— |2/ (Buy B)  1—lg,2
|B,(2,) 1B (2,)F

Next, for feH” and fixed zeD,

L o:
(z) = Elf@)o B

and C,e H®. Therefore, the map f-f(2) has norm ||0,],. But

E zkt

k=0

[ 2 o =

Also, for each n the map f — f(z,) vanishes on §, so

1
A= faf 7

80

computed in H?(w)*.
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To prove (iv), note that, as above, ||z,| = |IC.,l, ‘where 1/p +1 lg = 1.
If fe H®? and f( ) =1, then

1 = {f(2)l < flpliCa,lly = 11l lmall-

Therefore,

[ Ll 1

153 @l 1B, e el
But by 3.1 (i),

16* = inf{lgll,: ge H” and g interpolates &}.
Hence, .
1
16"} =

~ [Bulen)lmall’

since any ge H” which interpolates ™ may be written in the form

with fe H? and f(z,) =
3.3. TumorEM. H*(w)*
Proof. Identify L™ with (L')*

s not separable.
by the formula

o) =5 [ f0ga

for feI', geL™.
First note that since H* is a closed subspace of L,

(@Y = I=)(EY,

where (H')* is the annihilator of H* in I*. Sinee H'(w) is identified with
H'/S where § ~{feH1 f(z,) =0 for all n}, it follows that H'(w)" is
the annihilator of 8 in (H')*. Now § = BH' = {Bf: feH'}, where

e -
Z R

B(z) =
&

4 ol 1—72
It is easy to see that for feIL™,

f Bgfat =0

-7

for all geH' if and only it BfeHP = {h: heH™ and [hdt =0} But
f = BBf almost everywhere on the circle, so Bf ¢ HY if and only if fe BHY .
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Therefore, the annihilator of § in (HY)* is (BHY)/(H")*. Also, (H)t
= HY, so H (w)" = (BHY)/HY .

It suffices to show that (BH®)/HY is not separable. It is well-known
that this is equivalent to showing that the unit ball of (BH™/HT)* is
not weak*-metrizable. Now (BH*[H)" is the annihilator of HY in (BH™)*,
Algo, (BH™)* may be identified with (H*)* by the formula -

?(Bf) = o(f)
for all feH™ and @e(H™)*. The proof is completed by showing that the
unit ball of (BHP)! in (H*)* is not weak*-metrizable.

Let {z,,} be a subsequence of w = {z,} such that {z,} is an inter-
polating sequence. Embedding D in the maximal ideal space M of H™,
it follows that the closure of {z,} in M is homeomorphic to the Cech
compactification of the integers fN. (See [2], p. 205.) Also, if pe M is
& limit point of {7, } and if f<H7, then ¢(Bf) = ¢(B)p(f) = 0, since
B(z,) =0 for all n. Therefore, the unit ball of (BHY)! in the weak*-
topology contains a copy of N, and SN is not metrizable.

§ 4. SOME THEOREMS ON FK SPACES WITH APPLICATIONS TO H?(w)

4.1. DEFINITION. An FK space F is a C-space if there exists {#"} ¢ B
and M >0 such that 2" — 1 in F and |2} < M for all », k. Say that B
has property G, if for each proper subset 7' of the positive integers the
set {8%: k¢ is fundamental in

Ni{ag: ke T} = {zc B: 2, =0 for all ke T}.

Also, say that F has property A, if for each z<¥ there exists {#"} ¢ B
such that 2™ — » in B and |2}] < || for all o, k.

The following theorem, is part of [6], Theorem 6.

4.2. THEOREM. Leét E be a conservative FE space. Then B is conull
if and only if B is a C-space.

4.3. THEOREM. If an FK space B has property A, then it is a C-space
and has property G.

Proof. Let T be a proper subset of the positive integers, and let
el with @, = 0 for keT. Assume that {2"} c B® and 4" — # in B with
|| < || for all m, k. Then each o™espan{é*: k¢T}. Also, #"->2 in
(M{m;: keT}, since the latter is closed in ¥, hence has the relative topol-
ogy of E. Therefore, ¥ has property G.

Taking # = 1 and T empty it follows that ¥ is also a (-space. ‘

4.4. THEOREM. If p < oo, then H?(w) has property A. Hence, for
P < oo, H?(w) is a C-space and has property G. ’

icm®
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Proof. Using the notation of the proof of 3.2, the Blaschke prod-
wets P 1 in HP ag k — oo and for every feH?, fP™ —f in HP.
Going to the quotient HP (w), {(fP™) (2,)} = {f(2,)} in H(w) as % — co.
For each &, {(fP"®)(z,)}E> and

(FP) (2)] < 1 (21

Therefore, H”(w) has property A. The second conclusions follow
from 4.3. ) k
4.5. ExampLe. Not every BE space with the AD property is a C-

space or has property G.
Let A = (a,,) be the infinite matrix. defined as follows:

n<2k—1,

27% for w>2k—1;

1t for n =2k or 2k+1,
Ot = lo for all other n.

0 for
O, 2p—1 =

Tt is shown in [8] that the convergence domain ¢4 of A has the AD prop-

erty.
Let T be the odd integers. Then

N {nt: ke T} ={w: oy, =0 for-all & and {zy} ec}.

It is clear that {6*: k¢ T} is not fundamental in the latter.
Note that ¢, is coregular, so by 4.2 ¢, is not a C-space either.
4.6. TemoREM. Consider the following conditions on an FK space B:
(i) B i conull;
() {¢"} is bounded in E (in the sense of locally convex space);
(i) by < B.

Then (i) smplies (i), and {ii) is equivalent fo {iii). If B 4§ a BK space
and {m,} 18 fundmmal in B, then (i) implies (i). Hence, for JEP”Sw)7
1 < p < oo, conditions (1), (ii), and (iil) are equivalent. For p =1, ¢ = H'(w)
implies condition (i).

Proof. Tt E is conull, then y* —~0 weakly, so {y"} is bounded accord-
ingly to the uniform boundedness principle.

Assume {p*} is bounded and @ < bv. Then

» = @1+ 2 (mn+1—mn)"/“n'
n=1

But the latter series converges in K, since {p"} is bounded and

3 @y 41— @y < co. Hence, » < B, s0 condition (iii) holds.

==l
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Assume bv = E. Now for each » the norm of " is 1 computed in
bv. Hence, {p"} is bounded in . )

Assume {=,} is fundamental in E* and. condition (ii) holds. For each.
m, 7 (9") — 0 858 1 — co. Going to the second conjugate space B, 47 (¢)->0
a8 m — oo for all < H*. But the latter is just the condition y" - 0 weakly
in H, i.e. 'E is conull

By 3.2 if 1 <p < oo, then {m,} is fundamental in H?(w)*, so the
three conditions are equivalent.

Finally, by 4.4 H*(w) is a C-space, By 42 it follows that H'(w) is
conull if it is conservative.

4.7. TEEOREM. Let B be a. BK space and B, = n for all n. Let |||,
denote the norm of .

() If {6"} is bounded in B, in particular if B is conull, then
inf {||myll,: n 7= m} > 05

(ii) If B coercive and has property @&, then |, - c as n, m — oo
with n % m. »

Proof. (i) it »n ;ém, then

Tt (™) < ot 1675
since 6™ H,. Thus, I]nm||n is bounded away from zero, if [|6™(| is bounded.
I F is conull, then by 4.6 |v™| is bounded. But for m >1, é™
=™ 1—y™ so {0} is also bounded.
(ii) Suppose 7y, |, < M for all %, where all of the integers m;, and

n; are distinet. Let F = ﬂ . Then {=,,

F*. Also, {&': j 5 m, for k-.1 2,38, .
such &, k(é’)—>0 a8 k- oo. The_refo_re, Ly, =
contradicting the fact that ¥ is coercive.

Of course, the condition inf{|m,ll,: # % m} >0 holds for many
coregular spaces. For instance, F = ¢ is an example. However, 4.7 is
a convenient device to show that certain spaces fail to have the conull
or coercive properties.

4.8. THEOREM. There ewists w = {2,} such that H"(w) is coregular.

Proof. Suppose 0 < 7, < s < 1. It is easy to see that 107y = Ol
as s —1,, where {C,} is the Cauchy kernel. Let w = {z,} sa.tlsfy the follow-
ing conditions:

(i) 0<zk<z,,+1<1 for all %;
(ii) ||0, o _ylloe =0 28 & — oo;

(i) 2(1—%) < oo,
F=1
Then for any fe H',
| f (o) —

» 5 & bounded sequence in

..} is fundamental in F. For each
T, (#) =0 for all wel,

£ zzk—

< Il 10z~ €

a1l
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Therefore, for each = ¢ H*(w),

@ — a1 < 2] 0oy, — Cly,_ lloo = O

-a8 k — co. In the notation of 4.7, it follows thab [Imy -, — 0 as & — oo,

50 by 4.7 (i); H' (w) is coregular, in fact, 8% is unbounded.
4.9. THEOREM. Let E be o BK space which is separable, coercive, and

satisfies & = Y @, 6% weakly in B for all & <m. Then E is a wedge space.
k=1

Proof. Let {p,} be a sequence in the unit ball of E*. First it will
be shown that g,(6*) — 0.

Since F is separable, the unit ball of E* is weak*-metrizable. Let
{#p,;} be & weak*-convergent subsequence of {,}. Define an infinite matrix
A = (ay) bY Gy =g, ("} Let wem with z,=0 for % #p,,

n=1,2,8,... Then
= D 2y, () = D 250, (%) = > aya,,.
k=1 k=1 k=1
It follows that 4 sums every bounded sequence, so certainly a,, — 0.
But a,, = @y, (67}, It follows easily that ¢,(8") — 0.
By the Hahn-Banach theorem, for each n choose ¢,<E* such that
lpall <1 and g,(6") = ||6"|. By -the previous paragraph, [6"] -0 as
n — oo,

4.10. TeEEOREM. Let F be a weakly sequentially complete FK space

Py, (@)

which is conservative. Then F is coercive and z = Zwk o weakly in E for
all @ e m, =

Proof. Let mem and ge&'. Since F is conserva,twe, Z g (8%)] < oo.
Thus, the series katp(ﬁk converges, 50 2-"% o is Weakly Cauchy in

E. Tt follows that a;eE ‘and Za:k F =z wea.kly
W k=1

4.11. COROLLARY. For 1< p < oo, if HP(
H? (w) is coercive and a wedge space.

Proof. According to 3.1 H?(w) is reflexive, hence, weakly sequen-
tially complete. By 3.2 H?”(w) is separable. The result follows from 4.9
and 4.10.

4.12. Remark. According to 4.4 and 4.8, there exists a sequence
w such that H*(w) is a coregular C-space. This shows that 4.2 fails in
the context of non-conservative spaces.

J. Sember has announced some related results on the conull property
in non-conservative spaces. He has provided a coregular C-space which
contains bv. Of course, such an example could not be given using H” (w).
In addition, Sember has observed that every conull space.is a C-space.

(w) s conservative, then
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§ 5. BASIS PROPERTIES OF H? (w)

5.1. TuporEM. The following condstions are equivalent for p < oo

(i) {6"} is an wnconditional basis for H” (w);

(ii) {6"} is a basis for H”(w);

(iil) w = {r,} is an inlerpolating Sequence;

(i) {1l P o} @ ¢ B (w)} =5

(v) & = H®(w).

Proof. Assume {6"} is a basis. There exists a constant M > 0 such
that [|6Y< M=, for each . (See [10], p. 213, Problem 12.) According
to 3.2 (iv),

1
P —
1= T8, T
where
T % %4—=*
B oy = | [ 225,
@) !;.[ |2 1—22
Thus,

1
IBale)| > 37

for all n, so by Carleson’s theorem, condition (iii) holds.
The equivalence of (iii) and (iv) is known. See [6], Theorem 2.
Assume condition (v) holds. Since {6"} is bounded in (', the sequen-
ces 8" may be interpolated by funections f,eH™ such that |f,ll, < M for
all n. Then, for each n, f, = B,g,, say, where g, <¢H™ and B, is the usual
Blaschke product. Thus, :

1 = fu @)l = 1B (2a)104(20)] < 1Ba(2a)l lgulle < M |By (2] -

It follows, as before, that {z,} is interpolating. Let zem be arbitrary.
Choose feH® such that f interpolates #. For any geH®, it follows that
foeH? and (f9)(s,) = f(2,)9(e,). Therefore, {w,y,}eH"(w) for every
y = {y,} < H? (w). It is known that the latter implies that {6"} is an’ uncon-
ditional basis for H? (w). (See [11] or [3].)

5.2. COROLLARY. (i) If {8"} is a basis for H? (w), then HP (w) is coer-
cive. .

(ii) If HP (w) is coercive, then it is conull (for p < co).

Proof. See 5.1 and 4.6. )

In § 6 it will be shown that the converge of 5.2 (i) is false. The con-
verse of 5.2 (ii) can also be shown to be false.
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5.3. Remark. Note that {6"} need not be an orthogonal sequence
in the Hilbert space H?(w), even if {§"} is a basis. For instance, suppose
0 <z, <1 for all n. For n == m, as in the proof of 3.2,

B (2,) By (2a) (0%, 67)
= (Bn—anv mesz) = (-Bn? Bm)'_zn(Bi B,) )

T _ £
1 2y—2% Bp—2 1 2

= — — dt—2," dt
2r J 1—2z,2 1—2,2

" —2_11-_“ 12,2
(where z = &%)

T -
1 2y — T E— 22T 1
Patm w7 TmT C —

= — dt—2,2y,
2m s 1—2,F— 2,21 2%

1 [t meeta g
= f = Ry
2r J 2,22 — (142, 2m) 2 %
2__
_ 1 22— (1 +2,2m) 21 20 do—22m

Zﬂi g 2,28 — (L4 2,2) 2%+ 2 ?

(where (' is the unit circle)

Z.?"—“ L1+ %p2m zm"]"zn
_ (1+2,2m) _

Zm 2 (Zn2m—1)

Zn%m

(using the residue theorem)

_a—&a-a)

1—2,%,

0.

§ 6. AN INTERPOLATION PROBLEM

Tt is shown that there exists a sequence w = {#,} such that Hf(w)
ig coercive but H™ (w) is not. The method consists of choosing & sequence
w which. is not interpolating and yet o™ < oo in H? (w).

In this section let B, denote the product

e %

Bule) = 2 1—%2

k#n

for each sequence {z,; under consideration.
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y—2 . ,
6.1. LEMMA. For 0 <o <y <1, 1=y defines a decreasing function

of x and an increasing function of y. .
Choose a sequence {y,} satistying the following conditions:
(i) 0 <9 <y <1 for all jj;
(ii) {y;} is an interpolating sequence. -
Since then y; -1 exponentially, it follows from the ratio test that

0

(ifi) 3 (1— 7} < oo.

=1
et o =y for all j.
6.2. LEMMA. There exists a seqience {8;} such that
() o < By< apyy for all j;
(ii) P(8;). >0 monotonely;

* g2\
w S
=i L

. o0
whers P és the Blaschke product P(z) = [ | (ﬂi)z
=1 \1—a;2
Proof. Since {y;} is interpolating, it follows easily that P(y,) is
bounded away from zero. Now the function P is continuous on the inter-
val, [0,1) and vanishes on o; = y,;_,. By the intermediate value theorem
for continuous functions it can be arranged that o < f; < a;,, for all j

and P(f;) - 0 arbitrarily slowly. In particular, since

o0
1—a) <
F=1

it can be arranged that (iii) holds.

Let {z;} be the sequence {a;, B, a5, f5, ...}, and let {B,} be the usual
Blaschke products associated with {z,}.

6.3. LEMMA. P(B,) < By, (%)} and P (8,)* < |Byu_s(#an_s)| for all n.

Proof.
Baen)] = Bu(f)l = | | L= [T b
2 )] I (ﬁ )] ! l__ﬂnz] 7_:[2;21 l—z:,‘gn
>H(ﬂ) ﬁ ( aj_ﬁ;‘)z P> P6)
! 1—p,0 et 1—af, n) & n)s
using 6.1.

icm°®
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Similarly,
2n—-2 2 0 2 a
=% i
|Bunes ()] = B (o)l = ﬂ T ,-Ll r—y

20— o

3
an_ﬂn—-l . ﬂn—l_zf . ﬁn-‘an R ( a— ﬂn )2
Tl Bt j=1 1*ﬂn—1zj 1“51»% it 1“‘(11/371

-

n—1 2
an“ﬁvwl ‘ﬁ'n"‘aﬂ, . ( lgn—l_‘aj ) .
1'_anﬁn—1 1;ﬂuan 7=1 1_13%—-1(11'

o

IT6=5)

J=n+1

=

)

- %—fns ! 6G—fn )2 P 2
= H (1'—afﬂn—1) n (1_%‘[9“ >P(ﬂn—1)P(ﬁn) = .(ﬁn) )

g=1 j=n

using 6.1 and 6.2 (ii).
6.4. TEEOREM. Let w = {2} be the sequence defined above. Then H?(w)
is coercive and w is not an interpolating sequence.

Proof.
= aj'—ﬁn ﬁj_ﬂ"’
Ian(zzn)l =Q 1’*ajﬁn 7];1 1"_ﬂiﬁn‘
= b | _ 1 0 as m - oo
<Q‘1—afﬂn§“(1’(ﬂn)) 0 a8 m > 0o

so {#} is not interﬁola.ting.

Next, in H*(w) ‘
Q=Z)e gyt _ (1—a)®
Bosean)l  Ban(@m)l - 1Bzl P8

according to 6.3. Similarly,

(1—d)®

?

6™ =

oy o (L@
1 <

By 6.2 (iii),

o

2, 187 < o

n=1

It follows easily that H*(w) is toercive.

Using similar techniques it can be shown that there exists w = {zn}
such that H*(w) is conull but not coercive. The method congists of choosing
{2,} %0 that [|6" > 0 and yet lw"|| is bounded. The result follows from
4.6 and 4.11. : .
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§ 7. CONCLUDING REMARKS AND QUESTIONS

' 7.1. The sequence space H”(w) may be approached from a slightly
different point of view. Consider I' as a Banach algebra under convo-
Tution : ‘

(fg) (@) =31; [ (1) g (0—1)dt.

Let {P,} be the Poisson kernel
1+re

Pt) = R :
() e_l—’rc“

'_I‘he;l ff); Ot_gr" <1, 7;“ —1, the sequence of functions {P, } is an approx-
ima i v
o f(:l;'en ity for I, i.e. ”Prn.HI <1 for all #» and ||P, *f—fll; >0 for

Now let w ={z,} be a sequence of distinet points in D with |z,| —1.
Let 2, = r,6% for each m. Then !

' (w) = {{(fxP,,)(6,)}: feH'},

where here H' is being considered as a fa.inily of functions on [—=, =] -

or on the circle {z: |s| = 1}. This suggests the following general setting:
_:Let G be a compact abelian group, let g = {g,} be a sequence of points
in @, and let Q@ = {9,} = L®(G) be an approximate identity for the Banach
algebra I'(@). Let S be some closed subspace of L?((), for insté.nce
the abstract Hardy class H” generated by an appropriate Dirichlet algebrs:.
on G. (See [2], p. 54.) Finally let :

8(g, Q) = {(F*Qn)(gn)}: fe8}.

‘What properties of H”(w) extend to the setting of S(g, Q)¢

One result in this direction is the following generalization of The-
orem 3.2 of [7]: If L*(g, Q) is contained in the convergence domain of
/] w?g.ulcw matric, then the set of limit points of the sequence g = {g,} has
positive Haar measure in G. The proof will be given elsewhere. )

7.2. ?[‘he space H?(w) may be generalized in a different direction
by replacing the unit disk D by some other subset of the'pla.ne.'Let X
be a compaet subset of the plane with connected complement, and let
8 .be an appropriate family of analytic functions on the interior of X
Finally, for a sequence w = {z,} in the interior of X, Tet ‘ .

S(w) ={{f(e,)}: fe8}.

“ 7.3, According to 4.3 a space with property ‘A must have property
and be a C-space. However, a space with the AD property may fail
to have property G or be a (-space. -

icm
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T4 is not hard to find a C-space with the AD property but without
property G. Define a matrix 4 = () by

27k 2k—1 < n,
0 for 2k—1>mn,
for all n,

for
Ay, 9%~-1 =

Gop,on = Tanis,2n = (="

4, =0 otherwise.
The BE space ¢, has the required properties.

Is there a space with property G which is coregular (or which is
not a C-space) ? For which matrices A does ¢4 have property G ?
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