

On weighted H^p spaces

bу

T. WALSH (Princeton)

Abstract. For p>1 there is a well known isomorphism between the space of harmonic functions F(x,y) in the half space y>0 of \mathbb{R}^{n+1} normed by $\sup\{\|F(\cdot,y)\|_p\colon y>0\}$ and L^p associating to F its boundary value function $F(\cdot,0)$ with a substitute result in case p=1. The present paper is concerned with a generalization of this result to weighted L^p norms and more generally weighted Lorentz norms.

To obtain generalizations of corresponding results for H^p spaces of systems of conjugate harmonic functions (in the sense of Stein and Weiss) a criterion for harmonic majorization of positive subharmonic functions in a half space is proved. By means of Kelvin's transformation by reciprocal radii an isomorphism is established between spaces of subharmonic functions in a half space considered earlier and spaces of subharmonic functions in a ball with bounded weighted L^p norms on concentric spheres.

0. Introduction. The main concern of the present paper will be with harmonic functions in the half space

$$R_+^{n+1} = \{(x, y): x \in \mathbb{R}^n, y > 0\}$$

of R^{n+1} . As usual for $(x,y) \in R^{n+1}$ define $|(x,y)|^2 = \sum_{i=1}^n x_i^2 + y^i$. The Poisson kernel for R_+^{n+1} is

$$P(x, y) = c_n^{-1} y(|x|^2 + y^2)^{-(n+1)/2},$$

where $c_n = 1/2 \omega_{n+1} = \pi^{(n+1)/2} [\Gamma((n+1)/2)]^{-1}$. If $f(1+|\cdot|)^{-(n+1)}$ is integrable on \mathbb{R}^n the Poisson integral P * f in \mathbb{R}^{n+1}_+ is defined by

$$P * f(x, y) = P(\cdot, y) * f(x).$$

It is well known that for $1 the mapping <math>f \to P * f$ establishes an isomorphism between $L^p(\mathbb{R}^n)$ and the space of harmonic functions F in \mathbb{R}^{n+1}_+ subject to

$$\sup_{y>0} \|F(\cdot,y)\|_p < \infty$$

and normed by the left-hand side of (1). If p = 1 this is an isomorphism between the space of totally finite regular Borel measures \mathcal{M}^1 and the harmonic functions satisfying (1) (see, e.g., [15], [29]). Stein and Weiss

110

in [29] proved that the pth power of the length of the gradient of a harmonic function in R^n is subharmonic for $p \ge (n-2)/(n-1)$. By means of this result they generalized those results about H^p spaces of holomorphic functions F in a half plane which can be proved by harmonic majorization of $|F|^p$ to systems of conjugate harmonic functions F, i.e., gradients of harmonic functions satisfying (1) for $p \ge (n-1)/n$.

Recall the definition of Lorentz spaces, e.g., in [17]. For f measurable set

$$||f||_{pq}^* = (q/p \int_0^\infty (f^*(t) t^{1/p})^q dt/t)^{1/q}$$

where f^* denotes the decreasing rearrangement of f on $(0, \infty)$. $||f||_{pq} = ||f^{**}||_{pq}^*$, where

$$f^{**}(t) = f^{**}(t, r) = \left(t^{-1} \int_{0}^{t} (f^{*}(s))^{r} ds / s\right)^{1/r}, \quad 0 < r \le 1, \ r \le q, \ r < p.$$

If w denotes a non-negative measurable function on \mathbb{R}^n define

$$||f||_{pq,w} = ||fw||_{pq}$$

and $L_w^{pq} = \{f: \|f\|_{pq,w} < \infty\}$. Also let $L_w^p = L_w^{pp}$. (On one occasion it will be convenient to denote L_w^q by L(p,q,w).) In case $w(x) = \omega(|x|)$ or more particularly $w(x) = |x|^q$ the notation $\|.\|_{pq,\omega} L_w^{pq}$ or $\|.\|_{pq,\omega} L_x^{pq}$ respectively will be used. If w is a continuous function which does not vanish except, possibly, at the origin define

$$w\mathcal{M}^{1}(R^{n}) = \{v \colon v = w\mu, \, \mu \in \mathcal{M}^{1}(R^{n})\}, \quad \|v\|[w\mathcal{M}^{1}] = \|w^{-1}v\|,$$

where the norm of a measure $\mu \in \mathcal{M}^1$ is its total variation $|\mu|(R^n)$. Hence if w(0) = 0 and $v \in w(\mathcal{M}^1)$ then $v(\{0\}) = 0$.

It is well known that the continuity of singular and fractional integral operators between L^p spaces generalizes to continuity between the weighted L^p spaces L^p for $-n/p < \alpha < n/p'$, where 1/p+1/p'=1, (see [27], [28]).

These facts lead to the consideration of (systems of conjugate) harmonic functions F in R^{n+1}_+ subject to $\sup_{y>0} ||F(\cdot,y)||_{p,a} < \infty$. In fact the norm

 $\|F(\cdot,y)\|_{p,a}$ will be allowed to increase linearly in y as $y\to\infty$ and in place of $|x|^a$ more general weight functions will be considered. In order to obtain more precise results for singular and fractional integrals weighted Lorentz norms defined above will be used.

Let p_0 denote the projection on the y-axis, i.e., $p_0(x, y) = y$ for any $(x, y) \in \mathbb{R}^{n+1}$. First conditions are given under which

(2)
$$\sup_{y>0} ((1+y)^{-1} ||F(\cdot,y)||_{pq,w}) = M < \infty$$

implies that F is the sum of the Poisson integral of a function in L^{pq}_{to} and a constant multiple of p_0 (Proposition 1). Conversely it will be shown that if w is radial, $w(x) = \omega(|x|)$, then $f \in L^{pq}_{to}$ implies that F = P * f satisfies (2) provided there are a < n/p', $\beta < n/p$, $1 such that <math>\omega(\tau) \min(\tau^{-a}, \tau^{-a-1})$ (= decreasing) and $\omega(\tau) \max(\tau^{\beta}, \tau^{\beta+1})$ (= increasing) and $0 < q \le \infty$ with less general results in case a = n/p', $\beta = n/p$ or p = 1. There are similar results for the Hardy-Littlewood maximal function $M^{q}(f)$ defined by

 $M^{\eta}(f)(x) = \sup_{\varepsilon \leqslant \eta} \varepsilon^{-n} \Big| \int\limits_{|t-x| \leqslant \varepsilon} f(t) dt \Big|$

for $\eta > 0$. These will yield non-tangential boundedness of the Poisson integral F by a function in the same space as f or a related larger one in case at least one of p, α , β is at an end-point of its permissible range. The results discussed so far imply that $f \to P * f((f, z) \to P * f + zp_0)$ is a topological isomorphism between $L_p^{pq}(L_p^{pq} \oplus C \text{ or } \omega^{-1} \mathscr{M}^1 \oplus C)$ and the space of harmonic functions in R_+^{n+1} normed by the left-hand side of (2).

To prove harmonic majorization of certain subharmonic functions in [18] and [29] use is made of the fact that if s is a non-negative subharmonic function in \mathbb{R}^{n+1}_+ and $\sup_{y>0} ||s(\cdot,y)||_p < \infty$ then $s \to 0$ as $y \to \infty$ or $|x| \to \infty$ while y is bounded below by an arbitrary positive number. This does not appear to carry over readily in required generality to non-

This does not appear to carry over readily in required generality to non-negative subharmonic functions satisfying $\sup_{y>0} \|s(\cdot,y)\|_{p,w} < \infty$. In the theory of functions of one complex variable, however, there is a well

known method of proving harmonic majorization in a half plane by use of the formula for the solution of the Dirichlet problem for a semi-disk and boundary values vanishing on the diameter. This can be extended to \mathbb{R}^{n+1} and is used to prove Proposition 3, possibly, the main result of this paper. It gives a criterion for harmonic majorization of subharmonic functions in R_{\perp}^{n+1} and also asserts that the least harmonic majorant is the sum of the weak limit of $s(\cdot, y)$ as $y \to 0$ and a constant multiple of p_a . This then permits extension of most of the results of [29] on H^p spaces to H^p spaces with certain radial weight functions. In particular the range $-n/p < \alpha < n/p'$ valid for continuity on L^p of fractional and singular integral operators is enlarged to $-n/p < \alpha < n(n/(n-1)-1/p)$ for H_p^p $(H^p \text{ with weight function } |x|^a)$. This is of similar significance for fractional integrals of functions in $L_{n/n'}^{p_1}$ (see Proposition E) as in the well known case p=1, w=1 (Theorem H of [29]). Lastly Kelvin's transformation is used to relate some of the sets of subharmonic functions in \mathbb{R}^{n+1}_{+} considered in the preceding sections to certain sets of subharmonic functions in the unit ball of R^{n+1} (Proposition 4).

The Banach space of continuous functions φ such that $\lim_{|x|\to\infty} \varphi(x) = \varphi(\infty)$ exists, that is, the space of functions which are restrictions to R^n of con-

tinuous functions on the one-point-compactification \mathbb{R}^{n*} of \mathbb{R}^n (with the topology of uniform convergence) will be denoted $C(\mathbb{R}^{n*})$. Its dual, consisting of the bounded measures (or in another terminology, totally finite regular Borel measures) on \mathbb{R}^{n*} , i.e., of the functionals

$$\mu + z \varepsilon_{\infty} : \varphi \to \int \varphi(x) \mu(dx) + z \lim_{|x| \to \infty} \varphi(x),$$

where $\mu \in \mathcal{M}^1(\mathbb{R}^n)$, $z \in C$ will be denoted $\mathcal{M}^1(\mathbb{R}^{n^*})$ ($\mathcal{M}^1(\mathbb{R}^{n^*}) \cong \mathcal{M}^1(\mathbb{R}^n) \oplus C$). C_p , e.g., will be used to denote a constant not necessarily the same at each occurrence depending on p and possibly n.

1. Harmonic functions. The following generalizes Lemma 3.6 of [29].

PROPOSITION 1. Let B be a Banach space such that $(1+|\cdot|)^{-n-1}C(R^{n*})$ is (continuously) contained in B so that its dual B' may be taken to be contained in $(1+|\cdot|)^{n+1}\mathcal{M}^1(R^{n*})$. Suppose F is a harmonic function on R_+^{n+1} such that

(3)
$$\sup_{y>0} [(1+y)^{-1} ||F(\cdot, y)||_{B'}] = M < \infty.$$

Then there exist $\mu \in B'$ and a (complex) number δ such that

(4)
$$F(x,y) = P(\cdot,y) * \mu(x) + \delta y$$

and

$$\|\mu\|_{B'}\leqslant \liminf_{y\to 0}\|F(\cdot,y)\|_{B'}, \qquad \delta=\lim_{y\to \infty}y^{-1}F(\cdot,y),$$

 $\delta=0$ if $\lim (y^{-1}\|F(\cdot,y)\|_{B'}=0$. In case $B'=(1+|\cdot|)^{n+1}\mathcal{M}^1(R^{n*})$ it can be assumed that $\mu\in(1+|\cdot|)^{n+1}\mathcal{M}^1(R^n)$. Also at the boundary y=0 F tends non-tangentially to the absolutely continuous part f, say, of μ a.e.

Corollary. If F is harmonic in R_+^{n+1} , satisfies (2), where $1 <math>1 \le q \le \infty$ or p=q=1 and

$$||w^{-1}(1+|\cdot|)^{-n-1}||_{p'q'} < \infty$$

and in case p=1 w⁻¹ is continuous on R^n then (4) holds with $\mu=f\,\epsilon\,L_w^{pq}$ if p>1, while $\mu\,\epsilon\,w^{-1}\mathscr{M}^1(R^n)$ if p=1.

Proof. The hypotheses imply

$$\begin{split} \|F(\cdot,y)\,(1+|\cdot|)^{-n-1}\|_1 &\leqslant CM(1+y)\,, \qquad (C=C_B) \\ |F(x,y)| &\leqslant C\max(y^{-n-1},1) \int\limits_{|t-x|^2+|s-y|^2 \leqslant \min(y^2,1)} |F(t,s)|\,dt\,ds \\ &\leqslant C\max(y^{-n-1},1) \int\limits_{y-\min(y,1)} \int\limits_{|t-x| \leqslant \min(y,1)} |F(t,s)|\,dt\,ds\,. \end{split}$$

Hence

(6)
$$|F(x,y)| \leq C \max(y^{-n},1) (1+|x|)^{n+1} \sup_{|s-y| \leq \min(y,1)} ||F(\cdot,s)||_1$$

 $\leq CM \max(y^{-n},1) (1+|x|)^{n+1} (1+y).$

For $y > \eta > 0$ let $W_{\eta}(x, y) = P(\cdot, y - \eta) * F(\cdot, \eta)(x)$ so that

$$|W_{\eta}(x,y)|\leqslant C\Big(\int\limits_{|t|<\min\{(y-\eta)^{-1},1\}}+\int\limits_{|t|>\min\{(y-\eta)^{-1},1\}}\Big)P(t,y-\eta)|F(x-t,\eta)\,dt.$$

Hence

(7)
$$|W_{\eta}(x,y)| \leq CM \left[\max(\eta^{-n},1), \min((y-\eta)^{-n}) (1+|x|)^{n+1} (1+y) + (y-\eta) \sup_{t} \left(\frac{1+|x-t|}{1+|t|} \right)^{n+1} \right]$$

since $(y-\eta)+(y-\eta)^{-1}\geqslant 2$. Also by dominated convergence the second term in the sum preceding (7) is o(y) as $y\to\infty$. Consequently for any x

(8)
$$\lim_{y\to\infty} y^{-1}W_{\eta}(x,y) = 0.$$

It is easy to see that for $\varepsilon > 0$

$$\sup_{\epsilon < y < \epsilon^{-1}, |x| < \epsilon} \ |(\partial/\partial x)^{\epsilon}(\partial/\partial y)^k P(x-\cdot,y)| (1+|\cdot|)^{n+1} \epsilon L^{\infty}.$$

Thus by dominated convergence $W_{\eta}(x,y)$ is a harmonic function for $y > \eta$. If $f(1+|\cdot|)^{-n-1}$ is integrable and continuous in an open set Ω of R^n and if K is compact and contained in Ω then there exist a continuous function g supported in Ω and function h such that f = g + h and h vanishes in a compact neighborhood of K. Therefore $P(\cdot,y) * g \to g$ uniformly, while $P(\cdot,y) * h \to 0$ uniformly in K by dominated convergence. Thus W_{η} can be extended to a continuous function for $y \geqslant \eta$ by $W_{\eta}(x,\eta) = F(x,\eta)$. By the reflection principle the function W^* defined by

$$W^*(x, y) = F(x, y+\eta) - W_{\eta}(x, y+\eta)$$

for $y \ge 0$ and $W^*(x,y) = -W^*(x,-y)$ for $y \le 0$ is harmonic in \mathbb{R}^{n+1}_+ . Furthermore by (6), and (7) $W^*(x,y) = \theta(|(x,y)|^{n+2})$ as $|(x,y)| \to \infty$. Now by the Poisson integral formula for a sphere:

$$W^*(x,y) = \omega_{n+1}^{-1}(1-a^{-2}|(x,y)|^2) \int_{S^n} \frac{W^*(a\sigma)}{|\sigma-a^{-1}(x,y)|^{n+1}} d\sigma,$$

where $S^n = \{(x, y): |(x, y)| = 1\}$. By differentiation it follows that

$$\sup_{|\langle x,y\rangle|\leqslant a/2}|D^{\beta}W^*(x,y)|\leqslant C_{\beta}a^{-|\beta|}\max_{\sigma\in S^n}|W^*(a\sigma)|,$$

where β is any multi-index with (n+1) components. If $|\beta| = \sum \beta_i > n+2$ this results in

$$|D^{\beta}W^{*}(x,y)| \leqslant C_{\beta} \liminf_{a \to \infty} a^{-|\beta|+n+2} = 0.$$

Thus $W^*(x,y)=\sum\limits_{k=1}^{n+2}y^kP_{n+2-k}(x)$ where $P_k(x)$ is a polynomial in x_1,\ldots,x_n of degree k at most. As $W^*(x,y)=\theta(|y|)$ for $|y|\to\infty$, for all x,P_k must vanish for $2\leqslant k\leqslant n$, i.e., $W^*(x,y)=yP_{n+1}(x)$. Now $\|(1+|\cdot|)^{-n-1}P_{n+1}\|<\infty$ requires $P_{n+1}=\mathrm{const.}=\delta(\eta)$, say. By (6) and (8)

$$\delta(\eta) = \lim_{y \to \infty} y^{-1} |F(0,y)| \leqslant CM.$$

By hypothesis $P(\cdot -t, y) \in B$ for any $(t, y) \in R_+^{n+1}$. Since the family $\{F(\cdot, \eta): 0 < \eta \leq 1\}$ is bounded in B' it is relatively compact with respect to the weak topology of the pairing (B', B) so there is a sequence $\eta_k \to 0$ and $\mu \in B'$ such that $F(\cdot, \eta_k) \to \mu$ weakly and also δ such that $\delta(\eta_k) \to \delta$ as $k \to \infty$ and $|\delta| \leq CM$. Hence

$$\begin{split} F(x,y) &= \lim_{k \to \infty} F(x,y+\eta_k) = \lim_{k \to \infty} \left(P(\cdot,y) * F(\cdot,\eta_k) (x) + \delta(\eta_k) y \right) \\ &= P(\cdot,y) * \mu(x) + \delta y. \end{split}$$

In case $B'=(1+|\cdot|)^{n+1}\mathcal{M}^1(R^{n^*})$ the notation will now be changed from μ to μ^* and δ to γ_1 . There are $\mu\in(1+|\cdot|)^{n+1}\mathcal{M}^1(R^n)$, $\gamma_0\in C$ such that $\mu^*=\mu+1/2\,\omega_{n+1}\gamma_0|\cdot|^{n+1}\varepsilon_\infty$ let $\delta=\gamma_0+\gamma_1$ then

$$egin{aligned} F(x,y) &= P(\cdot,y) * \mu(x) + \gamma_0 y \lim_{t o \infty} \left[(1+|t|)^{n+1}/(y^2 + |x-t|^2)^{(n+1)/2} \right] + \gamma_1 y \ &= P(\cdot,y) * \mu(x) + \delta y \,. \end{aligned}$$

Clearly $\|\mu\|_{B'} \leq \|\mu^*\|_{B'}$. (It follows from (4) or Lemma 3 below that in fact $\gamma_0 = 0$, $\mu = \mu^*$). Also for $\mu(1+|\cdot|)^{-n-1} \epsilon \mathscr{M}^1$ it is well known that $P * \mu$ tends to the absolutely continuous part of μ non-tangentially a.e. (cf. [15] Proposition 2.1).

The corollary follows from $L^{pq} = (L^{p'q'})'$ for 1 (see [12]).

(6) clearly holds for any subharmonic function F satisfying (3). In the special case when $w(x) = |x|^a$ and $s(x, y) \ge 0$ is subharmonic in R_+^{n+1} and such that

$$\sup_{y>0}\|s(\cdot,y)\|_{pq,a}=M<\infty$$

more precise estimates needed below can be given. Let $B^n(x, y) = \{t \in \mathbb{R}^n : |t-x| < y\}$. Then

$$s(x,y) \leqslant Cy^{-n-1} \int_{0}^{2y} \|s(\cdot,t)\|_{pq,a} dt \||\cdot|^{-a} \chi_{B^{n}(x,y)}\|_{p'q'}.$$

If $\alpha \geqslant 0$

$$\||\cdot|^{-a}\chi_{B^{n}(x,y)}\|_{p'q'} \leqslant \||\cdot|^{-a}\chi_{B^{n}(0,y)}\|_{p'q'} = C\left(\int\limits_{0}^{Cy^{n}}t^{(-a/n+1/p')q'-1}dt\right)^{1/q'} = Cy^{-a+n/p'}.$$

Also for |x| > y

$$\||\cdot|^{-a}\chi_{B^{n}(x,y)}\|_{p'q'}\leqslant C(|x|-y)^{-a}\|\chi_{B^{n}(0,y)}\|_{p'q'}\leqslant C(|x|-y)^{-a}y^{n/p'}$$

hence

$$|||\cdot|^{-a}\chi_{B^{n}(x,y)}||_{p'q'} \leqslant Cy^{n/p'}(|x|+y)^{-a}$$

and so

(9)
$$s(x, y) \leq Cy^{-n/p}(|x| + y)^{-a}$$

for $0 \le a < n/p'$ and a = n/p', q = 1. On the other hand if $a \le 0$, then

$$\begin{split} s(x,y) &\leqslant C y^{-n-1} (|x|+y)^{-a} \int\limits_{0}^{2y} \|s(\cdot,t)\|_{pq,a} dt \|\chi_{B^{n}(0,y)}\|_{p'1} \\ &\leqslant C M y^{-n/p} (|x|+y)^{-a} \end{split}$$

(a < -n/p implies s(0, y) = 0 for all y > 0), i.e., (9) holds in this case likewise.

If $F = P * \mu$, where $\mu \in (1+|\cdot|)^{n+1} \mathcal{M}^1(\mathbb{R}^n)$ then μ is absolutely continuous with respect to Lebesgue measure in an open set Ω of \mathbb{R}^n iff for some (and hence all) $\eta > 0$ the family of measures $\{F(x,y)dx, 0 < y \leq \eta\}$ is uniformly (or equi-) absolutely continuous in Ω , in other words iff the family of functions $\{F(\cdot,y)\colon 0 < y \leq \eta\}$ is uniformly locally integrable in Ω . The necessity could be proved by approximating μ in $L^1_{loc}(\Omega)$ by continuous functions of compact support. The sufficiency follows from the readily proved fact that μ is the weak limit of the measures $P(\cdot,y)*\mu$. (Let $\mathcal{K}(\Omega)$ denote the space of continuous functions whose support is contained in Ω . It follows from [2] bk. 6 chap. 3 sec. 2 no. 5 and chap. 5 sec. 5 no. 2 Theorem 2 c' that a family of measures $\{\mu_i\}$ is uniformly absolutely continuous in Ω iff for any non-negative $g \in \mathcal{K}(\Omega)$ and for any $\varepsilon > 0$ there is a $\delta > 0$ such that $h \in \mathcal{K}(\Omega)$, $|h| \leq g$ and $\int |h(x)| dx \leq \delta$ imply $|\int h d\mu_i| \leq \varepsilon$ for all i. Hence also $|\int h d\mu| < \varepsilon$ for any weak limit μ of the family $\{\mu_i\}$.

2. Lemmas on integral operators in weighted L^p spaces. It is well known that singular integral operators and the Hardy–Littlewood maximal operator

$$M(f)(x) = \sup_{\varepsilon>0} \varepsilon^{-n} \int_{|t| \leq \varepsilon} |f(x+t)| dt$$

preserve L_a^p if $-n/p < \alpha < n/p'$ (see [27]). Let now $w'(x) = \omega(|x|)$. It was proved by Chen in [6] that ω increasing and (a) $\omega(\tau)\tau^{-\alpha}$ decreasing for some $\alpha < n/p'$ or dually ω decreasing and (b) $\omega(\tau)\tau^{\beta}$ increasing for some $\beta < n/p$ implies that (c) M is bounded on L_a^p . This result is generalized below to the simpler statement: (a) and (b) imply (c). While singular and fractional integral operators only take $L_{n/p'}^{p,1}$, $L_{n/p}^{p,1}$ into $L_{-p}^{q,0}$ for appro-

priate q, β Lemmas 2 and 3 say, in particular, that $M, P(\cdot, y)^*$ preserve $L_{-n/n}^{p\infty}$ (p>1) and hence by duality $P(\cdot,y)*$ also preserves $L_{n/n}^{p\bar{1}}$. Also for Poisson integrals the restrictions on ω necessary in the case of singular integrals can be relaxed at infinity.

LEMMA 1. Suppose H is measurable on $\mathbb{R}^n \times \mathbb{R}^n$, $0 \le H(x, t) \le A |x-t|^{-\lambda}$ and T defined by

$$T(f)(x) = \int H(x,t)f(t)dt$$

satisfies

$$||Tf||_{rs} \leqslant A \, ||f||_{pg},$$

where

(11)
$$1/p'+1/r=\lambda/n\geqslant 0, \quad s\geqslant r.$$

If
$$1 < p, r < \infty$$
 and

(12)
$$\omega(\tau)\tau^{-a}\downarrow$$
, $\omega(\tau)\tau^{\beta}\uparrow$ for some $a < n/p', \beta < n/r$

then

$$||Tf||_{rs,\,\omega} \leqslant CA \, ||f||_{pq,\,\omega} \quad \left(C = C(p,q,r,s,a,\beta)\right).$$

If (12) holds with a = n/p', $\beta = n/r$ it is still true that $||Tf||_{r_{\infty,m}} \leq C(A + r_{\infty,m})$ $+1) ||f||_{p1, \omega} (1 \leq p < \infty).$

Proof. Define $K(x,t) = H(x,t)\omega(|x|)\omega(|t|)^{-1}$ and let χ denote the characteristic function of the interval (0,1). Set $K_1(x,t)=K(x,t)\times$ $imes \chi(2\,|x|^{-1}|t|)\,K_3(x,\,t) = K(x,\,t)\,\chi(2\,|x|\,|t|^{-1}),\,\,K = \sum\limits_{i=1}^{n}K_i.\,\,\, ext{The}\,\,\,K_i\,\,\,\, ext{give}\,\,\,\,\,\, ext{rise}$ to operators S_{ϵ} :

$$S_i f(x) = \int K_i(x, t) f(t) dt$$
.

Note that

$$K_1(x,t) \leq 2^{\lambda} A |x|^{-\lambda} \omega(|x|) \omega(|t|)^{-1} \chi(|x|^{-1}|t|) = 2^{\lambda} K_1^*(x,t), \quad \text{say},$$

$$K_3(x,t) \leqslant 2^{\lambda} A |t|^{-\lambda} \omega(|x|) \omega(|t|)^{-1} \chi(|x||t|^{-1}) = 2^{\lambda} A K_3^*(x,t),$$
 say.

It follows from (12) that

(13)
$$\sup \{ \omega(\tau_1)/\omega(\tau_2) \colon 1/2 \leqslant \tau_1/\tau_2 \leqslant 2 \} \leqslant C < \infty.$$

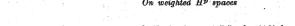
Hence since $0 \leq H(x, t)$ it follows from (10) that

$$||S_2 f||_{rs} \leqslant CA \, ||f||_{pq}.$$

If on the other hand for i = 1, 3 there holds one of

(15)
$$\|\varphi_1\|_{p'q'} \leqslant B$$
, where $\varphi_1(t) = \|K_i^*(\cdot, t)\|_{rs}$,

(16)
$$\|\varphi_2\|_{rs} \leqslant B$$
, where $\varphi_2(x) = \|K_i^*(x, \cdot)\|_{p'q}$



and the exponents are such that at most | | | | | | in (16) is not necessarily a norm then

$$\|S_if\|_{rs}\leqslant CB\,\|f\|_{pq}\quad \text{ for } i=1,3\,.$$

This assertion is a fairly obvious generalization of well known results for L^p spaces (see e.g., [30], Lemma 2). In the present case

$$\begin{split} \varphi_1(t) &= \|K_1^*(\cdot,t)\|_{\operatorname{roo}} \leqslant CA \sup_{|x| \geqslant |t|} \omega(|x|) |x|^{n/r-\lambda} \omega(|t|)^{-1} \\ \|\varphi_1\|_{p'\infty} \leqslant CA \sup_{\tau \leqslant \sigma} \omega(\sigma) \sigma^{n/r-\lambda} \omega(\tau)^{-1} \tau^{n/p'}. \end{split}$$

Thus if

$$(17) \qquad \qquad \omega(\tau)\tau^{-n/p'} \downarrow$$

then (15) and similarly (16) are satisfied for i = 1. Analogously

$$\|\varphi_2\|_{r\infty}\leqslant CA\sup_{\sigma<\tau}\omega(\sigma)\,\sigma^{n/r}\omega(\tau)^{-1}t^{-n/r}\quad \text{ if } \varphi_2(x)\,=\,\|K_3^*(x,\,\cdot)\|_{p'\infty}$$

that is, (16) (and (15) likewise) holds for i = 3 if

(18)
$$\omega(\tau)\tau^{n/r}\uparrow.$$

By the Marcinkiewicz interpolation theorem for Lorentz spaces (see [17]) (and choice of p_0 , p_1 close to p and such that $p_0) it follows that <math>S_1$ and S_3 satisfy $||S_if||_{rs} \leqslant CA \, ||f||_{pq}$. Together with (14) this implies Lemma 1.

Remarks. It follows similarly from (15), (16) that in case $p = \infty$ and

$$\omega(\tau) \, \tau^{-n} \int\limits_0^\tau \omega(\sigma)^{-1} \, \sigma^{n-1} \, d\sigma \leqslant C$$

(in particular if the first condition of (12) holds for some a < n) and the second condition of (12) holds for some $\beta < 0$ then $\|Tf\|_{\infty, \omega} \leqslant CA(1+|\beta|^{-1})$ $||f||_{\infty,\,\omega}$.

Lemma 1 applies to fractional integration where $H(x, t) = |x-t|^{-\lambda}$. In the case of singular integrals with kernels bounded on the unit sphere the operator S_2 has to be dealt with differently (cf. [27]). Lemma 1 applies to M for if $\varepsilon(x)$ is a positive function $\chi(\varepsilon(x)^{-1}|x-t|)=0$ unless |x-t| $< \varepsilon(x)$ so,

$$\varepsilon(x)^{-n}\chi(\varepsilon(x)^{-1}|x-t|)=|x-t|^{-n}.$$

Lemma 2 below makes a stronger assertion in case $\beta = n/p$, p > 1.

In the case of fractional integration two different weights $\omega(|t|)$ and $\omega_1(|x|) = \omega(|x|)|x|^{-\varrho}, \ \varrho \geqslant 0$ may be considered, then $K(x,t) = |x-t|^{-\lambda}$ $\omega_1(|x|)\,\omega(|t|)^{-1}$. If $1/2\leqslant |t|\,|x|^{-1}\leqslant 2$ then $|x-t|\leqslant |x|+|t|\leqslant 3\,|t|$ and so

$$K_2(x, t) \leqslant C|x-t|^{-\lambda}\omega_1(|x|)\omega(|t|)^{-1} \leqslant C|x-t|^{-\lambda-\varrho}$$
.

Hence $1/r+1/p'=(\lambda+\rho)/n$ is sufficient for (14) while in order that S_1 , S_2 be of restricted weak type (p,q) (i.e., bounded from L^{p_1} to L^{q_2}) it is sufficient that

$$\sup_{\sigma \in \mathcal{F}} \omega_1(\sigma) \, \sigma^{n/r-\lambda} \, \omega(\tau)^{-1} \tau^{n/p'} < \infty$$

hence (17) along with (18) (proof similar) are sufficient. As before interpolation can be applied if (12) holds.

For the sake of clarity the following definitions are made. Let

(19)
$$\omega(\tau)\min(\tau^{-a_0}, \tau^{-a_1})\downarrow, \quad \omega(\tau)\max(\tau^{\beta_0}, \tau^{\beta_1})\uparrow$$

and then

$$S^* = \{(p, \omega) \colon 1 \leqslant p < \infty,$$

(19) with
$$n/p' = a_0 \le a_1 \le n/p' + 1$$
, $n/p = \beta_0 \le \beta_1 \le n/p + 1$,

$$S_0^{*1} = \{(p, \omega) : 1$$

(19) with
$$a_0 < n/p'$$
, $a_0 \le a_1 \le n/p' + 1$, $\beta_0 \le n/p$, $\beta_0 \le \beta_1 < n/p + 1$.

$$S_1^{*_1} = \{(p, \omega) \colon 1 \leqslant p < \infty,$$

(19) with
$$a_0 \leq n/p'$$
, $a_0 \leq a_1 < n/p' + 1$, $\beta_0 < n/p$, $\beta \leq \beta_1 \leq n/p + 1$ }.

$$S^{*2} = S_0^{*1} \cap S_1^{*1} = \{(p, \omega) \colon 1$$

(19) with
$$a_0 < n/p'$$
, $\beta_0 < n/p$, $a_0 \le a_1 < n/p' + 1$, $\beta_0 \le \beta_1 < n/p + 1$.

 S, S_0^1, S_1^1, S_2^2 are defined in the same way except that $\alpha_0 = \alpha_1 = \alpha, \beta_0 = \beta_1$ $= \beta$. In order not to introduce more cumbersome notation some fixed α . β . (i = 0, 1) are supposed to be associated with each (p, ω) . If (p, ω) is such that, e.g., ω satisfies the defining properties of S for τ in a subinterval I of R_+ , write $(p, \omega) \in S$ in I. If, e.g., $(p, \tau^a) \in S^2$ write $(p, \alpha) \in S^2$ so that $(p\,,\,a)\,\epsilon\,S_0^1\, {
m iff}\, 1$ $-n/p < a \leq n/p'$.

LEMMA 2. Suppose $(p, \omega) \in S_0^1$ then

$$||Mf||_{p\infty, \omega} \leq C(n/p'-a)^{-1} ||f||_{p\infty, \omega}$$

where a is a possible exponent in the definition of S₀.

Proof. For $\varepsilon(x) > 0$ let $\psi_{\varepsilon}(x, t) = \varepsilon(x)^{-n} \chi(\varepsilon(x)^{-1} |x-t|)$. It will be sufficient to prove that the integral operator defined by

$$f \to \int \psi_s(\cdot, t) \omega(|x|) \omega(|t|)^{-1} f(t) dt$$

is bounded in $L^{p\infty}$ with a bound for its norm independent of the measurable function ε . Let $K_1(x,t) = \psi_{\varepsilon}(x,t)\omega(|x|)\omega(|t|)^{-1}$ if $|x| \ge \max(2\varepsilon(x),|t|)$ or $|t|\geqslant \max\left(2\varepsilon(x),|x|\right)$ and $K_1(x,t)=0$ otherwise. Then if $K_1(x,t)\neq 0$

either $|t| \ge |x| - |x - t| \ge |x|/2$ hence $1 \le |x| |t|^{-1} \le 2$ or $|x| \ge |t| - |x - t|$ $\geqslant |t|/2$ hence $1/2 \leqslant |x||t|^{-1} \leqslant 1$. Thus by (13) which is a consequence of the hypotheses $K_1(x,t) \leq C\psi_s(x,t)$.

Next let $K_2(x,t) = \psi_{\varepsilon}(x,t) \, \omega(|x|) \, \omega(|t|)^{-1}$ if $|t| \leqslant |x| \leqslant 2\varepsilon(x)$ and $K_3(x,t) = \psi_s(x,t)\,\omega(|x|)\,\omega(|t|)^{-1}$ if $|x| \leqslant |t| \leqslant 2\varepsilon(x)$, = 0 otherwise. Then

$$\psi_s(x, t) \, \omega(|x|) \, \omega(|t|)^{-1} = \sum_{i=1}^3 K_i(x, t)$$

$$K_2(x,t) \leq 2^n |x|^{-n} \omega(|x|) \omega(|t|)^{-1} |t|^{\alpha} |t|^{-\alpha} \leq 2^n |x|^{-n+\alpha} |t|^{-\alpha}$$

for $|t| \leq |x|$, and = 0 otherwise. It follows that (16) holds for K_2 with p = r, $q = s = \infty$. $B = C(n/p' - a)^{-1}$. Moreover

$$\begin{split} K_3(x,t) &\leqslant \psi_{\varepsilon}(x,t)\,\omega(|x|)\,2^{\alpha}\omega\big(2\varepsilon(x)\big)^{-1}\varepsilon(x)^{\alpha}|t|^{-\alpha} \\ &\leqslant 2^{\alpha}\psi_{\varepsilon}(x,t)\,\big(2\varepsilon(x)\big)^{n/p}|x|^{-n/p}\varepsilon(x)^{\alpha}|t|^{-\alpha} \\ &= 2^{\alpha+n/p}\varepsilon(x)^{\alpha-n'p'}|x|^{-n/p}|t|^{-\alpha}\chi\big(\varepsilon(x)^{-1}|x-t|\big) \end{split}$$

so

$$\|K_3(x,\,\cdot\,)\|_{p'1}\leqslant C\varepsilon(x)^{a-n/p'}\,|x|^{-n/p}\int\limits_{|t|\leqslant 2s(x)}|t|^{-a-n/p}\,dt\leqslant C(n/p'-a)^{-1}\,|x|^{-n/p}.$$

Thus (16) holds for K_2 with p=r, $q=s=\infty$, $B=C(n/p'-a)^{-1}$. Hence if the operators S_i are defined as in the proof of Lemma 1, S_1 is bounded in $L^{p\infty}$ since M is, S_2 and S_3 are by the proof of Lemma 1.

LEMMA 3.

(20)
$$||P(\cdot, y) * f||_{rs, \omega} \leqslant C(y) ||f||_{pq, \omega}$$

provided one of

(a)
$$(p, \omega) \in S^{*2}$$
, $q \leqslant s \leqslant \infty$, (b) $(p, \omega) \in S_1^{*1}$, $q = s = 1$,

(c)
$$(p, \omega) \epsilon S_0^{*1}$$
, $q = s = \infty$,

(c)
$$(p,\omega) \in S_0^{*1}, \quad q=s=\infty,$$
 (d) $(p,\omega) \in S^*, \quad q=1, s=\infty,$

is satisfied. Furthermore in cases (a) with $q \geqslant 1$, (b), (c)

$$C(y) = C\left[\left(\frac{n}{p'} + 1 - a_1\right)^{-1} y''_1 + \left(\frac{n}{p} - \beta_0\right)^{-1} (1 + \psi_1(y))\right]^{1/q} \times \\ \times \left[\left(\frac{n}{p} + 1 - \beta_1\right)^{-1} y''_0 + \left(\frac{n}{p'} - a_0\right)^{-1} (1 + \psi_0(y))\right]^{1/q'},$$

where

$$v_1 = (a_1 - n/p')^+, \quad v_0 = (\beta_1 - n/p)^+ \quad (a^+ = \max(a, 0))$$

and

$$\psi_1(y) = y^{\beta_1 - n/p}, \log^+ y, (n/p - \beta_0) (n/p - \beta_1)^{-1}$$

according as $\beta_1 > n/p$, = n/p or < n/p and analogously

$$\psi_0(y) = y^{a_1 - n/p'}, \log^+ y, (n/p' - a_0) (n/p' - a_1)^{-1}$$

according as $a_1 > n/p'$, = n/p', < n/p'. In case (a) and $0 < q \le 1$

$$C(y) \leqslant C_{p,r,a,\beta}(1+y^{a_1-n/p'+\varepsilon}+y^{\beta_1-n/p+\varepsilon})$$
 for any $\varepsilon > 0$,

while in case (d)

$$C(y) \leqslant C_p(1+y^{\nu})$$
 where $\nu = \max(\nu_0, \nu_1)$.

If ω is continuous and does not vanish in [0,1] and (p,ω) satisfies (a) with $q \ge 1$, (b), (c) or (d) then C(y) may be chosen so that $\lim_{y \to 0} C(y) = 1$.

In any case if (a) is satisfied with $q < \infty$ and if $f \in L^{pq}_{\omega}$ then

(21)
$$\lim_{y\to 0} \|P(\cdot,y)*f-f\|_{pq,\,\omega} = 0.$$

Proof. To establish (b) note that it may and will be assumed that $a_1 \ge n/p'$, since this does not alter the hypotheses nor the conclusion (all a_i, β_i are supposed to be non-negative). Set

$$K_1^*(x,t) = y(y+|x|)^{-n-1}\omega(|x|)\omega(|t|)^{-1}\chi(|x|^{-1}|t|),$$

$$K_3^*(x,t) = y(y+|x|)^{-n-1}\omega(|x|)\omega(|t|)^{-1}\chi(|x||t|^{-1}).$$

Then

$$\|K_1^*(x,\cdot)\|_{p'\infty}\leqslant C\sup_{ au\leqslant |x|}rac{y\,\omega\,(|x|)}{(y+|x|)^{n+1}}\,\omega(au)^{-1} au^{n/p'}$$

$$\leqslant C \frac{y \omega(|x|)}{(y+|x|)^{n+1}} \sup_{\tau \leqslant |x|} \omega(\tau)^{-1} \max(\tau^{a_0}, \tau^{a_1}) \leqslant C y (y+|x|)^{-n-1} \max(|x|^{a_0} |x|^{a_1}).$$

Let $\varphi_1(x) = 1$ if $|x| \leq \min(1, y) = y_1$, say, =0 otherwise, $\varphi_3(x) = 1$ if $|x| \geq \max(1, y_3) = y_3$, say, =0 otherwise and $1 = \varphi_1 + \varphi_2 + \varphi_3$. Denote the double Lorentz norms defined as in (15), (16) by

$$\|\|K_i^*\|[L^{rs}(x)]\|[L^{p'q'}(t)],\|\|K_i^*\|[L^{p'q'}(t)]\|[L^{rs}(x)]\|$$

respectively. Then

$$\begin{split} \big\| \| K_1^* \varphi_1 \| [L^{p'\infty}(t)] \big\| [L^{p1}(x)] &\leqslant C y^{-n} y_1^{a_0} \int\limits_0^{C y_1^n} \tau^{1/p-1} d\tau \leqslant C y_1^{a_0-n/p'} \leqslant C \\ \big\| \| K_1^* \varphi_3 \| [L^{p'\infty}(t)] \| [L^{p1}(x)] &\leqslant C y_3^{a_1-n/p'} |B^n(0,y_3)|^{n/p} + y \int\limits_{C y_3^n}^{\infty} \tau^{(a_1-n-1)/n+1/p-1} d\tau \\ &\leqslant C \bigg(\frac{n}{p'} + 1 - a_1 \bigg)^{-1} y^{a_1-n/p'}. \end{split}$$

Similarly $\|\|R_1^*\varphi_2\|[L^{p'\infty}(t)]\|[L^{p_1}(x)] \le C$ (if $y \ge 1$ this follows from the estimate for $|x| \le y_1$, if $y \le 1$ from that for $|x| > y_2$). Hence by addition

$$\|\|K_1^*\|[L^{p'\infty}(t)]\|[L^{p1}(x)] \leqslant C(1+(n/p'+1-a_1)^{-1}y^{a_1-n/p'}).$$

Next

$$\begin{split} \|K_3^*(x,\cdot)\|_{p'\infty} &\leqslant Cy\,\omega(|x|)\sup_{\tau\geqslant |x_i|}\frac{\omega(\tau)^{-1}\,\tau^{n/p'}}{(y+\tau)^{n+1}} \\ &\leqslant Cy\,\omega(|x|)\sup_{\tau\geqslant |x|}\frac{\max(\tau^{\beta_0},\tau^{\beta_1})\,\tau^{n/p'}}{\omega(\tau)\max(\tau^{\beta_0},\tau^{\beta_1})(y+\tau)^{n+1}} \end{split}$$

so

(22)
$$||K_3^*(x,\cdot)||_{p'\infty} \leqslant Cy \min(|x|^{-\beta_0}, |x|^{-\beta_1}) \sup_{\tau \geqslant |x|} \frac{\max(\tau^{\beta_0}, \tau^{\beta_1}) \tau^{n/p'}}{(y+\tau)^{n+1}}.$$

Since

$$\frac{d}{d\tau} \log \left[\frac{\tau^{\beta_1 + n/p'}}{(y + \tau)^{n+1}} \right] = (\beta_1 + n/p')\tau^{-1} + \frac{n+1}{y + \tau} \leqslant 0$$

$$\text{for } \tau \geqslant \frac{\beta_1 + n/p'}{n/p + 1 - \beta^1} y = C(\beta_1, p)y,$$

say, which is $\geqslant C(\beta_0, p)y$ it follows that if $|x| \geqslant C(\beta_1, p)y$ then

(23)
$$\sup_{\tau \geqslant |x|} \frac{\max(\tau^{\beta_0}, \tau^{\beta_1}) \tau^{n/p'}}{(y+\tau)^{n+1}} \leqslant \frac{\max(|x|^{\beta_0}, |x|^{\beta_1}) |x|^{n/p'}}{(y+|x|)^{n+1}}$$

while if $|x| \leqslant C(\beta_1, p)y$ then

$$(24) \quad \sup_{\tau \geqslant |x|} \frac{\max(\tau^{\beta_{0}}, \tau^{\beta_{1}}) \tau^{n/p'}}{(y+\tau)^{n+1}} \\ = \max\left\{\sup_{\tau \geqslant |x|} \frac{\tau^{\beta_{0}+n/p'}}{(y+\tau)^{n+1}}, \sup_{\tau \geqslant |x|} \frac{\tau^{\beta_{1}+n/p'}}{(y+\tau)^{n+1}}\right\} \\ \leqslant \frac{C(\beta_{0}, p)^{\beta_{0}+n/p'}}{[1+C(\beta_{0}, p)]^{n+1}} y^{\beta_{0}-n/p-1} + \frac{C(\beta_{1}, p)^{\beta_{1}+n/p'}}{[1+C(\beta_{1}, p)]^{n+1}} y^{\beta_{1}-n/p-1}.$$

Let now $\lambda_1(x)=1$ if $|x|\leqslant C(\beta_1,p)y$, =0 otherwise and $1=\lambda_1+\lambda_2$. Then if $C(\beta_1,p)y\leqslant 1$.

(25)
$$\|\min(|\cdot|^{-\beta_0}, |\cdot|^{-\beta_1})\lambda_1\|_{p_1} \le C(n/p - \beta_0)^{-1}[C(\beta_1, p)y]^{n/p - \beta_0}$$
 while if $C(\beta_1, p)y \ge 1$ this is at most

(26)
$$\begin{cases} C\left[\left(\frac{n}{p} - \beta_0\right)^{-1} + \left(\beta_1 - \frac{n}{p}\right)^{-1}\right], \\ C\left[\left(\frac{n}{p_0} - \beta_0\right)^{-1} + \log C(\beta_1, p)y\right], \\ C\left[\left(\frac{n}{p} - \beta_0\right)^{-1} + \left(\frac{n}{p} - \beta_1\right)^{-1}y^{n/p+1-\beta_1}\right] \end{cases}$$

according as $\beta_1 > n/p$, = n/p or < n/p. If $C(\beta_1, p)y \leqslant 1$ it follows from (22)–(25) that

$$\begin{split} \big\| \, \| K_3^* \| [L^{p'\infty}(t)] \big\| [L^{p_1}(x)] &= M_3 \text{ (say)} \\ & \leqslant C \bigg[\frac{C(\beta_0, \, p)^{\beta_0 + n/p'}}{(1 + C(\beta_0, \, p))^{n+1}} \, y^{\beta_0 - n/p} + \frac{C(\beta_1, \, p)^{\beta_1 + n/p'}}{(1 + C(\beta_1, \, p))^{n+1}} \, y^{\beta_1 - n/p} \bigg] \times \\ & \qquad \qquad \times \| \min(|\cdot|^{-\beta_0}, \, |\cdot|^{-\beta_1}) \, \lambda_1 \|_{p_1} + Cy \, \bigg\| \, \frac{|\cdot|^{n/p'}}{(y + |\cdot|)^{n+1}} \, \lambda_2 \, \bigg\|_{p_1} \\ & \leqslant C \bigg(\frac{n}{p} - \beta_0 \bigg)^{-1} \Big(1 + C(\beta_1, \, p)^{n + \beta_1 - \beta_0} \big(1 + C(\beta_1, \, p) \big)^{-n - 1} y^{\beta_1 - \beta_0} \big) \end{split}$$

while if $C(\beta_1, p)y \geqslant 1$ then by (26)

$$\begin{split} M_{3} \leqslant C \left[\left(\frac{n}{p} - \beta_{0} \right)^{-1} + \left(\beta_{1} - \frac{n}{p} \right)^{-1} \right] y^{\beta_{1} - n/p}, \qquad C \left[\left(\frac{n}{p} - \beta_{0} \right)^{-1} + \log^{+} y \right], \\ C \left[\left(\frac{n}{p} - \beta_{0} \right)^{-1} + \left(\frac{n}{p} - \beta_{1} \right)^{-1} \right] \end{split}$$

according as $\beta_1 > n/p$, = n/p or < n/p.

This proves (b) along with the corresponding estimate for C(y) in this case. (c) is obtained from (b) by duality. (a) in case $q \ge 1$ is obtained from (b) and (c) by the complex method of interpolation ([4]). In case $0 < q \le 1$ (a) follows from the Marcinkiewicz interpolation theorem by choosing p_0 , p_1 such that $p_1 and, e.g., <math>(p_0, \omega) \in \mathcal{S}_0^{*1}$, $(p_1, \omega) \in \mathcal{S}_1^{*1}$. To prove (d) observe that if $H(x, t) \ge 0$ is bounded by $\Phi(|x-t|)$ instead of $A|x-t|^{-\lambda}$ where Φ is decreasing and satisfies (13) i.e., $\Phi(\tau/2) \le C\Phi(\tau)$ then the proof of Lemma 1 shows that

$$\sup_{\tau \leqslant \sigma} \omega(\sigma) \sigma^{n/q} \Phi(\sigma) \omega(\tau)^{-1} \tau^{n/p'} \leqslant C, \quad \sup_{\tau \leqslant \sigma} \omega(\tau) \tau^{n/q} \omega(\sigma)^{-1} \sigma^{n/p'} \Phi(\sigma) \leqslant C$$

is sufficient for $\|Tf\|_{q_{\infty,\infty}} \leqslant C\|f\|_{p_{1,\infty}}$. Also if $\Phi_y(|x|) = C_n^{-1}\min(1, y/|x|)|x|^{-n}$ then $\Phi_y(\tau/2) \leqslant 2^{n+1}\Phi_y(\tau)$ and $P(x,y) \leqslant \Phi_y(|x|)$. (d) follows provided it can be shown that $(p,\omega) \in S^*$ and $\tau \leqslant \sigma$ imply

(27)
$$\omega(\sigma) \sigma^{-n/p'} \min(1, y/\sigma) \omega(\tau)^{-1} \tau^{n/p'} \leq 1 + y^{a_1 - n/p'}$$

and

(28)
$$\omega(\tau)\tau^{n/p}\omega(\sigma)^{-1}\sigma^{-n/p}\min(1, y/\sigma) \leq 1 + y^{\beta_1 - n/p}$$

But

$$\begin{split} \omega(\sigma)\sigma^{-n/p'} &= \omega(\sigma)\sigma^{-n/p'}\min(\sigma^{-n/p'},\,\sigma^{-a_1})\max(\sigma^{n/p'},\,\sigma^{a_1}) \\ &\leqslant \omega(\tau)\min(\tau^{-n/p'},\,\tau^{-a_1})\max(1,\,\sigma^{a_1-n/p'}). \end{split}$$

This is $\leqslant \omega(\tau) \tau^{-n/p'}$, $\omega(\tau) \tau^{-n/p'} \sigma^{a_1 - n/p'}$ or $\leqslant \omega(\tau) \tau^{-a_1} \sigma^{a_1 - n/p'} \leqslant \omega(\tau) \tau^{-n/p'} \times \sigma^{a_1 - n/p'}$ according as $\sigma \leqslant 1$, $\tau \leqslant 1 \leqslant \sigma$ or $\tau \geqslant 1$. Thus the left-hand side of (27) is at most min(1, y/σ) for $\sigma \leqslant 1$ and $\leqslant \min(1, y/\sigma) \sigma^{a_1 - n/p'}$ for $\sigma \geqslant 1$ and (27) follows. (28) follows from (27) by replacing ω by ω^{-1} and p' by p.

To prove the last part of the lemma observe that if ω and ω^{-1} are continuous in [0,1], $\omega(\tau)\tau^{-a_1}\downarrow$, $\omega(\tau)\tau^{\beta_1}\uparrow$ for $\tau\geqslant 1$ and ψ is defined by $\psi(\varepsilon)=\sup_{|\tau-\sigma|\leqslant \varepsilon}\frac{\omega(\tau)}{\omega(\sigma)}$ then $\lim_{\varepsilon\to+0}\psi(\varepsilon)=1$. Also by Minkowski's inequality for integrals $\|P(\cdot,y)*f\|_{pq}\leqslant \|f\|_{pq}$ whenever $\|\cdot\|_{pq}$ is a norm. Hence if

$$K(x,t) = P(x-t,y)\,\omega(|x|)\,\omega(|t|)^{-1}, \quad K_{\epsilon}(x,t) = K(x,t)\,\chi(\epsilon^{-1}|x-t|)$$

then

$$\sup\left\{\left\|\int K_{\varepsilon}(\cdot\,,\,t)f(t)\,dt\right\|_{pq}\colon\,\|f\|_{pq}\leqslant 1\right\}\leqslant \psi(\varepsilon)\,.$$

If $K_{\varepsilon}' = K - K_{\varepsilon}$ then $K_{\varepsilon}'(x, t) \leqslant C\varepsilon^{-1}y\varepsilon(\varepsilon + |x - t|)^{-n-1}\omega(|x|)\omega(|t|)^{-1}$. Therefore by what has already been proved

$$\lim_{y\to 0} \sup\left\{\left\|\int K'_{\varepsilon}(\cdot,t)f(t)\,dt\right\|_{ps}\colon \|f\|_{pq}\leqslant 1\right\} = C\varepsilon^{-1}\lim_{y\to 0}y = 0$$

and so

$$\limsup_{y\to 0}\sup\{\|P(\cdot\,,\,y)*f\|_{ps,\,\omega}\colon\,\|f\|_{pr,\,\omega}\leqslant 1\}\leqslant \psi(\varepsilon)\,.$$

If ε is made to tend to 0 it follows that

$$\limsup\sup_{y\to 0}\sup\{\|P(\cdot,y)*f\|_{ps,\omega}\colon\,\|f\|_{pr,\omega}\leqslant 1\}\leqslant 1.$$

If $q<\infty$ the continuous functions φ of compact support disjoint from $\{0\}$ are dense in L_{φ}^{q} . It therefore suffices to prove (21) for such a function φ . But then $P(\cdot,y)*\varphi\to\varphi$ uniformly and for $|x|\leqslant 1/2\inf\{|y|:y\in\sup \varphi\}=\delta$, say, $P(\cdot,y)*\varphi(x)\leqslant Cy\,\delta^{-n-1}\|\varphi\|_1$ while for $|x|\geqslant 2\sup\{|y|:y\in\sup \varphi\}$, $P(\cdot,y)*\varphi(x)\leqslant Cy\,|x|^{-n-1}\|\varphi\|_1$ which implies (21).

LEMMA 4. If M^{η} is defined by

$$M^{\eta}f(x) = \sup_{\varepsilon \leqslant \eta} \varepsilon^{-n} \Big| \int\limits_{|t-x| \leqslant \varepsilon} f(t) dt \Big|$$

then

$$||M^{\eta}f||_{rs,\,\omega} \leqslant C ||f||_{pq,\,\omega}$$

provided one of

(a)
$$(p,\omega)\epsilon S^2, q\leqslant s\leqslant \infty,$$
 (b) $(p,\omega)\epsilon S^1_0, q=s=\infty,$ (c) $(p,\omega)\epsilon S,$
$$q=1,\ s=\infty$$

holds in the interval $(0, \eta)$ and ω satisfies (13).

Proof. If $\varepsilon(x)$ is a positive function on \mathbb{R}^n

 $\varepsilon(x)^{-n}\chi\big(\varepsilon(x)^{-1}|x-t|\big)\,\omega(|x|)\,\omega(|t|)^{-1}\leqslant C\varepsilon(x)^{-n}\chi\big(\varepsilon(x)^{-1}|x-t|\big)\quad\text{for}\quad |x|\geqslant 2\eta$ and for $|x| \leq 2\eta$ it vanishes unless $|t| \leq 3\eta$. Hence if $\omega^*(\tau) = \omega(\tau)$ for $\tau \leqslant 3\eta$ and $= \omega(3\eta)$ for $\tau \geqslant 3\eta$ then $(p, \omega^*) \in S^2$, S_0^1 or S as the case may be. Also

$$\varepsilon(x)^{-n}\chi\big(\varepsilon(x)^{-1}|x-t|\big)\,\omega\left(|x|\right)\omega\left(|t|\right)^{-1}\leqslant C\varepsilon(x)^{-n}\chi\big(\varepsilon(x)^{-1}|x-t|\big)\,\omega^*(|x|)\omega^*(|t|)^{-1}$$

and so the lemma follows from Lemmas 1 and 2 and the remark pertaining to to the maximal operator M after the proof of Lemma 1.

Define

$$\varGamma_k^{\eta}(x) = \{(t,y) \colon |t-x| \leqslant ky < k\eta\} \quad \big(\varGamma_k(x) = \varGamma_k^{\infty}(x)\big).$$

LEMMA 5. Let $F(x, y) = P(\cdot, y) * f(x)$ and

$$F^{*\eta}(x) = \sup\{|F(t,y)|: (t,y) \in \Gamma_k^{\eta}(x)\}.$$

Then $\|F^{*\eta}\|_{ps,\,\omega} \leqslant C(\eta) \|f\|_{pq,\,\omega}$ provided one of the following conditions is satisfied

(a)
$$(p, \omega) \in S^{*2}$$
, $q \leqslant s \leqslant \infty$, (b) $(p, \omega) \in S_0^{*1}$, $q = s = \infty$,
(c) $(p, \omega) \in S^*$, $q = 1$, $s = \infty$.

If $\mu=\max\{(\alpha_1-\alpha_0),\,(\beta_1-\beta_0)\}$ then if (a) holds and $\varepsilon>0,\,C(\eta)\leqslant C_\varepsilon(1+\varepsilon)$ $+\eta^{\mu+s}$) while if (b) or (c) hold $C(\eta) \leqslant C(1+\eta^{\mu})$ ($\leqslant C(1+\log^+\eta)$ if $a_0 = a_1$

Proof. It can be assumed without loss of generality that $f \geqslant 0$. Then

$$(30) \qquad F(t,y)\leqslant C_kF(x,y) \qquad \text{for } (t,y)\,\epsilon \varGamma_k(x) \qquad \text{(see, e.g., [29],} \quad (3.16)),$$
 hence

$$\begin{split} F^{*\eta}(x) &\leqslant C_k \sup_{y \leqslant \eta} F(x, y) \\ &\leqslant C_k \Big[M^{\eta} f(x) + \sup_{y \leqslant \eta} \int\limits_{|t| \geqslant \eta} P(t, y) f(x - t) \, dt \Big] \\ &\leqslant C_k \big[M^{\eta} f(x) + P(\cdot, \eta) * f(x) \big]. \end{split}$$

Furthermore if, e.g., $\omega(\tau)\min(\tau^{-a_0}, \tau^{-a_1})\downarrow$ then for $1\leqslant \tau\leqslant\sigma\leqslant\eta\ \omega(\tau)\tau^{-a_0}$ $=\omega(\tau)\tau^{-a_1}\tau^{a_1-a_0}\geqslant \omega(\sigma)\sigma^{-a_0}(\tau/\sigma)^{a_1-a_0}\geqslant \omega(\sigma)\sigma^{-a_0}\eta^{a_0-a_1}. \text{ Clearly if in Lem-}$ ma 4 the condition $\omega(\tau)\tau^{-a}\!\downarrow$ is replaced by $\omega(\sigma)\sigma^{-a}\!\leqslant A\omega(\tau)\tau^{-a}$ and $\omega(\tau)\tau^{\beta}\!\uparrow \text{ by }\omega(\tau)\tau^{\beta}\leqslant A\omega(\sigma)\sigma^{\beta} \text{ for }\tau\leqslant\sigma\leqslant\eta \text{ the conclusion is the same}$ except that the right-hand side of (29) is multiplied by A. In the present case this yields $\|M^{\eta}f\|_{ps,\omega} \leqslant C(1+\eta^{\mu})\|f\|_{pq,\omega}$. Together with Lemma 3 this proves Lemma 5 (since $\nu \leqslant \mu$).

The next lemma will be of significance in connection with Proposition 3 below.

LEMMA 6. For $y \ge 1$

$$\omega(y)\|\chi(y^{-1}|\cdot|)P(\cdot,y)*f\|_{ps}+\|\chi(y|\cdot|^{-1})\omega(|\cdot|)P(\cdot,y)*f\|_{ps}\leqslant C(y)\|f\|_{pq,\omega}$$
 provided one of (a),..., (d) of Lemma 3 holds, and in case (a) with $q\geqslant 1$, (b), (c)

$$\begin{split} C(y) \leqslant & \, [(n/p'+1-\alpha_1)^{-1}y^{a_1-n/p'}+1]^{1/q}[(n/p'-\alpha_0)^{-1}y^{a_1-n/p'}+\\ & + (n/p+1-\beta_1)^{-1}+v(y)]^{1/q'}, \end{split}$$

where

(31)
$$\psi(y) = (a_1 - n/p')^{-1}, \log^+ y, (n/p' - a_1)^{-1} y^{a_1 - n/p'}$$

$$according \ as \ a_1 < n/p', \ = n/p' \ \text{or} > n/p'.$$

In case (a) (and 0 < q < 1) $C(y) \leq C_{\epsilon}(y^{a_1 - n/p' + \epsilon} + 1)$ for any $\epsilon > 0$ while $C(y) \leqslant C_n(y^{a_1-n/p'}+1)$ in case (d), in particular, if in addition $a_1 < n/p'$ $(a_1 \leqslant n/p' \text{ in case (b) or (d)) then } C(y) \text{ is bounded.}$

Proof. To establish case (b), for $y \ge 1$, set

$$\begin{split} K^y(x,\,t) &= \,\omega(y)y(y+|x-t|)^{-n-1}\omega(|t|)^{-1}\chi(y^{-1}|x|),\\ K_y(x,\,t) &= y(y+|x-t|)^{-n-1}\omega(|x|)\,\omega(|t|)^{-1}\chi(y\,|x|^{-1}). \end{split}$$

It is sufficient to show that K^{ν} , K_{ν} satisfy (15) or (16) with r = p, q = s= 1. Consider first K^{y} . Set

$$K_1^y(x,t) = K^y(x,t)\chi(1/2y^{-1}|t|), \quad K_2^y = K^y - K_1^y$$

so that

$$K_1^y(x, t) \leqslant Cy^{-n+a_1} \min(|t|^{-a_0}, |t|^{-a_1})$$

hence

$$\|K_1^y(x,\,\cdot)\|_{p'\infty}\leqslant Cy^{-n+a_1}\sup_{|t|<\sigma_{2y}}\min(|t|^{-a_0+n/p'}|t|^{-a_1+n/p'})\leqslant Cy^{-n+a_1}$$

(it was again assumed that $a_1 \ge n/p'$, cf. start of proof of Lemma 3). As a result

$$|||K_1^y||[L^{p'\infty}(t)]||[L^{p_1}(x)]| \leq Cy^{-n/p'+a_1}.$$

On the other hand

$$K_2^y(x, t) \leqslant Cy |t|^{-n-1} \omega(y) \omega(|t|)^{-1} \leqslant Cy^{1-\beta_1} |t|^{-n-1+\beta_1}$$

hence
$$\|K_2^y(x,\cdot)\|_{p'\infty}\leqslant Cy^{1-eta_1}\sup_{|t|\geqslant 2y}|t|^{-1-n/p+eta_1}\leqslant Cy^{-n/p}$$

and since K_2^y vanishes for $|x| \geqslant y$

$$|||K_2^y||[L^{p'\infty}(t)]||[L^{p1}(x)]| \leq C.$$

Let now

$$egin{aligned} K_y^1(x,\,t) &= K_y(x,\,t) \chi(2\,|x|^{-1}|t|), \ K_y^3(x,\,t) &= K_y(x,\,t) \chi(2\,|x|\,|t|^{-1}), \ K_y^2 &= K_y - K_y^1 - K_y^3. \end{aligned}$$

Thus

$$K_y^2(x,\,t)\leqslant CP(x-t,\,y)\,,\quad K_y^1(x,\,t)\leqslant Cy\,|x|^{a_1}(y+|x|)^{-n-1}\mathrm{min}\,(|t|^{-a_0},|t|^{-a_1})$$

and so

$$\|\|K_y^1\|[L^{p'\infty}(t)]\|[L^{p1}(x)] \leqslant C[(n/p'+1-a_1)^{-1}y^{a_1-n/p'}+1].$$

Finally
$$K_y^3(x,t) \leqslant y |t|^{-n-1+\beta_1} |x|^{-\beta_1}$$
, so

$$||K_y^3(x,\cdot)||_{p'\infty} \leqslant Cy \, |x|^{-\beta_1} \sup_{|t| > |a|} |t|^{-n/p-1+\beta_1} = Cy \, |x|^{-n/p-1}$$

and $|||K_y^3||[L^{p'\infty}(t)||[L^{p1}(x)]| \leq C$.

Case (c) follows similarly from

$$\begin{aligned} & \left\| \| K_1^y \| [L^{p'1}(t)] \| [L^{p\infty}(x)] \leqslant C(n/p' - a_0)^{-1} y^{a_1 - n/p'}, \\ & \| \| K^y \| [L^{p'1}(t)] \| [L^{p\infty}(x)] \leqslant C(n/p + 1 - \beta_1)^{-1}, \end{aligned}$$

$$\|\|K_y^1\|[L^{p'1}(t)]\|[L^{p\infty}(x)] \leqslant C(n/p'-a_0)^{-1}y^{a_1-n/p}+C\psi(y)$$

(see (31)) and

$$\|\|K_{y}^{3}\|[L^{p'1}(t)]\|[L^{p\infty}(x)] \leqslant C(n/p+1-\beta_{1})^{-1}.$$

(a) now follows by interpolation and (d) is proved similarly. The following will be needed below.

(32)
$$\|\omega(|\cdot|)^{-1}(1+|\cdot|)^{-n-1}\|_{n'} < \infty \quad \text{if} \quad (p,\omega) \in S_0^{*1}.$$

For

$$\|\omega(|\cdot|)^{-1}(1+|\cdot|)^{-n-1}\|_{p'1}\leqslant \omega(1)\left(\|\cdot|^{-a_0}\chi(|\cdot|)\|_{p'1}+\||\cdot|^{\beta_1-n-1}(1-\chi(|\cdot|))\|_{p'1}\right)<\infty.$$

It follows similarly that

(33)
$$\|\omega(|\cdot|)^{-1}(1+|\cdot|)^{-n-1}\|_{n'\infty} < \infty \quad \text{if} \quad (p,\omega) \in S^*.$$

Hence if $f \in L^{pq}_{\omega}$, p, ω, q satisfying (a), (b), (c) or (d) of Lemma 3 then $f(1+|\cdot|)^{-n-1}$ is integrable. It follows from $\lim P(\cdot,y)=0$ by dominated convergence that $\lim_{y \to \infty} y^{-1} P(\cdot, y) * f = 0$. By the usual density argument if $(p, \omega) \in S_1^{*1}$ then $\lim_{y \to \infty} y^{-1} ||P(\cdot, y) * f||_{n_1, \omega} = 0$.

 $\omega > 0$, $\omega(\tau)\tau^{-\alpha}\downarrow$, $\omega(\tau)\tau^{\beta}\uparrow$ imply, as is well known, that $\log \omega$ is (locally) Lipschitzian, hence if $(p, \omega) \in S^*$ then ω must be continuous. In case $(1, \omega) \in S^*$ ω^{-1} is continuous at 0 for in this case $\alpha_0 = 0$ hence ω^{-1} is increasing.

By means of the preceding lemmas, in case $w(x) = \omega(|x|), (p, \omega)$ ϵS^* the conclusion of Proposition 1 can be strengthened and extended to q < 1. For the purposes of the following proposition let H^{pq}_{ω} denote the space of harmonic functions F in \mathbb{R}^{n+1}_+ satisfying

(34)
$$||F||[H^{pq}_{\omega}]| = \sup (1+y)^{-1} ||F(\cdot,y)||_{pq,\omega} < \infty.$$

PROPOSITION 2. Suppose $F \in H_m^{pq}$. If $\eta > 0$ the convergence of F in Γ_i^n to the boundary value function f (quaranteed by Proposition 1) is dominated by a function $f^{*\eta} + |\delta| p_0$ such that $||f^{*\eta}||_{ns,\omega} \leq C(\eta) ||F|| [H^{pq}_{\omega}]$ provided one of the following conditions is satisfied:

(a)
$$(p,\omega) \in S^{*2}$$
, $0 < q = s \leqslant \infty$, (b) $(p,\omega) \in S_1^{*1}$, $q = 1$, $s = \infty$,

(b)
$$(p, \omega) \in S_1^{*1}, q = 1, s = \infty$$

(c)
$$(p, \omega) \in S_0^{*1}, q = s = 0$$

(c)
$$(p, \omega) \in S_0^{*1}$$
, $q = s = \infty$, (d) $(p, \omega) \in S^*$, $q = 1$, $s = \infty$.

Hence $||F(\cdot,y)-f||_{nq,\omega} \to 0$ if (a) and $q < \infty$. In cases (a), (b), p > 1, (p=1), (c) and if the constant function $1 \in L^{pq}_{\omega}$ the mapping

$$(f, \delta) \rightarrow P * f + \delta p_0$$

is a topological isomorphism between $L^{pq}_m \oplus C((\omega^{-1}\mathcal{M}^1) \oplus C)$ and H^{pq}_m . In case $1 \notin L^{pq}_{\omega}$ it is an isomorphism between L^{pq}_{m} ($\omega^{-1} \mathcal{M}^{1}$) and H^{pq}_{m}

Proof. To prove the first part, by consideration of $F - \delta p_n$, if necessary, it is sufficient to consider the case $\delta = 0$. Let

$$F^{*\eta}(x, y_1) = \sup\{|F(t, y)|: (t, y - y_1) \in \Gamma_h^{\eta}(x)\}, f^{*\eta} = F^{*\eta}(\cdot, 0).$$

If $q \ge 1$ by (32), (33) and the corollary to Proposition 1 $F = P * f(P * \mu)$ if p=1), where $\|f\|_{pq,\,\omega}\leqslant \liminf \|F(\cdot\,,y)\|_{pq,\,\omega}$. The first assertion therefore

follows from Lemma 5. If q < 1 (hence case (a)) the remaining hypotheses are also satisfied for q replaced by 1. Hence by the proof of Proposition 1

$$F(x, y) = P(\cdot, y - y_1) * F(\cdot, y_1)$$
 for $0 < y_1 < y_1$

so by Lemma 5

$$||F^{*\eta-y_1}(\cdot,y_1)||_{pq,\,\omega} \leqslant C(\eta) ||F(\cdot,y_1)||_{pq,\,\omega}.$$

Also $F^{*\eta-y_1}(\cdot,y_1)$ is decreasing as function of y_1 hence by the Fatou property of the (quasi-) norm | . | | na

$$||f^{*\eta}|| \leqslant C(\eta) \liminf_{y \to 0} ||F(\cdot, y)||_{pq, \omega}.$$

(If $\{f_n\}$ is a sequence of measurable functions such that $f_n
ightharpoonup f$ and λ_t denotes the distribution function of f it follows that $\lambda_{f_n} \uparrow \lambda_f$ hence $f_n^* \uparrow f^*$. Hence by Fatou's lemma $\|f\|_{pq} = \lim_{n \to \infty} \|f_n\|_{pq}$). In case $p \stackrel{*}{>} 1, q = s < \infty$ it follows from dominated convergence that $[(F(\cdot,y)-f)\omega]^{**} \to 0$ and hence again

by dominated convergence $\lim ||F(\cdot,y)-f||_{pq,\,\omega}=0$. The assertion concerning the topological isomorphism now follows from Proposition 1 and Lemma 3.

Remark. The existence of boundary values $F(\cdot,0)$ can also be deduced from Calderón's theorem ([3]) which asserts the equivalence of non-tangential boundedness and convergence of harmonic functions a.e. (Still, the proof of this theorem in [3] requires the weak compactness of bounded subsets of the dual of a Banach space.) For in any case $f^{*\eta} < \infty$ a.e.

129

3. Harmonic majorization. This section is devoted to the proof of the following proposition and corollary.

Proposition 3. Suppose U is a non-negative subharmonic function in \mathbb{R}^{n+1}_+ . Then U has a harmonic majorant iff

(35)
$$\sup_{0 < y \le 1} \| U(\cdot, y) (1 + |\cdot|)^{-n-1} \| = M_0 < \infty$$

and

(36)
$$\sup_{1 \le y < \infty} \left(y^{-n-1} \int_{|x| \le y} U(x, y) dx + \int_{|x| > y} U(x, y) |x|^{-n-1} dx \right) = M_1 < \infty.$$

In this case the weak limit of $U(\cdot, y)$ as $y \to 0$ exists in $(1+|\cdot|)^{n+1}\mathcal{M}^1(\mathbb{R}^n)$ and if this limit is denoted μ

(37)
$$\lim_{y\to 0} \|U(\cdot,y) (1+|\cdot|)^{-n-1}\|_1 = \|\mu(1+|\cdot|)^{-n-1}\|.$$

Furthermore $y^{-n-1}\int\limits_{|x|\leqslant y}U(x,y)dx$ converges as $y\to\infty$ and if the limit is written as $(\omega_n/n)\delta$ the least harmonic majorant of U is given by

(38)
$$P * \mu + \delta p_0$$
, $(\|\mu(1+|\cdot|)^{-n-1}\| \leq CM_0$, $|\delta| \leq CM_1$.

Corollary. Suppose $U \geqslant 0$ is subharmonic in R^{n+1}_+ and such that

(39)
$$\sup_{0 \le y \le 1} \|U(\cdot, y)\|_{pq, \omega} = M_0 < \infty,$$

$$(40) \sup_{1\leqslant y<\infty} \left(\omega(y)\|\chi(y^{-1}|\cdot|)\,U(\cdot,y)\|_{pq} + \|\chi(y|\cdot|^{-1})\,U(\cdot,y)\|_{pq,\,\omega}\right) = M_1 < \infty,$$

where p,q,ω satisfy (a), (b), (c) or (d) of Lemma 3 then $\lim_{y\to\infty}y^{-n-1}\int\limits_{|x|\leqslant y}U(x,y)dx$ = $(\omega_m/n)\delta$ exists, $\delta \leqslant CM_1$ and the least harmonic majorant is $P*\mu + \delta p_0$ where μ is the weak limit of $U(\cdot,y)$ in $L^{pq}(\omega^{-1}\mathcal{M}^1(\mathbb{R}^n))$. Moreover

(41)
$$\|\mu\|_{pq,\,\omega} = \lim_{y \to 0} \|U(\cdot,\,y)\|_{pq,\,\omega}$$

provided (a) with $q < \infty$ or (b) is satisfied or (c') $q = \infty$, $(p, \omega) \in S_0^{*1}$ in $[1,\infty)$ and ω is continuous in [0,1], $\omega(0)\neq 0$, ∞ . Also $U(\cdot,y)$ converges to the absolutely continuous part $U(\cdot, y)$ of μ a.e. as $y \to 0$.

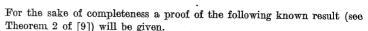
The proof requires a few lemmas all of which are well known for n=1 and subharmonic functions vanishing on the boundary line y=0(see [13] p. 112, [32] pp. 188-194, pp. 149-153 and also [7] pp. 1-9).

For
$$\sigma \in S_+^n = S^n \cap R_+^{n+1}$$
 let θ , σ' be defined by

$$\sigma = (\sigma' \cos \theta, \sin \theta), \ \sigma' \in S^{n-1}, \quad 0 \le \theta \le \pi/2$$

and define

(42)
$$m(U,r) = \int_{S_{+}^{n}} U(r\sigma) \sin \theta \, d\sigma.$$



LEMMA 7. Suppose U is subharmonic in the domain

$$R(r_1, r_2) = \{(x, y): r_1^2 < |x|^2 + y^2 < r_2^2, y > 0\}$$

upper semi-continuous in its closure and vanishes for y = 0. Then $r^{-1}m(U; r)$ is a convex function of r^{-n-1} in $[r_1, r_2]$. If $r_1 = 0$ then $r^{-1}m(U; r)$ is increas-

Proof. Suppose a function h is harmonic in $R(r_1, r_2)$ and continuous in its closure and vanishes when y=0, then there are constants c_0, c_1 such that

$$m(h; r) = c_0 r^{-n} + c_1 r.$$

For since $y = r \sin \theta$ is harmonic, if $r_1 < r_3 \le r_4 < r_2$, then by Green's formula

$$\begin{split} \int\limits_{S^n_+} \left[\left[h\left(r\sigma\right)\sin\theta - \left(\partial h\left(r\sigma\right)/\partial r\right)r\sin\theta \right] \right] r^n d\sigma|_{r=r_3}^{r=r_4} \\ &= \iint\limits_{r_3 \leqslant \|(x,y)\| \leqslant r_4} \left[h\left(x,y\right)\Delta y - \left(\Delta h\left(x,y\right)\right)y \right] dx \, dy \, . \end{split}$$

In other words r^n (m(h;r)-rdm(h;r)/dr) equals a constant $(n+1)c_n$, say, or

$$(d/dr)(r^{-1}m(h;r)) = -c_0(n+1)r^{-n-2}$$

hence $r^{-1}m(h;r) = c_0 r^{-n-1} + c_1$. By continuity this last result holds for $r_1 \leqslant r \leqslant r_2$. To deduce convexity of m(U; r) with respect to the family of functions $c_0 r^{-n} + c_1 r$, c_0 , $c_1 \in R$, observe that for r_2 , r_4 as above there is a sequence of continuous functions $\{\varphi_k\}$ on the boundary $\partial R(r_3, r_4)$ of $R(r_3, r_4)$ vanishing for y = 0 which tends decreasingly to U. For let $\{\varphi_k^*\}$ be a decreasing sequence of continuous functions tending to U on $\partial R(r_3, r_4)$ (which exists by upper semi-continuity of U), ψ a continuous function $\geqslant U$ on $\partial R(r_1, r_2)$ and vanishing on $[-r_4, -r_3]$ and $[r_3, r_4]$ and let Ψ be the solution of the Dirichlet problem in $R(r_1, r_2)$ with boundary values φ , then $\varphi_k = \min(\varphi_k^*, \Psi)$ is a possible choice for φ_k . Application of the result for harmonic functions to the solutions of the Dirichlet problem Φ_k say, for the boundary values φ_k , again the maximum principle for subharmonic functions applied to $U-\Phi_{\nu}$ and passage to the limit as $k \to \infty$ finish the proof of the first part of the lemma.

Also if $r_1 = 0$ then by upper semi-continuity of $U r^{-1} m(U; r) = o(r^{-1})$ as $r \to 0$, i.e., $r^{-1}m(U;r) = o((r^{-n-1})^{1/(n+1)})$, hence since $r^{-1}m(U;r)$ is convex as a function of r^{-n-1} , $r^{-1}m(U;r)$ is bounded near 0 and decreasing as a function of r^{-n-1} , i.e., $r^{-1}m(U;r)$ is increasing.

Let z=(x,y), w=(t,v) denote points in $\mathbb{R}^n\times\mathbb{R}_+=\mathbb{R}_+^{n+1}$. The Green's function for \mathbb{R}_+^{n+1} may then be written

$$G(z,w) = [(n-1)\omega_{n+1}]^{-1}(|z-w|^{-n+1}-|z-\overline{w}|^{-n+1}),$$

where $\overline{w} = (t, -v)$.

LEMMA 8. Let $m = m(G(\cdot, w); \cdot)$ where G is the Green's function for the half space R_+^{n+1} . Then

(43)
$$r^{-1}m(r) = (n+1)^{-1}v|w|^{-n-1} \text{ or } = (n+1)^{-1}vr^{-n-1}$$

according as $r \leqslant |w|$ or $r \geqslant |w|$.

If
$$U(x,y) = P(\cdot,y) * \mu(x)$$
, where $\mu \in (1+|\cdot|)^{n+1} \mathcal{M}^1$ then

$$(44) r^{-1}m(U;r) = (n+1)^{-1} \left(r^{-n-1} \int\limits_{|t| \le r} \mu(dt) + \int\limits_{|t| > r} |t|^{-n-1} \mu(dt)\right).$$

Consequently $\lim_{r\to\infty} r^{-1}m(U;r)=0$ and for $\mu\geqslant 0$ $r^{-1}m(U;r)$ is decreasing and a concave function of r^{-n-1} . (The last statement is well known to be true, see [8]).

Proof. Let u be a continuous function on the boundary of

$$B_+^n = \{z = (x, y) \colon |z| < 1, y > 0\}$$

and vanish for y=0. By the reflection principle and the Poisson integral formula for a sphere the function harmonic in B^{n+1}_+ , continuous in the closure $\operatorname{cl}(B^{n+1}_+)$ of B^{n+1}_+ and equal to u on ∂B^n_+ equals

(45)
$$\int\limits_{\mathcal{S}^n_+} K(z,\,\sigma) u(\sigma) d\sigma, \quad \text{where } K(z,\,\sigma) = \omega_{n+1}^{-1} (1-|z|^2) \times$$

$$\times (|\sigma - z|^{-n-1} - |\sigma - \bar{z}|^{-n-1})$$

and $\bar{z} = (x, -y)$. It follows that

(46)
$$(\partial/\partial y)h(0) = 2(n+1)\omega_{n+1}^{-1}r^{-1}m(h;r)$$

for any function h harmonic in rB_+^n continuous in its closure and vanishing for y=0. Hence for r<|w|

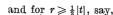
$$2\omega_{n+1}^{-1}v|w|^{-n-1}=(\partial/\partial y)G(0,w)=2(n+1)\omega_{n+1}^{-1}r^{-1}m(h;r),$$

i.e., (43) holds for r < |w|. Since if $z' = |z|^{-1}z$

$$|z-w|\geqslant C|w|\,|z'-w'|$$
 for $|z|\geqslant |w|/2$

and $|z'-w'|^{-n+1}$ is integrable over S^n it follows from dominated convergence that m is a continuous function of r even at |w|. For $r \ge 2|w|$, say, $m(r) \le Cr^{-n}|w|$, hence by Lemma 7 $r^{-1}m(r) = C_w r^{-n-1}$ and (43) now follows by continuity. Also

$$P(x-t, y) = (\partial/\partial v)G(z, w)|_{v=0}$$



$$\begin{split} P(r\sigma'\cos\theta-t,r\sin\theta)\sin\theta &\leqslant C_n|t|^{-n}(|\sigma'\cos\theta-t'|+\sin\theta)^{-n-1}\sin^2\theta \\ &\leqslant C_n|t|^{-n}|\sigma'\cos\theta-t'|^{-n+1}. \end{split}$$

Hence if $m_t = m(P(\cdot - t, \cdot); \cdot)$, by dominated convergence differentiation of (43) yields

(47)
$$r^{-1}m_t(r) = (n+1)^{-1}|t|^{-n-1}$$
 if $r \leq |t|$, $(n+1)^{-1}r^{-n-1}$ if $r \geq |t|$.

This latter function is easily seen to be a concave function of r^{-n-1} and a decreasing function of r, hence so is $\int m_t \mu(dt)$ for $\mu \ge 0$. (44) follows from (47) by Fubini's theorem. Obviously

$$\lim_{r\to\infty}\int\limits_{|t|\geqslant r}|t|^{-n-1}\mu(dt)=0.$$

On the other hand

$$\begin{split} \lim\sup_{r\to\infty} r^{-n-1} & \int\limits_{|t|\leqslant r} \mu(dt) \leqslant \limsup_{r\to\infty} r^{-n-1} \int\limits_{|t|\leqslant r} \mu(dt) + \limsup_{r\to\infty} r^{-n-1} \int\limits_{rt\leqslant |t|\leqslant r} \mu(dt) \\ & = \lim\sup_{r\to\infty} r^{-n-1} \int\limits_{|t|\leqslant r} \mu(dt) \leqslant \varepsilon^{n+1} \int (1+|t|)^{-n-1} \mu(dt) \end{split}$$

for any $\varepsilon > 0$ and hence Lemma 8 is completely proved.

LEMMA 9. For a non-negative function U subharmonic in R_+^{n+1} and upper semicontinuous in $\operatorname{cl}(R_+^{n+1})$ (implying locally bounded above) there exists a function h harmonic in R_+^{n+1} and continuous in $\operatorname{cl}(R_+^{n+1})$ and at least equal to U if and only if

$$\int U(x,0) (1+|x|)^{-n-1} dx < \infty \quad \text{ and } \quad \limsup_{r \to \infty} r^{-1} m(U;r) < \infty.$$

In this case $r^{-1}m(U;r)$ converges, and if the limit is denoted γ the least harmonic majorant is given by $P*U(\cdot,0)+2(n+1)\omega_{n+1}^{-1}\gamma p_0$.

Proof. It follows from (45) and the Poisson integral formula for a half space that the solution of the Dirichlet problem for B_+^{n+1} and continuous boundary values u is given by

(48)
$$\int\limits_{|t|\leqslant 1} P(x-t,y)u(t)dt - \int\limits_{S_+^n} \int\limits_{|t|\leqslant 1} P(\sigma'\cos\theta - t,\sin\theta)K(z,\sigma)u(t)dtd\sigma + \int\limits_{S_+^n} K(z,\sigma)u(\sigma)d\sigma.$$

Now by the mean value theorem

$$K(\sigma,z) = \omega_{n+1}^{-1}(1-|z|^2)2(n+1)(\sin\theta)y\xi^{-(n+3)/2},$$

where ξ is between $|\sigma - \bar{z}|^2$ and $|\sigma - z|^2$ hence

$$(1-|z|)^2 \leqslant \xi \leqslant (1+|z|)^2$$
.

As a result

$$\begin{array}{ll} (49) & 2(n+1)\,\omega_{n+1}^{-1}\,\frac{1-|z|^2}{(1+|z|)^{n+3}}\,y\sin\theta\leqslant K(z,\,\sigma)\\ \\ &\leqslant 2\,(n+1)\,\omega_{n+1}^{-1}\,\frac{1-|z|^2}{(1-|z|)^{n+3}}\,y\sin\theta\,. \end{array}$$

It follows from (48), (49) and Lemma 8, (44) that the least harmonic majorant h_r of U in rB^n satisfies

$$(50) \qquad \int_{|t| \leqslant r} \frac{y \, U(t, 0)}{(|x-t|^2 + y^2)^{(n+1)/2}} \, - \\ - \frac{1 - |z|^2/r^2}{(1 - |z|/r)^{n+3}} \, r^{-n-1} \int U(t, 0) \, dty + (n+1) \, \frac{1 - |z|^2/r^2}{(1 + |z|/r)^{n+3}} \, r^{-1} m(U; r) y$$

$$\leqslant (\omega_{n+1}/2) h_r(z) \leqslant \int_{|t| \leqslant r} \frac{y \, U(t, 0)}{(|x-t|^2 + y^2)^{(n+1)/2}} \, - \\ - \frac{1 - |z|^2/r^2}{(1 + |z|/r)^{n+3}} \, r^{-n-1} \int U(t, 0) \, dty + (n+1) \, \frac{1 - |z|^2/r^2}{(1 - |z|/r)^{n+3}} \, r^{-1} m(U; r) y \, .$$

Also it is well known that the kernel for solving the Dirichlet problem is positive. It follows from the first inequality that if U has a harmonic majorant h' then

$$\int\limits_{|t| \leqslant a} U(t,0) \, (1+|t|^2)^{-(n+1)/2} dt \leqslant (\omega_{n+1}/2) h'(0,1)$$

for any $a \ge 0$, hence

$$\int U(t, 0) (1+|t|^2)^{-(n+1)/2} dt \leqslant (\omega_{n+1}/2) h'(0, 1)$$

and more directly that $r^{-1}m(U;r)$ is bounded for $r\to\infty$. On the other hand if the two conditions of the lemma are satisfied then it follows from the second inequality of (50) that the family $\{h_r\}$ of harmonic functions which increase with r is locally bounded hence convergent to the least harmonic majorant h. (50) then implies

$$\frac{2(n+1)}{\omega_{n+1}}y\limsup_{r\to\infty}\frac{m(U;r)}{r}\leqslant h(x,y)-P(\cdot,y)*U(\cdot,0)$$

$$\leqslant \frac{2(n+1)}{\omega_{n+1}}y\liminf_{r\to\infty}\frac{m(U;r)}{r}.$$

It follows that $r^{-1}m(U;r)$ converges to γ , say, and

$$h(x, y) = P(\cdot, y) * U(\cdot, 0) (x) + 2(n+1) \omega_{n+1}^{-1} \gamma y$$

LEMMA 10. Suppose $U \geqslant 0$ is subharmonic in R^{n+1}_+ , then U has a harmonic majorant in R^{n+1}_+ if and only if

 $\limsup_{y\to\infty}\|\,U(\cdot,y)\,(1+|\cdot|)^{-n-1}\|=\mathit{M}<\infty\quad\text{ and }\quad\limsup_{r\to\infty}r^{-1}\mathit{m}(\,U\,;r)<\infty.$

In this case the weak limit μ , say, of $U(\cdot,y)$ as $y \to 0$ exists in $(1+|\cdot|)^{n+1}\mathcal{M}^1$ and the least harmonic majorant is given by $P*\mu+2(n+1)\omega_{n+1}^{-1}\gamma p_0$, where $\gamma=\lim_{\substack{r\to\infty\\r\to\infty}} r^{-1}m(U;r)$. In particular any positive harmonic function in E^{n+1}_+ has the form $P*\mu+cp_0$, $\mu\geqslant 0$, $c\geqslant 0$. (The last assertion is well known, see [8]).

Proof. That the conditions are sufficient follows from a modification of the second inequality of (50) applied to the function $U_{\eta}(x,y) = U(x,y+\eta)$:

$$\begin{split} (51) \qquad & (\omega_{n+1}/2) \; U(x,\, y+\eta) \\ \leqslant & (n+1) \; \frac{1-|z|^2/r^2}{(1+|z|/r)^{n+3}} \; r^{-1} m_\eta(r) y - \frac{1-|z|^2/r^2}{(1+|z|/r)^{n+3}} \left(r^{-n-1} \int\limits_{|t|\leqslant r} U(t,\, \eta) \, dt \right. \\ & \qquad \qquad + \int\limits_{\mathbb{R}^{n-2}} |t|^{-n-1} U(t,\, \eta) \, dt \right) + P(\cdot,\, y) * U(\cdot,\, \eta) \; (x), \end{split}$$

where z=(x,y) and $m_{\eta}=m(U_{\eta},\cdot)$. It will be shown first of all that $\lim_{n\to 0}m_{\eta}(r)=m(r)=m_0(r)$.

$$egin{aligned} \int U(r\sigma'\cos heta,r\sin heta+\eta)d\sigma' \ &\leqslant C(r\sin heta)^{-n-1} \int\limits_{|t|^2+|v|^2\leqslant r^2\sin^2 heta} U(r\sigma'\cos heta+t,r\sin heta+v+\eta)dtdvd\sigma' \ &\leqslant C(r\sin heta)^{-n-1} \int\limits_0^{2r\sin heta} \int\limits_{|t|\leqslant 2r} U(t,v+\eta) \int\limits_{|t-r\sigma'\cos heta|\leqslant r\sin heta} d\sigma'dtdv. \end{aligned}$$

There is a constant C such that for any $a \in \mathbb{R}^n$

(52)
$$\int\limits_{|\sigma'-a|\leqslant b}d\sigma'\leqslant C\min\left(b^{n-1},1\right)$$

hence

$$\int U(r\sigma'\cos\theta, r\sin\theta + \eta) d\sigma' \leqslant Cr^{-1}(1+r)^{-n+1}M(\sin\theta)^{-1}$$

(for η , θ sufficiently small depending on r). Hence by dominated convergence applied to the integral

$$\int\limits_{0}^{\pi/2}\int\limits_{S^{n-1}}U(r\sigma'\cos\theta,r\sin\theta+\eta)\,d\sigma'(\cos\theta)^{n-1}\sin\theta\,d\theta$$

it follows that $\lim m_{\eta}(r) = m(r)$.

By considering also a lower bound for the least harmonic majorant in $(0, \eta) + rB_+^{n+1}$ similar to that of (50) the existence of $\lim_{r \to \infty} r^{-1} m(U; r)$ can be deduced similarly as in the proof of Lemma 9. A somewhat different argument which gives more information about the function m(U; r) runs as follows. Assuming first of all that U is continuous in R_+^{n+1} , let $U_\eta = U_\eta^{(1)} + U_\eta^{(2)}$ where

$$U_{\eta}^{(1)}(x,y) = U_{\eta}(x,y) - P(\cdot,y) * U(\cdot,\eta)(x).$$

Also set $m_{\eta}^{(i)} = m(U_{\eta}^{(i)}; \cdot)$ for i = 1, 2. By weak compactness of the set of measures $\{U(x, \eta)dx\}_{0 < \nu \leqslant 1}$ in $(1+|\cdot|)^{n+1}\mathcal{M}^1(R^{n*})$ there is a sequence $\eta_k \to 0$ and a measure $\mu^* \epsilon (1+|\cdot|)^{n+1}\mathcal{M}^1(R^{n*})$ such that $U(\cdot, \eta_k) \to \mu^*$ weakly as $k \to \infty$.

Let

$$\mu^* = \mu + c |\cdot|^{n+1} \varepsilon_{\infty}, \quad \mu \in \mathcal{M}^1(\mathbb{R}^n)$$

(it will be seen that c = 0).

Hence

$$\lim_{\eta \to 0} r^{-1} m_{\eta}^{(2)}(r) = (n+1)^{-1} \left(r^{-n-1} \int\limits_{|t| \le r} \mu(dt) + \int\limits_{|t| > r} |t|^{-n-1} \mu(dt) + c \right) = r^{-1} m^{(2)}(r),$$

say, so $m_{\eta}^{(1)}$ converges to $m-m^{(2)}=m^{(1)}$, say, as $\eta\to 0$ through the sequence $\{\eta_k\}$ Since $\lim_{\substack{r\to\infty\\r\to\infty}} r^{-1}m^{(2)}(r)=c/(n+1)$ and $\limsup_{\substack{r\to\infty\\r\to\infty}} r^{-1}m(r)>\infty$, hence $\lim_{\substack{r\to\infty\\r\to\infty}} \sup_{r\to\infty} r^{-1}m^{(1)}(r)<\infty$ and since by Lemma $\lim_{\substack{r\to\infty\\r\to\infty}} r^{-1}m^{(1)}(r)$ is increasing and a convex function of r^{-n-1} so is $r^{-1}m^{(1)}(r)$. Hence, in particular, $\lim_{\substack{r\to\infty\\r\to\infty}} r^{-1}m^{(1)}(r)$ exists and so does $\lim_{\substack{r\to\infty\\r\to\infty}} r^{-1}m^{(1)}(r)=\gamma$.

If U is not necessarily continuous let φ be the characteristic function of a bounded set in $\operatorname{cl}(R^{n+1}_+)$ of measure 1 and define $\check{\varphi}_{\varepsilon}(z) = \varepsilon^{-n}\check{\varphi}(\varepsilon^{-1}z)$ then $\check{\varphi}_{\varepsilon} * U$ is continuous and subharmonic in R^{n+1}_+ and

$$\check{\varphi}_{\varepsilon} * U \to U$$
 as $\varepsilon \to 0$

boundedly on compact subsets of \mathbb{R}^{n+1}_+ . It follows as in the proof of (37) to be given below that

$$\|[U(\cdot,y+\eta)-U(\cdot,\eta)](1+|\cdot|)^{-n-1}\|_1\to 0.$$

Furthermore it follows from the continuity of the translation operator in \mathcal{L}^1 and

$$\left|(1+|x-t|)^{-n-1}-(1+|x|)^{-n-1}\right|\leqslant C(1+|x|)^{-n-2}|t|$$
 if $|t|\leqslant 1$

that

$$\|[\,U(\,\cdot\,-t,\,y+\eta)-\,U(\,\cdot\,,\,\eta)\,]\,(1+|\cdot|)^{-n-1}\|\to 0\qquad\text{as}\qquad (t,\,y)\to 0\,.$$

Hence $P*((\varphi_**U)(\cdot,\eta)) \to P*U(\cdot,\eta)$ boundedly on bounded subsets of R_+^{n+1} for $\eta>0$.

$$r^{-1}m_{\eta,s}^{(1)}(r) = r^{-1}m(\check{\varphi}_s*U(\cdot,\eta)-P*[(\check{\varphi}_s*U)(\cdot,\eta)];r)$$

is increasing and also a convex function of r^{-n-1} , moreover $m_{\eta,s}^{(1)} \to m_{\eta}^{(1)}$ hence $r^{-1}m_{\eta}^{(1)}(r)$ shares these properties. Now the argument is the same as before.

If $\eta_k \to 0$ and then $r \to \infty$ in (51) it follows that

$$U(x,y) \leqslant P(\cdot,y) * \mu(x) + (2/\omega_{n+1}) \left((n+1)\gamma + c \right) y$$

and, in fact, since the right-hand side is the (increasing) limit of a sequence of least harmonic majorants it is the least harmonic majorant. It follows now from the last part of Lemma 3 that

$$\lim_{\eta \to 0} \sup \|U(\cdot, \eta) (1+|\cdot|)^{-n-1}\| \leqslant \|\mu (1+|\cdot|)^{-n-1}\|$$

and since

$$\|\mu(1+|\cdot|)^{-n-1}\|+e\leqslant \liminf_{k\to\infty}\|U(\cdot,\eta_k)(1+|\cdot|)^{-n-1}\|$$

c must be zero. μ is unique since if μ' is any weak limit then $P*(\mu-\mu')=0$ by the minimum property of μ , μ' , hence since $\mu-\mu'$ is the weak limit of $P(\cdot,y)*(\mu-\mu')$ as $y\to 0$, μ' equals μ and so $U(\cdot,y)$ is weakly convergent as $y\to 0$.

Conversely suppose U has a harmonic majorant h. By Lemma 8 the least harmonic majorant of U_{η} in R_{+}^{n+1} is $P*U(\cdot,\eta)+\left(2(n+1)/\omega_{n+1}\right)\gamma_{\eta}y$, where $\gamma_{\eta}=\lim r^{-1}m_{\eta}(r)$. It follows that

$$\lim \sup_{\eta \to 0} \left(\|U(\cdot, \eta) (1 + |\cdot|^2)^{-(n+1)/2} \| + 2(n+1) \omega_{n+1}^{-1} \gamma_{\eta} \right) \leqslant h(0, 1)$$

hence

$$\lim_{\eta \to 0} \sup (\|U(\cdot,\eta) (1+|\cdot|)^{-n-1}\| < \infty \quad \text{ and } \quad \limsup_{\eta \to 0} \gamma_{\eta} < \infty.$$

If $\{\eta_k\}$ denotes a sequence such that $\eta_k \to 0$ and $U(\cdot, \eta_k) \to \mu^* \epsilon (1+|\cdot|)^{n+1} \mathcal{M}^1$ (R^{n^*}) weakly and $\mu^* = \mu + c\varepsilon_{\infty}$, $\mu \epsilon (1+|\cdot|)^{n+1} \mathcal{M}^1(R^n)$ and $m^{(1)}$, $m^{(2)}$ are as before it follows from $m_{\eta}^{(2)}(r) \geqslant 0$ that

$$\liminf_{r\to 0} \gamma_{\eta} \geqslant \lim_{k\to \infty} r^{-1} m^{(1)}(U_{\eta_k}; r) = r^{-1} m^{(1)}(r)$$

hence

$$\lim\sup_{r\to\infty} r^{-1}m(U;r) = \lim\sup_{r\to0} r^{-1}m^{(1)}(r) + c \leqslant \lim\inf_{n\to0} \gamma_{\eta} + c < \infty$$

(in fact e = 0, and $\gamma_{\eta} = \gamma$ as follows from Proposition 3).

LEMMA 11. Suppose $U \ge 0$ is subharmonic in R^{n+1}_+ and has a harmonic majorant. Let h be its least harmonic majorant and v the measure given by the Riesz decomposition theorem (see, e.g., [19] p. 132), then

$$U(z) = h(z) - \int_{\mathbb{R}^{n+1}} G(z, w) v(dw).$$

In particular

$$\int\limits_{|w|<\varepsilon} vv(dw)<\infty, \quad \int\limits_{|w|>\varepsilon} v\,|w|^{-n-1}v(dw)<\infty \quad \left(w=(t,\,v)\right) \ for \ any \ \varepsilon>0 \ .$$

Also

(53)
$$r^{-1}m(U;r) = (\omega_{n+1}\gamma/2) + (n+1)^{-1} \times$$

$$\times \Big(r^{-n-1} \int\limits_{|t| \leqslant r} \mu \left(dt \right) + \int\limits_{|t| > r} |t|^{-n-1} \mu \left(dt \right) - r^{-n-1} \int\limits_{|w| \leqslant r} v \nu \left(dw \right) - \int\limits_{|w| > r} v \left| w \right|^{-n-1} \nu \left(dw \right) \Big).$$

Proof. For a>0 let $G_a(z,w)$ denote the Green's function for $aB^{n+1}_+,$ i.e.,

$$\begin{split} G_a(z,w) &= [(n-1)\omega_{n+1}]^{-1} \times \\ &\times [|z-w|^{-n+1} - |z-\overline{w}|^{-n+1} - a^{n-1}|w|^{-n+1} (|z-w_a^*|^{-n+1} - |z-\overline{w}_a^*|^{-n+1})]. \end{split}$$

where $w_a^* = a^2 |w|^{-2} w$, for n > 1. The case n = 1 is similar (see [32]). Clearly $\lim_{a \to \infty} G_a(z, w) = G(z, w)$. Also it is well known that $G_a(z, w)$ is an increasing function of a. Now

$$\begin{split} U_{\eta}(z) &= -\int_{S_{+}^{n}} \frac{\partial G_{a}}{\partial r}(z, r\sigma) \left|_{r=a} U(a\sigma) d\sigma + \int_{|t| \leq a} \frac{\partial G_{a}}{\partial v} \left(z, (t, v) \right) \right|_{v=0} U(t, \eta) dt \\ &- \int_{S_{+}^{n}} G_{a}(z, w - (0, \eta)) v(dw). \end{split}$$

By Lemma 9 the first two integrals in the last equation tend to the least harmonic majorant h_{η} of U_{η} in R_{+}^{n+1} . It follows that

$$\int_{v\geqslant\eta}G(z,w-(0,\eta))\nu(dw)=h_{\eta}(z)-U_{\eta}(z).$$

Again since the Green's function G_D of a domain D increases as D expands it follows from the monotone convergence theorem that

$$\int_{R^{n+1}_+} G(z, w) \, \nu(dw) \, = \, h(z) - \, U(z) \, .$$

Proof of Proposition 3. (35), (36) are necessary by the last part of Lemma 10 and Lemmas 3 and 6 since $(1, (1+|\cdot|)^{-n-1}) \in S_1^{*1}$, with $a_0 = a_1 = 0, \beta_0 < n_1, \beta_1 = n+1$.

Let now (35), (36) be satisfied. To prove that U has a harmonic majorant it suffices to show that $\limsup r^{-1}m(U;r)<\infty$. But

$$r^{-1}m(U;r) = \int_{0}^{\pi/2} \int_{c_{m-1}} U(r\sigma'\cos\theta, r\sin\theta)\sin\theta\cos^{m-1}\theta d\sigma' d\theta.$$

Also

$$U(r\sigma'\cos\theta,r\sin\theta)\leqslant C(r\sin\theta)^{-n-1}\int\limits_{|t-r\sigma'\cos\theta|^2+|v-r\sin\theta|^2\leqslant (r\sin\theta)^2/4}U(t,v)\,dtdv.$$

Hence

$$\begin{array}{c} r^{-1}m(U;r)\leqslant Cr^{-n-2}\int\limits_0^{3r/2}\int\limits_{|t|\leqslant 3r/2}U(t,v)\int\limits_{(2v)/(3r)\leqslant \sin\theta\leqslant (2v)/r}\times\\ \\ \times(\sin\theta)^{-n}(\cos\theta)^{n-1}\int\limits_{|\sigma'-t|/(r\cos\theta)|\leqslant \sin\theta/(2\cos\theta)}d\sigma'\,d\theta\,dt\,ds \end{array}$$

since

$$|v-r\sin\theta| \leqslant (r\sin\theta)/2$$
 implies $v/(3r) \leqslant (\sin\theta)/2 \leqslant v/r$.

So by (52)

$$\begin{split} r^{-1}m(U;r) \leqslant Cr^{-n-2} \int\limits_{0}^{3r/2} \int\limits_{|t| \leqslant 3l/(2r)} U(t,v) \int\limits_{2v/(3r) \leqslant \sin\theta \leqslant 2v/r} (\sin\theta)^{-n} \times \\ & \times \min \left((\sin\theta/(2\cos\theta))^{n-1}, 1 \right) \cos^{n-1}\theta \, d\theta \, dt \, dv \\ \leqslant Cr^{-n-2} \int\limits_{0}^{3r/2} \int\limits_{|t| \leqslant 3r/2} U(t,v) \int\limits_{(2v)/(3r) \leqslant \sin\theta \leqslant 2v/r} \theta^{-1} \, d\theta \, dt \, dv \\ \leqslant Cr^{-n-2} \int\limits_{0}^{3r/2} \int\limits_{|t| \leqslant 3r/2} U(t,v) \, dt \, dv \\ \leqslant Cr^{-n-2} \int\limits_{0}^{1} \int\limits_{|t| \leqslant 3r/2} U(t,v) \, dt \, dv + Cr^{-n-2} \int\limits_{1}^{3r/2} \left(\int\limits_{|t| \leqslant 3r/2} U(t,v) \, dt + \\ + \int\limits_{v \leqslant |t| \leqslant 3r/2} U(t,v) \, dt \right) \, dv \\ \leqslant CM_{0}r^{-1} + Cr^{-1} \int\limits_{1}^{3r/2} \left(v^{-n-1} \int\limits_{|t| \leqslant v} U(t,v) \, dt + \\ + \int\limits_{|t| \leqslant v} U(t,v) |t|^{-n-1} \, dt \right) \, dv \leqslant CM_{0}r^{-1} + CM_{1}. \end{split}$$

Define

$$n(U;y) = y^{-n} \int_{|x| \leqslant y} U(x,y) dx.$$

If $h = P * \mu + \delta p_0$ is the least harmonic majorant of U it follows from Lemma 6 that $y^{-1}n(P * \mu; y) \to 0$ as $y \to \infty$ (since this holds for the measures of compact support, which form a dense subset of $(1+|\cdot|)^{n+1}\mathscr{M}^1(R^n)$ in the weak topology). Also $n(p_0; y) = (\omega_n/n)y$. It therefore remains to show that $y^{-1}n(q; y) \to 0$ where

$$g(z) = \int\limits_{R_{\perp}^{n+1}} G(z, w) \nu(dw)$$

(see Lemma 11). This will follow from

LEMMA 12. Let z = (x, y), w = (t, v) then

(54)
$$y^{-n-1} \int_{|x| \leqslant y} G(z, w) dx \leqslant Cv |w|^{-n-1}$$
 and also $\leqslant Cvy^{-n-1}$.

For then by Fubini's theorem

$$y^{-n-1} \int_{|x| \leqslant y} g(z) \, dx \leqslant C y^{-n-1} \int_{|w| \leqslant y/2} v \nu(dw) + C \int_{|w| > y/2} v \, |w|^{-n-1} \nu(dw) \to 0$$

as follows from Lemma 11.

Proof of Lemma 12. $G(z,w) \leqslant Cyv|z-w|^{-n-1}$ hence if $y\geqslant 2v$, $|t|\geqslant 2y$ then

$$y^{-n-1} \int G(z, w) \, dx \leqslant C y^{-n-1} \int_{|x| \leqslant y} vy \, |t-x|^{-n-1} \, dx \leqslant C v \, |t|^{-n-1} \leqslant C v \, |w|^{-n-1}.$$

If $y \geqslant 2v$, $|t| \leqslant 2y$, then

$$y^{-n-1}\int\limits_{|z|\leqslant y}G(z,w)\,dx\leqslant Cvy^{-2n-1}\int\limits_{|z|\leqslant y}dx\leqslant Cvy^{-n-1}\leqslant Cv|w|^{-n-1}.$$

If $|w|/3 \le y \le 2v$ then

$$y^{-n-1} \int_{|x| \leqslant y} G(z, w) \, dx \leqslant C y^{-n-1} \int_{|x| \leqslant y} |x-t|^{-n+1} dx \leqslant C y^{-n} \leqslant C v \, |w|^{-n-1}.$$

If $y\leqslant |w|/3$ then $|x|\leqslant y$ implies $|z|\leqslant 2y\leqslant 2\,|w|/3$ hence $|z-w|\geqslant w/3$ and $y^{-n-1}\int\limits_{|x|\leqslant y}G(z,w)\,dx\leqslant Cvy^{-n}|w|^{-n-1}\int\limits_{|z|\leqslant y}dx\leqslant Cv\,|w|^{-n-1}.$

Proof of the corollary. By (32), (33) (39) implies (35) and similarly for $y\geqslant 1$

$$\begin{split} y^{-n-1} & \int\limits_{|x| \le y} U(x, y) dx + \int\limits_{|x| > y} U(x, y) |x|^{-n-1} dx \\ & \le C y^{-n/p-1} \|\chi(y^{-1}|\cdot|) U(\cdot, y)\|_{pq} + |\chi(y|\cdot|^{-1})|\cdot|^{-n-1} \omega|\cdot|^{-1} \|_{p'q'} \|\chi(y|\cdot|^{-1}) U(\cdot, y)\|_{pq, \omega} \end{split}$$

$$\leq C\omega(1)^{-1} [\omega(y)y^{\beta_1-n/p-1}||\chi(y^{-1}|\cdot|)U(\cdot,y)||_{pq} +$$

$$+ \|\chi(y\,|\cdot|^{-1})\,|\cdot|^{\beta_1-n-1}\|_{p'q'}\,\|\chi(y\,|\cdot|^{-1})\,U(\cdot\,,\,y)\|_{pq,\,\omega}]$$

 $\leqslant C\omega(1)^{-1}y^{\beta_1-n/p-1}[\omega(y)\|\chi(y^{-1}|\cdot|)U(\cdot,y)\|_{pq}+\|\chi(y|\cdot|^{-1})U(\cdot,y)\|_{pq,\omega}].$

So by Proposition 3 there are μ , δ such that (38) holds. For $q\geqslant 1$ a weak limit μ' , say, exists in $L_o^{pq}\subset (1+|\cdot|)^{n+1}\mathscr{M}^1(R^n)$ hence by uniqueness $\mu=\mu'\in L_o^{pq}$ (Since $\omega^{-1}\mathscr{M}^1(R^{n^*})\subset (1+|\cdot|)^{n+1}\mathscr{M}^1(R^{n^*})$ and since by Proposition 3 the weak limit of $U(\cdot,y)$ in $(1+|\cdot|)^{n+1}\mathscr{M}^1(R^{n^*})$ is in $(1+|\cdot|)^{n+1}\times \mathscr{M}^1(R^n)$ i.e., a measure on R^n so must be the weak limit of $U(\cdot,y)$ in $\omega^{-1}\mathscr{M}^1(R^{n^*})$. Hence if p=1 $\mu\in\omega^{-1}\mathscr{M}^1(R^n)$. Now by Proposition 4 below there is a well known conformal mapping I of R_+^{n+1} onto $R_+^{n+1}=\{\zeta\in R^{n+1}: |\zeta|<1\}$ such that if R_+^{n+1} is a subharmonic function in R_+^{n+1} satisfying (35) then If defined by

If
$$(\zeta) = 2^{n-1} |\zeta + (0,1)|^{-n+1} f(I^{-1}\zeta)$$

is subharmonic in B^{n+1} and has a harmonic majorant there. Now by Littlewood's theorem on subharmonic functions in a disk ([20]) extended to subharmonic functions in a ball in \mathbb{R}^n by Privalov in [24] (see also [26]) and since by a similar proof Littlewood's theorem holds for approach along the images of the straight lines perpendicular to y=0 under the mapping I it follows that $\lim_{n\to\infty} U(x,y) = U(x,0)$ a.e., where $U(\cdot,0)$ is

the absolutely continuous part of μ . Thus by dominated convergence in case (a) and $q < \infty$ it follows that $||U(\cdot,y)-U(\cdot,0)||_{pq,\omega} \to 0$. If (b) or (c') (also if (a), $q \ge 1$) holds (41), and, in particular (37) follows from the last part of Lemma 3 and weak convergence:

$$\limsup_{y\to 0}\|U(\cdot,y)\|_{pq,\omega}\leqslant \limsup_{y\to 0}\|P(\cdot,y)*\mu\|_{pq,\omega}\leqslant \|\mu\|_{pq,\omega}\leqslant \liminf_{y\to 0}\|U(\cdot,y)\|_{pq,\omega}.$$

Remarks. If (a), $q < \infty$ or (b) with p > 1 holds, then

(55)
$$\lim_{y \to 0} \|U(\cdot, y) - U(\cdot, 0)\|_{pq, \omega} = 0.$$

In the first case this has just been shown. In the latter case for any $\varepsilon > 0$ there is a compact set $K \subset \mathbb{R}^n \sim \{0\}$ such that $U(\cdot, y) \to U(\cdot, 0)$ uniformly in K and if $\chi_{\sim K}$ denotes the characteristic function of the complement $\sim K$ of K then $\|\chi_{\sim K} U(\cdot, 0)\|_{pq,\omega} < \varepsilon$ hence if $\mu(dx) = f(x) dx$ then (if without loss of generality, $\delta = 0$)

$$||U(\cdot,y)\chi_{\sim K}||_{pq,\omega} \leq ||\chi_{\sim K}P(\cdot,y)*f||_{pq,\omega}$$

$$\leqslant \|\chi_{\sim K} P(\cdot, y) * \chi_K\|_{pq, \omega} \|f\chi_K\|_{\infty} + \|\chi_{\sim K} P(\cdot, y) * (f\chi_K)\|_{pq, \omega}.$$

Let $N(K, \varrho)$ denote the ϱ -neighborhood of K, i.e., $N(K, \varrho) = \{x : \inf_{y \in K} | x - y| < \varrho \}$ and let χ_{ϱ} denote the characteristic function of $N(K, \varrho) \sim K$ then $P(\cdot, y) * \gamma_K \leq 1$ and for $x \notin N(K, \varrho)$

$$P(\cdot, y) * \gamma_{\kappa}(x) \leq C_{\kappa, n} y (1 + |x|)^{-n-1}$$
.

Hence

$$\limsup_{y\to 0}\|\chi_{\sim K}P(\cdot,y)*\chi_K\|_{pq,\omega}\leqslant \|\chi_{\varrho}\|_{pq,\omega}+\limsup_{y\to 0}y\,C_{K,\varrho}\|(|+|\cdot|)^{-n-1}\|_{pq,\omega}$$

$$=\|\chi_{\varrho}\|_{pq,\omega}$$

which tends to 0 as $\rho \to 0$, hence

$$\limsup_{y\to 0} \|\chi_{\sim K} P(\cdot, y) * \chi_K\|_{pq, \omega} = 0.$$

It follows that

$$\limsup_{y\to 0}\|U(\cdot,y)\chi_{\sim K}\|_{pq,\omega}\leqslant \|\chi_{\sim K}P(\cdot,y)*(f\chi_{\sim K})\|_{pq,\omega}\leqslant C\varepsilon \quad \text{ (by Lemma 3)}.$$

By uniform convergence in $K\|\chi_K[U(\cdot\,,y)-U(\cdot\,,0)]\|_{py,\omega}\to 0$, hence altogether

$$\limsup_{y \to 0} \|U(\cdot, y) - U(\cdot, 0)\|_{pq, \omega} \leq \|U(\cdot, 0)\chi_{\sim K}\|_{pq, \omega} + \limsup_{y \to 0} \|U(\cdot, y)\chi_{\sim K}\|_{pq, \omega}$$
$$\leq (C+1)\varepsilon.$$

Since ε is arbitrary (55) follows. In case $1 < p, q < \infty$ (55) can be proved without use of Littlewood's theorem. For in this case L^{pq} is uniformly convex (see [11]) and hence weak convergence and (41) imply (55) (see, e.g., [10] p.141). Also in case p=1 (and (b)) if μ is absolutely continuous by the same proof as before

$$||U(\cdot,y)-U(\cdot,0)||_{1,\omega}\to 0$$
.

The proof of Proposition 3 contained the following criterion: a non-negative subharmonic function U in \mathbb{R}^{n+1}_+ has a harmonic majorant if and only if (35) is satisfied and

$$\sup_{r\geqslant 1} r^{-n-2} \iint_{|x|^2+y|^2-x^2} U(x,y) \, dx \, dy < \infty.$$

Hence

$$\sup_{r\geqslant 1} r^{-n-2} \int\limits_0^r \|U(\cdot,y)\|_{pq,\,\omega} dy \, \|\chi_{E^{n}(0,r)}\|_{p'q',\,\omega^{-1}} < \infty$$

and so

$$\sup_{1\leqslant y < r} \|U(\cdot,y)\|_{pq,\,\omega} \leqslant M_1 r^{n+1} \|\chi_{B^n(0,r)}\|_{p'q',\,\omega-1}^{-1}$$

along with (4), (5) (for $y \leq 1$) are sufficient. In particular

$$\sup_{0< y\leqslant 1}\|U(\cdot,y)\|_{pq,\,\omega}<\infty\quad \text{ and }\quad$$

$$\|U(\cdot,y)\|_{pq,\,\omega} \leqslant M_1 y^{n+1-\beta_1-n/p'} = M_1 y^{n/p+1-\beta_1} \quad \text{ for } \quad y \geqslant 1,$$

where p, q, ω satisfy (a), (b), (c), or (d) are sufficient.

4. H^p spaces. As in [29] let now $F(x, y) = (u(x, y), v_1(x, y), \ldots, v_n(x, y))$ be an (n+1)-tuple of conjugate harmonic functions in R_+^{n+1} (the same methods apply to higher gradients, see [5]). Define

$$|F(x,y)| = (|u(x,y)|^2 + \sum_{i=1}^{n} |v_i(x,y)|^2)^{\frac{1}{2}}.$$

Attention will be restricted to the case n > 1. If n = 1 it is clear that the role of (n-1)/n may be played by any real number in the interval (0, 1).

PROPOSITION A. Suppose np/(n-1), $\omega^{(n-1)/n}$, nq/(n-1), ns/(n-1) satisfy (a), (b) (c) or (d) of Lemma 3 and

$$\sup_{0 < y \leqslant 1} \|F(\cdot, y)\|_{pq, \omega} + \sup_{1 \leqslant y < \infty} [\omega(y) \|\chi(y^{-1}|\cdot|) F(\cdot, y)\|_{pq} + \|\chi(y|\cdot|^{-1}) F(\cdot, y)\|_{pq, \omega}]$$

$$\leq M < \infty$$

OY

(56)
$$||F(\cdot,y)||_{nq,m} \leq M(1+y)^{n/p+(1-\beta_1)n/(n-1)}$$

Then F has non-tangential boundary values $F(\cdot,0) \in L^{pq}_{\infty}$ a.e. In case (a) if $q < \infty$ F converges also in L^{pq}_{∞} . If F^{*q} is defined as in Lemma 5 starting from F then

$$\|F^{*\eta}\|_{n_{n,m}} \leq C(\eta)^{n/(n-1)}M$$

where $C(\eta)$ can be found from Lemma 5. If

$$\delta = n/\omega_n \lim_{y \to \infty} y^{-n-1} \int_{|x| \le y} |F(x, y)|^{(n-1)/n} dx$$

then in all cases except when p = (n-1)/n

(57)
$$|F(x,y)|^{(n-1)/n} \leqslant P(\cdot,y) * |F(\cdot,0)|^{(n-1)/n}(x) + \delta y.$$

Proof. By the result of Stein and Weiss in [29] $|F|^{(n-1)/n}$ is subharmonic. It follows from the assumptions that $|F|^{(n-1)/n}$ satisfies the hypotheses of Proposition 3. Hence there exists $\mu \in L(np/(n-1), nq/(n-1), \omega^{(n-1)/n}) \times (\mu \in \omega^{-(n-1)/n} \mathscr{M}^1(\mathbb{R}^n))$ such that

$$|F(x,y)|^{(n-1)/n} \leqslant P(\cdot,y) * \mu(x) + \delta y$$

hence by Lemma 5 F is non-tangentially bounded a.e. at the boundary y=0 and hence by Calderón's theorem non-tangential boundary values exist a.e. If p>(n-1)/n then μ is absolutely continuous with respect to Lebesgue measure and so $\mu(dx)=|F(x,0)|^{(n-1)/n}dx$. If (56) is satisfied the assertions follow from the last remark of Section 3.

In the special case $\omega(|x|) = |x|^a$ it follows from (9) that

$$0 \leqslant \delta \leqslant C \lim_{n \to \infty} y^{-\alpha(n-1)/n - (n-1)/p - 1} = 0.$$

Hence Proposition A with condition (56) yields the following

COROLLARY. Suppose $F \in H^{pq}_a$ (i.e. $\sup_{y>0} \|F(\cdot,y)\|_{pq,a} = \|F\|[H^{pq}_a] < \infty$) and one of

(58a)
$$(n-1)/n , $-n/p < \alpha < n(n/(n-1)-1/p)$, $0 < q = s \le \infty$,$$

(58b)
$$(n-1)/n , $a = -n/p$ or $p = \infty$, $0 \le a < n^2/(n-1)$ and $q = s = \infty$,$$

(58c)
$$(n-1)/n , $a = n(n/(n-1)-1/p)$ or $p = (n-1)/n$, $-n \le a \le n/(n-1)$, $q = (n-1)/n$, $s = \infty$,$$

then F has non-tangential boundary values $F(\cdot,0) \in L_a^{pq}$ a.e. Moreover if

$$F^*(x)=\sup\{|F(t,y)|\colon (t,y)\,\epsilon \varGamma_k(x)\} \quad \text{ then } \quad \|F^*\|_{ps,a}\leqslant C\,\|F\|\big[H^{pq}_a\big].$$
 If $p>(n-1)/n$ then

(59)
$$|F(x,y)|^{(n-1)/n} \leq P(\cdot,y) * |F(\cdot,0)|^{(n-1)/n}(x).$$

Remark. As for Theorem C of [29] asserting convexity of the function $y \to \|F(\cdot,y)\|_{p}^{(n-1)/n}$ if $F \in H^p$, $p \ge (n-1)/n$ it is clear that the same proof works for H^{pq} whenever $\|\cdot\|_{p^*q^*}$ is a norm for $p^* = np/(n-1)$, $q^* = nq/(n-1)$, i.e., p > (n-1)/n, $q \ge (n-1)/n$ or p = q = (n-1)/n. The well known fact that if $u(x', x'') = u(x_1, \ldots, x_m, x_{m+1}, \ldots, x_n) = v(x_1, \ldots, x_m) = v(x')$ u is subharmonic in $D \times R^{n-m}$, where D is open in R^m , if and only v is subharmonic in D can also be proved as follows. Since upper semi-continuity of v v is subharmonic if and only if in addition for all $v \in D$ and v sufficiently small

Hence if $\varphi(t) = (1+t^2)^{(n-m)/2}$ this condition can be written

$$v(x_0')\int\limits_{|x'-x_0'|\leqslant r} \varphi(|x'-x_0'|/r)\,dx'\leqslant \int\limits_{|x'-x_0'|\leqslant r} v(x')\varphi(|x'-x_0'|/r)\,dx'$$

which (under the assumption of upper semi-continuity) is equivalent to subharmonicity of v (see, e.g., [16] p. 17).

It appears sufficient to restrict attention to the weights $|x|^a$ from now on.

PROPOSITION B. Suppose $F \in H^{p_1q_1}_{a_1}$, $F(\cdot,0) \in L^{p_2q_2}_{a_2}$ where p_1,q_1,a_1 and p_2,q_2,a_2 satisfy (58) and in addition $p_1 > (n-1)/n$ then $F \in H^{p_2q_2}_{a_2}$.

This follows from (59) and Lemma 3.

Theorem E of [29] asserts that if μ is a finite measure such that each of its M. Riesz transforms $r_k = R_k \mu$ is also a finite measure then all the measures μ , r_1 , ..., r_n are absolutely continuous with respect to Lebesgue measure. As usual let $\mathscr D$ denote the space of C^{∞} -functions of compact support in $\mathbb R^n$. For any set $\mathbb E \mathscr D(E)$ will denote the subspace of functions of $\mathscr D$ whose support is contained in $\mathbb E$. $\mathscr D$ is provided with the usual inductive limit topology. The (vector-valued) Riesz transform of $\varphi \in \mathscr D$ is defined by

$$R\varphi(x) = \lim_{s \to +0} c_n^{-1} \int_{|x-t| > r} \frac{x-t}{|x-t|^{n+1}} \varphi(t) dt.$$

It is well known that $R\varphi \in C^{\infty}$. For a measure μ such that

$$||(1+|\cdot|)^{-n}\mu|| < \infty$$

its Riesz transform in the distribution sense R is defined by

$$(R\mu,\varphi) = -(\mu,R\varphi),$$

where φ is any element of \mathscr{D} .

It will be convenient to define two function spaces A_0 , A_1 . Let A_0 denote the space of continuous functions φ such that $\|\varphi\|[A_0] = \sup(1+$ $+|x|)^n|\varphi(x)|<\infty$ and let A_1 denote the space of continuously differentiable functions φ such that

$$\|\varphi\|[A_1] = \|\varphi\|_1 + \sup\left\{(1+|x|)^{n+1}|(\partial/\partial x_i)\varphi(x)|\colon \ 1\leqslant i\leqslant n, \ x\in R^n\right\} < \infty$$
 and such that

$$\max_{1 \le i \le n} (1+|x|)^{n+1} |(\partial/\partial x_i)\varphi(x)| \to 0 \quad \text{as} \quad |x| \to \infty.$$

The latter condition implies that \mathcal{D} is dense in A_1 .

$$\begin{split} |R\varphi(x)| &= C \left| \ p.v. \int \frac{\varphi(x-t)t}{|t|^{n+1}} \ dt \right| \\ &\leq C \int\limits_{|t| \leqslant |x|/2} |\varphi(x-t) - \varphi(x)| \, |t|^{-n} dt + C \int\limits_{|t| \geqslant |x|/2} |\varphi(x-t)| \, |t|^{-n} dt \\ &\leq C \max_{|x-u| \leqslant |x|/2} |\operatorname{grad} \varphi(u)| \int\limits_{|t| \leqslant |x|/2} |t|^{-n+1} \, dt + C \, |x|^{-n} \|\varphi\|_1 \\ &\leq C \left(\frac{|x|}{(1+|x|)^{n+1}} + |x|^{-n} \right) \|\varphi\| [A_1] \leqslant C \|\varphi\| [A_1] \, |x|^{-n}. \end{split}$$

Also

$$|R\varphi(x)|\leqslant C\int\limits_{|t|\leqslant 1}|\varphi(x-t)-\varphi(x)|\,|t|^{-n}dt+C\,\|\varphi\|_1\leqslant C\,\|\varphi\|[A_1]$$

thus $|R\varphi(x)| \le C \|\varphi\| [A_1] (1+|x|)^{-n}$ or $\|R\varphi\| [A_0] \le C \|\varphi\| [A_1]$ hence $R\mu$ defined by (61) is a distribution and can be extended continuously to A_1

so that (61) is valid for any $\varphi \in A_1$. If $\varphi = P(\cdot, y) \in A_1$, then $R\varphi = Q(\cdot, y) \times (Q(x, y) = c_n^{-1} x(y^2 + |x|^2)^{-(n+1)/2}$, the conjugate Poisson kernel). Hence if $R\mu$ is again a measure $\nu = (\nu_1, \ldots, \nu_n)$ such that $\|\nu(1+|\cdot|)^{-n}\| < \infty$ then by continuity

(62)
$$P(\cdot, y) * \nu = Q(\cdot, y) * \mu$$

$$(P(\cdot, y) * \nu(x) = (\nu, P(x - \cdot, y)), \quad Q(\cdot, y) * \mu(x) = (\mu, Q(x - \cdot, y)).$$

Let (61) be satisfied and let the restriction of $R\mu$ in the distribution sense to an open set Ω be a measure ν . Let K be a compact subset of Ω , $\psi \in \mathcal{D}(\Omega)$ and such that $\psi = 1$ on K. Then for $\varphi \in \mathcal{D}(K)$

$$\begin{split} \big(R(\psi\mu),\varphi\big) &= -(\psi\mu,R\varphi) = -(\mu,\psi R\varphi) \\ &= -\big(\mu,R(\psi\varphi)\big) + \big(\mu,R(\psi\varphi)\big) - \psi R\varphi \\ &= (\nu,\psi\varphi) + \big(\mu,R(\psi\varphi) - \psi R\varphi\big). \end{split}$$

Also

$$\begin{split} \left(\mu,\,R(\varphi\varphi)-\psi R\varphi\right) &=\,C\int\int\,\left[\,\varphi(x-t)-\psi(x)\,\right]\varphi(x-t)\,|t|^{-n-1}t\,dt\mu(dx)\\ &=\,C(-\,\gamma\,,\varphi)\,, \end{split}$$

where

$$\gamma(x) = \int \left[\psi(x) - \psi(u) \right] |x - u|^{-n-1} (x - u) \, \mu(du) \, \epsilon A_0$$

hence

$$(R(\psi u), \varphi) = (\varphi v - \gamma, \varphi).$$

It is thus apparent that in the case of periodic measures Theorem E of [29] implies a local version since the function corresponding to γ will be in L^1 of the fundamental cure. (For more details on Poisson integrals and Riesz transforms of periodic functions and measures see [31].)

In the present case, however, γ may not be integrable. It would be sufficient to establish an extension of Theorem E to finite measures such that $\|(1+|\cdot|)^{-\alpha}R\mu\|<\infty$ for some $\alpha>0$, which by the above will imply a local version: if (60) and the restriction of $R\mu$ to the open set Ω is a measure ν then μ, ν are absolutely continuous in Ω . The proof of Theorem E of [29], however also implies that the Riesz transform of μ in the distribution sense is equal to the Riesz transform in the function sense a.e. if the former is integrable (which can be proved without the use of H^p spaces for more general singular integrals).

PROPOSITION C. Let μ be a measure on R^n satisfying (60) such that the Riesz transform of μ in the distribution sense $R\mu$ is a measure $v=(v_1,v_2,\ldots,v_n)$ such that $||v(1+|\cdot|)^{-n}|| < \infty$ then μ and ν are absolutely continuous with respect to Lebesgue measure and if v(dx) = g(x)dx, $\mu(dx) = f(x)dx$ then g is the Riesz transform of f a.e.

Proof. $(P(\cdot, y) * \mu(x), Q(\cdot, y) * \mu(x))$ is an (n+1)-tuple of conjugate harmonic functions. By (62)

$$F(x, y) = (P(\cdot, y) * \mu(x), P(\cdot, y) * \nu(x))$$

hence if $\omega(\tau) = (1+\tau)^{-n}$ it follows from Lemma 3 with $a_0 = a_1 = \beta_0$, $\beta_1 = n$ that

$$||F(\cdot, y)||_{1, \omega} \le C(y) (||\mu\omega|| + ||\nu\omega||)$$
 where $C(y) = C(1 + \log^+ y)$.

Also by (condition (56) of Proposition A where $\beta_1=n-1$ (for $\omega^{(n-1)/n}=(1+|\cdot|)^{-n+1}$) the fact that $\log y=O(y^{n/(n-1)})$ as $y\to\infty$ is sufficient for the conclusion of Proposition A. So $F^{*1}\in L^1_\omega$, hence the family of functions $\{F(\cdot,y)\colon 0< y\leqslant 1\}$ is uniformly integrable (locally) and so μ,ν are absolutely continuous with respect to Lebesgue measure by the last paragraph of Section 1. If then f,g are defined by μ,ν as in the statement of the proposition $Q(\cdot,y)*\mu=Q(\cdot,y)*f$ tends to g a.e. as $y\to 0$. If R_y denotes the truncated Riesz kernel: $R_y(x)=c_n^{-1}|x|^{-n-1}x$ for |x|>y=0 otherwise then (see [35])

$$|(Q(\cdot,y)-R_y)*f|\leqslant CP(\cdot,y)*|f|.$$

By means of Lemma 5 it follows as in the L^p case that g = Rf a.e.

As in [29] for $F \in H_a^{pq}$ define the fractional integral of order λ of F by

(63)
$$I_{\lambda}F(x,y)=F_{\lambda}(x,y)=[\Gamma(\lambda)]^{-1}\int_{0}^{\infty}F(x,y+u)u^{\lambda-1}du.$$

LEMMA 13. If $F \in H_n^{pq}$, $\lambda > 0$

$$(64) (n-1)/n \leqslant p < \infty,$$

$$(65) -n/p < \alpha \leq n(n/(n-1)-1/p),$$

$$a + n/p - \lambda \geqslant 0$$

and at most one of (65), (66) is not strict and if moreover q = (n-1)/n if at least one of (64), (65), (66) is not strict then (63) defines a system of conjugate harmonic functions.

Proof. The condition that at least one of (65), (66) is strict is equivalent to the validity of at most one equality in $\lambda \leqslant \alpha + n/p \leqslant n^2/(n-1)$, i.e., to

$$\lambda < n^2/(n-1).$$

It follows from (9) applied to $|F|^{(n-1)/n}$ that

$$|F(x, y+u)|u^{\lambda-1} \le CM(y+u)^{-n/p}(|x|+y+u)^{-a}u^{\lambda-1} \quad (M=||F||[H_a^{pq}]).$$

Hence if $a+n/p-\lambda>0$ then (63) is locally uniformly convergent, which proves the assertion in this case.

If
$$\lambda = a + n/p$$
 let $s(x, y) = |F(x, y)|^{(n-1)/n}$. Then

(67)
$$\int_{0}^{\infty} |F(x,y+u)| u^{\lambda-1} du$$

$$\leq \sup_{u>0} |F(x,y+u)u^{\lambda}|^{1/n} \int_{0}^{\infty} s(x,y+u)u^{\lambda(n-1)/n-1} du.$$

By (9)

$$\begin{split} \sup_{u>0} &|F(x,y+u)u^{\lambda}| \leqslant CM \sup_{u>0} (|x|+y+u)^{-a}(y+u)^{-n/p}u^{\lambda} \\ &\leqslant CM [\sup_{u\leqslant y+|x|} (|x|+y)^{-a}(y+u)^{-n/p}u^{\lambda} + \sup_{u\geqslant |x|+y} u^{-a-n/p+\lambda}] \\ &\leqslant CM [(|x|+y)^{-a+\lambda}y^{-n/p} + (|x|+y)^{-a-n/p+\lambda}] \\ &\leqslant CM (|x|+y)^{-a+\lambda}y^{-n/p}. \end{split}$$

For $0 < \mu < n$ and $f \geqslant 0$

$$\int_{0}^{\infty} P * f(x, y) y^{\mu-1} dy = C_{\mu} |\cdot|^{-n+\mu} * f(x)$$

(see (6.4) of [29]). Hence

(68)
$$\int_{0}^{\infty} s(x, y+u) u^{\lambda(n-1)/n-1} du \leqslant C \int_{\mathbb{R}^{n}} s(x-t, y) |t|^{-n+\lambda(n-1)/n} dt.$$

The last integral is at most equal to

$$\begin{split} C \int\limits_{|t|\leqslant 2(y+|x|)} s\,(x-t,\,y)\,|t|^{-n+\lambda(n-1)/n}dt\,+\\ &+C\int\limits_{|t|\geqslant 2(y+|x|)} s\,(x-t,\,y)\,|x-t|^{a(n-1)/n}|t|^{-n+(\lambda-a)(n-1)/n}dt\,. \end{split}$$

Since further for any two functions f, g in $L^1 + L^{\infty}$, $\int fg \leqslant \int f^*g^*$ where as before f^*, g^* denote the decreasing rearrangements of f, g on $(0, \infty)$ (see [37] II p. 124) the last sum is at most

$$C(y+|x|)^{\lambda(n-1)/n} \sup_{|t| \leqslant 3(y+|x|)} s(t,y) + C \int_{0}^{\infty} s_{a,y}^{*}(\tau) \tau^{(\lambda-a)(n-1)/n^{2}-1} d\tau,$$

where $s_{a,y}^*$ denotes the decreasing rearrangement of $s(\cdot,y)|\cdot|^{a(n-1)/n}$ for by (64) $(\lambda-a)$ $(n-1)/n=(n-1)/p\leqslant n$ and so the above power of |t| is decreasing. By (9) again the last sum is

$$\leq C M^{(n-1)/n} (y+|x|)^{\lambda(n-1)/n} \max \left((y+|x|)^{-a(n-1)/n}, y^{-a(n-1)/n} \right) y^{-(n-1)/p} + \\ + C \|F(\cdot,y)\|_{p,(n-1)/n}^{(n-1)/n} \\ \leq C M^{(n-1)/n} (1+|x|/y)^{\max[1/p,\lambda/n](n-1)}.$$

Thus $\int\limits_0^\infty |F(x,y+u)| \, u^{\lambda-1} \, du$ is locally bounded in R^{n+1}_+ . Since the systems of conjugate harmonic functions $\int\limits_0^k F(x,y+u) \, u^{\lambda-1} \, du$, $k=1,2,\ldots$, tend boundedly to $F_\lambda(x,y)$ the latter is a system of conjugate harmonic functions.

Remark. In case $\alpha + n/p - \lambda = 0$ it is sufficient to require

$$1/q = \max(1, 1/p, 1/p + a/n)$$

in place of 1/q = n/(n-1) and $\lambda < n/q$. This follows from consideration of $|F|^q$ in place of $|F|^{(n-1)/n}$.

The fractional integration theorem in weighted norms (see [28]) may be stated as follows. With the notation $a^+ = \max(a,0)$ suppose (i) $a^+/n \le 1/p'$, (ii) $\beta^+ \le n/r$, $a+\beta \ge 0$, $0 < \lambda < n$, $1/r-1/p = (-\lambda + \alpha + \beta)/n$, $0 < q \le s \le \infty$ except that q = 1, $s = \infty$ if equality holds in (i) or (ii) then

$$|||\cdot|^{-n+\lambda} * f||_{rs,-\beta} \leqslant C ||f||_{pq,\alpha}.$$

This slightly more general version for L^{pq} spaces of the theorem given in [28] follows from Lemma 1 by the last remark after the proof of that lemma (here $\omega(|t|) = |t|^{\alpha} \omega_1(|x|) = |x|^{-\beta+\alpha} \omega(|x|)$). This result can be generalized to weighted H^p spaces as follows.

Proposition D. Let $p \ge (n-1)/n$, $0 < \lambda < n^2/(n-1)$, $\alpha + \beta \ge 0$,

$$1/r-1/p = (-\lambda + \alpha + \beta)/n$$

and

(69)
$$n/(n-1)-1/p \geqslant a^+/n, \quad 1/r \geqslant \beta^+/n,$$

 $0 < q \le s$ except that if equality holds in one of the inequalities of (69) then q = (n-1)/n, $s = \infty$ and if F_{λ} is defined by (63) then

$$||F_{\lambda}||[H_{-\beta}^{rs}] \leqslant C||F||[H_{a}^{pq}].$$

Proof. Observe that $a+n/p=n/r-\beta+\lambda\geqslant\lambda$ hence (66) holds. Also (69) implies

(70)
$$n/r - \beta < n/r - \beta + \lambda = a + n/p \leqslant n^2/(n-1),$$
$$n/p + a = n/r + \lambda - \beta > n/r - \beta \geqslant 0.$$

Also

$$\begin{split} \sup_{u>0} |F(x,y+u)u^{\lambda}|^{(n-1)/n} &= \sup_{u>0} u^{\lambda(n-1)/n} s(x,y+u) \\ &\leqslant C \sup_{u>0} \int u^{\lambda(n-1)/n+1} s(t,y) \left(|x-t|^2 + u^2\right)^{-(n+1)/2} dt \\ &\leqslant C \int s(t,y) \sup_{u>0} u^{\lambda(n-1)/n+1} (|x-t|^2 + u^2)^{-(n+1)/2} dt. \end{split}$$

Moreover

$$\sup_{u>0} u^{\lambda(n-1)/n+1} (|x|^2 + u^2)^{-(n+1)/2} = C|x|^{\lambda(n-1)/n-n} \quad \text{ for } \quad \lambda(n-1)/n \leqslant n$$

hence by (67), (68)

$$|F_{\lambda}(x,y)| \leqslant C_{\lambda}(|\cdot|^{-n+\lambda(n-1)/n} *s(\cdot,y)(x))^{n/(n-1)}.$$

Now the assertion follows from the fractional integration theorem in weighted norms.

Remarks. If F(x,y) is the Poisson integral of a function $f \in L^{pq}_a$ and a, p, q, λ satisfy the hypotheses of the fractional integration theorem in weighted norms then consideration of P*|f| instead of $|F|^{(n-1)/n}$ use of the fact that $P(\cdot,y)*|f|(x)$ is bounded for a.e. x and interchange of the order of integration yield

$$F_{\lambda}(x, y) = P(\cdot, y) * (I_{\lambda}f)(x)$$
 a.e.

Here $I_{\lambda}f = \gamma_{\lambda}^{-1} |\cdot|^{n-\lambda} * f$, $\gamma_{\lambda} = \pi^{n/2} 2^{\lambda} \Gamma(\lambda/2) \left[\Gamma((n-\lambda)/2) \right]^{-1}$.

(71) implies

$$\left(F_{\lambda}^{*}(x)\right)^{(n-1)/n} \leqslant C \sup_{|v| \leqslant ky} \left(I_{\lambda(n-1)/n} s\left(\cdot, y\right)\right) (x-v) \leqslant C I_{\lambda(n-1)/n} \left(\sup_{|v| \leqslant ky} s\left(\cdot, -v, y\right)\right) (x)$$
 or

(72)
$$(F_{\lambda}^{*}(x))^{(n-1)/n} \leqslant CI_{\lambda(n-1)/n}((F^{*})^{(n-1)/n})(x).$$

In case $1/r = \beta^+/n$ but $n/(n-1)-1/p > a^+/n$ the assertion I_{λ} : $H_a^{p(n-1)/n} \to H_{-\beta}^{r\infty}$ can be improved to I_{λ} : $H_a^{pa} \to H_{-\beta}^{r\infty}$, where q is only required to satisfy

$$(n-1)/n \leqslant q \leqslant 1, \quad q \leqslant p, \quad 0 < \lambda < n/q, \quad 1/q - 1/p \geqslant \alpha^+/n$$

which follows by consideration of $|F|^q$.

In case $r=\infty$ it follows from the assumptions that necessarily q=(n-1)/n (or in the situation of the preceding remark $q\leqslant 1$ at any rate), hence since the functions in L_a^{pq} of compact support are dense in L_a^{pq} it follows from (72) that $|x|^{-\beta}F_\lambda^*(x)\to 0$ as $|x|\to\infty$. Also

$$\{(x,y)\colon |x|\geqslant R \ ext{ or } y\geqslant R/k\}\subset igcup_{|x|\geqslant R} arGamma_k(x)$$

hence any (x, y) with |x| < R, y > R/k belongs to some $\Gamma_k(x_1)$ with $|x_1| \geqslant R$. Since also by (69) $-\beta \geqslant 0$ it follows that

$$|x|^{-\beta}|F_{\lambda}(x,y)| \leq |x_1|^{-\beta}|F_{\lambda}(x,y)| \leq |x_1|^{-\beta}F_{\lambda}^*(x_1).$$

Hence if R is allowed to tend to ∞ it follows that

$$\lim_{|x|+y\to\infty}|x|^{-\beta}F_{\lambda}(x,y)=0.$$

Proposition D can also be proved by use of the semi-group property of I_1 as in [29] (see also [37]). For simplicity, suppose

(73)
$$a^+ < n(n/(n-1)-1/p), \quad \beta^+ < n/r$$

(taking a^+ , β^+ in place of a, β amounts to requiring p > (n-1)/n, $r < \infty$). Then

$$||F_{\lambda}(\cdot, y)||_{rq, -\beta} \leq ||[F^{*}(\cdot, y)| \cdot |^{\alpha}]^{1/n} (I_{\lambda}s(\cdot, y))| \cdot |^{-\beta - \alpha/n}||_{rq}$$

$$\leq C ||F^{*}||_{pq, \alpha}^{1/n}||I_{\lambda}s(\cdot, y)||_{p_{1}, q_{1}, -\beta - \alpha/N},$$

where $1/p_1 = 1/r - 1/np$, $1/q_1 = (n-1)/nq$. If

(74)
$$1/r - 1/np > (\beta + \alpha/n)^{+}/n$$

the fractional integration theorem in weighted norms yields

$$||I_{\lambda}s(\cdot,y)||_{p_{1},q_{1},-\beta-\alpha/N}\leqslant C||s(\cdot,y)||_{np/(n-1),nq/(n-1),(n-1)\alpha/n}\leqslant C(||F||[H_{\alpha}^{pq}])^{(n-1)/n}.$$

Let now N be a positive integer and for m = 0, 1, ..., N

$$1/p_m = 1/r_{m-1} = (1 - m/N)/p + (m/N)/q, a_m = -\beta_{m-1}$$

= $(1 - m/N) a - (m/N) \beta$.

(73), (74) for p_m, r_m, a_m, β_m require $a_m < n(n/(n-1)-1/p+(m/N))(\lambda - a-\beta)/n$ or

(75)
$$a^{+} < n(n/(n-1)-1/p) + (m/N)\lambda,$$

$$(76) (-a_{m+1})^+ < n/p_{m+1},$$

(77)
$$1/p_{m+1}-1/(np_m) > (-a_{m+1}+a_m/n)^+/n.$$

(75) is true for all $m \ge 0$ by (73). (76) is satisfied by hypothesis for m=-1 (since $(-a)^+ < n/p$, i.e., $p < \infty$ and also a > -n/p which is implied by the present hypotheses) and for m=N-1 (since $\beta^+ < n/r$). Also as $N \to \infty$ the terms of (77) for m=0 tend to -(n-1)/(np) and $-(n-1)a/n^2$ respectively while for m=N-1 they tend to -(n-1)a/(nr), -(n-1)a/(nr) and thus by hypothesis (77) is satisfied for n=1 sufficiently large. Hence it is satisfied for n=1, ..., n-1 provided n=1 is sufficiently large. So

$$\|F_{\lambda}\|[H^{rq}_{-\beta}] = \|F_{\lambda}\|[H^{p_Nq}_{a_N}] \leqslant C\|F_{(N-I)\lambda/N}\|[H^{p_N-1q}_{a_N-1}] \leqslant \ldots \leqslant C\|F\|[H^{pq}_a].$$

By change of the order of integration it follows that $(F_{\lambda})_{\mu} = F_{\lambda+\mu}$ provided both are well defined by virtue of Lemma 13. (It seems that this argument does not work for all α , β with $\alpha^{+} = n(n/(n-1)-1/p)$, $\beta^{+} = n/r$ covered by Proposition D.)

It has been proved in [29] that if f and its Riesz transforms are integrable then $I_{\lambda}f$, $I_{\lambda}R_{1}f$, ..., $I_{\lambda}R_{n}f$ $\epsilon L^{n/(n-\lambda)}$ for $0 < \lambda < n$. By use of the

enlarged range for α in the case of H_{α}^{pq} spaces it will follow that an analogous statement holds not only for $f_{\epsilon}L_a^1, -n \leq a \leq 0$ but also for $f_{\epsilon}L_{nln}^{p_1}$ This requires an observation about Riesz transforms or more general singular integrals of functions in $L_{n/n'}^{p_1}$.

It is well known that singular integral operators with bounded kernels preserve L_a^p for $1 , <math>-n/p < \alpha < n/p'$ (see [27]). The following lemma is concerned with the case when a = -n/p or a = n/p'.

LEMMA 14. Suppose $K(x) = |x|^{-n} \Omega(x)$ is a singular integral kernel. i.e., $\Omega(\lambda x) = \Omega(x)$ for $\lambda > 0$, $x \neq 0$ and Ω has mean value zero on S^{n-1} . Also suppose Ω is bounded (for simplicity). Let the singular integral operator p.v.K * be defined a.e. by

$$p.v.K*f(x) = p.v.\int K(x-y)f(y)\,dy = \lim_{\epsilon \to 0+} \int_{|x-y|>\epsilon} K(x-y)f(y)\,dy$$

and suppose $||p.v.K*f||_{n\infty} \leqslant C_v ||f||_{n1}$ for some p, $1 \leqslant p < \infty$. Then also

$$||p.v.K*f||_{p\infty,a} \leqslant C_p ||f||_{p1,a}$$
 for $-n/p \leqslant a \leqslant n/p'$.

Proof. It is sufficient to prove that the kernel

$$K'(x, t) = |x-t|^{-n} |1-|x|^{\alpha} |t|^{-\alpha}$$

gives rise to an integral operator which is bounded from L^{p_1} to $L^{p\infty}$ (see [27]). As in the proof of Lemma 1 let

$$K'_1(x,t) = K'(x,t)\chi(2|x|^{-1}|t|), \quad K'_3(x,t) = K'(x,t)\chi(2|x||t|^{-1}),$$

$$K'_2 = K' - K'_1 - K'_2.$$

It is easy to see that K'_1 , K'_3 (in place of K'_i) satisfy (16) with p = r, q = 1, $s=\infty$. Also K_2' can be estimated as in [27]. In fact a somewhat different argument for K'_2 might run as follows

 $|K_2'(x,t)|\leqslant C|t|^{-1}|x-t|^{-n+1}\quad \text{ for }\quad \tfrac{1}{2}\leqslant |t|/|x|\leqslant 2,\ =0\quad \text{ otherwise}.$

Hence

$$\sup_{x} \|K_{2}'(x,\cdot)\|_{1} \leqslant C, \quad \sup_{t} \|K_{2}'(\cdot,t)\|_{1} \leqslant C.$$

Hence it follows that the integral operator T_2 defined by K_2' is bounded in L^{∞} and L^{1} , hence by the Riesz interpolation theorem $\|T_{2}f\|_{p}\leqslant C\|f\|_{p}$ (also $||T_2 f||_{p\infty}^* \le ||T_2 f||_p$, $||f||_p \le ||f||_{p1}$).

Another lemma will be needed to prove the next proposition.

Lemma 15. Suppose $F = (F_0, F_1, ..., F_n) \epsilon H^{ps}_{\alpha}$ $(0 < s \leqslant \infty)$, where $F_0(x,y)=P(\cdot\,,y)*f_0(x)\;f_0\,\epsilon\,L_a^{pq}\;if\;p>1\;while\;f_0=\mu\,\epsilon\,|\cdot|^{-a}\mathscr{M}^1(R^n)\;if\;p\;=1$ and $-n/p \leqslant \alpha \leqslant n/p', \ 1 \leqslant p < \infty$ and q=1 if $\alpha = -n/p$ or n/p' or p = 1. Then for a > -n/p i = 1, ..., n

$$F_i(x,y) = Q_i(\cdot,y) * f_0(x)$$

while if a = -n/p there are constants C_i such that

$$F_i(x, y) = Q_i(\cdot, y) * f_0(x) + C_i.$$

If $s < \infty$ then $C_i = 0$ for all i.

Proof. Consider

$$G(x, y) = F(x, y) - (P(\cdot, y) * f_0(x), Q(\cdot, y) * f_0(x))$$

which is in $H_n^{p\infty}$ by hypothesis and Lemma 14. G is the gradient of a harmonic function u, say, such that $(\partial/\partial u)u = 0$ (since the first component of G is 0), hence $(\partial/\partial y)G = 0$ and hence G(x, y) = g(x), where g is harmonic in \mathbb{R}^n . By (9) if a < n/p' then $|q(x)| \le Cy^{-n/p}(|x|+y)^{-\alpha}$ which tends to zero as $y \to \infty$ for $\alpha + n/p > 0$ while q is bounded for $\alpha + n/p = 0$ (set y=|x|). So q vanishes if $\alpha+n/p>0$ and equals a constant $C=(C_1,\ldots,C_n)$..., C_n) if $\alpha = -n/p$. If $s < \infty$ this constant must be zero. For then $F(\cdot,y) \neq 0$ implies that the decreasing rearrangement of $F(\cdot,y)|\cdot|^{-n/p}$ evaluated at τ near 0 is at least equal to $C_{F,\eta}\tau^{-1/p}$ hence $||F(\cdot,y)||_{ps,-n/p}$ $=\infty$, so F(0,y)=0 for all y>0. Also by dominated convergence

$$\lim_{y\to\infty} |Q(\cdot,y)*f_0(0)| \leqslant \lim_{y\to\infty} C_n^{-1} \int |f_0(t)| |t| (y^2+|t|^2)^{-(n+1)/2} dt = 0$$

 $(f_0 \in L^{p_1}_{-n/p})$. Thus it follows that C = 0.

In the remaining case a = n/p' observe that g is a system of conjugate harmonic functions in \mathbb{R}^{n+1}_+ and by means of (9) applied to $|g|^{(n-1)/n}$ it can be proved as above that q = 0. (Alternatively the hypotheses imply $g \in L^{ps} \cap L^{\infty}$ since g is independent of y hence g being harmonic must vanish).

PROPOSITION E. Suppose $f \in L_a^{p1}$, $Rf \in L_a^{pq}$, p = 1, $q \ge 1$, $-n \le a \le 0$ or 1 <math>a = n/p', $0 < \lambda < n$, $1/r = 1/p + (-\lambda + a + \beta)/n$, $a + \beta \ge 0$, $(-n/r'<)\beta< n/r$ then $I_{\lambda}f, RI_{\lambda}f \in L_{-\beta}^{rq}$.

Proof. Let.

$$F(x,y) = (P(\cdot,y)*f(x), Q(\cdot,y)*f(x)).$$

By Lemmas 3 and 14 $F \in H_a^{p\infty}$. Since its boundary values (f, Rf) (see the last part of the proof of Proposition C) belong to $L_a^{pq} F$ must be in H_a^{pq} by Proposition B, hence by proposition $D F_{\lambda} \in H^{rq}_{-\theta}$. By the first remark after Proposition D,

$$(F_1)_0(x,y) = P(\cdot,y)*(I_1f)(x).$$

Hence by Lemma 15 the boundary values of F_{λ} are $I_{\lambda}f$, $RI_{\lambda}f$ and these are in L_{q}^{rq} .

REMARK. If in proposition E p = q = 1 then it can be shown that

(78)
$$P(\cdot,y)*Rf(x) = Q(\cdot,y)*f(x).$$

Also $L^{p1}_{n/p'} \subset L^1$ continuously since for any measurable function h

$$\int |h(x)| \, dx = \int |f(x)| \, |x|^{n/p'} \, |x|^{-n/p'} \, dx \leqslant C \int_{0}^{\infty} (f|\cdot|^{n/p'})^*(\tau) \, \tau^{-1/p'} \, d\tau = C \, ||f||_{p1, \, n/p'}.$$

(Besides $f^*(\tau)\tau^{1/p'} \leqslant C \sup_{r/p'} (f|\cdot|^{n/p'})^*(\tau)$ implies $L_{n/p'}^{p\infty} \subset L^{1\infty}$, hence interpolation gives $L_{n/p'}^{pq} \subset L^{1q}$ for $1 \leqslant q \leqslant \infty$). Hence by the same result (78) holds for any p, $1 \leqslant p < \infty$ if q = 1. Thus

$$F(x, y) = (P(\cdot, y) * f(x), P(\cdot, y) * Rf(x)).$$

Hence if q = 1 by the first remark after Proposition D

$$F_{\lambda}(x,y) = P(\cdot,y) * (I_1f,I_2Rf).$$

Thus $I_{\lambda}(Rf) = R(I_{\lambda}f)$. This proves the following Corollary. If in Proposition $E \ q = 1$ then $I_{\lambda}f$, $RI_{\lambda}f \in L_{\delta}^{q1}$.

5. Relations to subharmonic functions inside a sphere. The Poisson kernel for the unit ball B^{n+1} of R^{n+1} is

$$\mathscr{P}(\zeta, \tau) = \omega_{n+1}^{-1} (1 - |\zeta|^2) (1 - 2\zeta \cdot \tau + |\zeta|^2)^{-(n+1)/2}$$

For the sake of conciseness the following definitions analogous to those of S^* , etc. in Section 2, are made. Let v be a positive function on $(0, \infty)$ such that

(79)
$$\nu(\lambda)\lambda^{-\alpha}\downarrow, \nu(\lambda)\lambda^{\beta}\uparrow \text{ for } \lambda\leqslant 1, \quad \nu(\lambda)\lambda^{\alpha}\uparrow, \nu(\lambda)\lambda^{-\beta}\downarrow \text{ for } \lambda\geqslant 1$$
 and define

$$\begin{split} T^* &= \{(p,v) \colon 1 \leqslant p < \infty, (79) \text{ with } a = n/p', \ \beta = n/p\}, \\ T_0^{*1} &= \{(p,v) \colon 1 < p \leqslant \infty, (79) \text{ with } a < n/p', \ \beta \leqslant n/p\}, \\ T_1^{*1} &= \{(p,v) \colon 1 \leqslant p < \infty, (79) \text{ with } a \leqslant n/p', \ \beta < n/p\}, \\ T^{*2} &= T_0^{*1} \cap T_1^{*1} = \{(p,v) \colon 1 < p < \infty, \ a < n/p', \ \beta < n/p\}. \end{split}$$

Slightly more generally, e.g., instead of requiring $\nu(\lambda)\lambda^{-a} \downarrow$ for $\lambda \leqslant 1$ it will be required that there is a constant C such that for $\lambda \leqslant \lambda' \leqslant 1$ $\nu(\lambda)\lambda^{-a} \geqslant C\nu(\lambda')\lambda'^{-a}$. Let L^{pq} (quasi-) norms of functions on S^n be defined with respect to euclidean surface measure on S^n and let $L^{pq}_{\nu}(S^n) = \{f : ||f||_{pq,\nu} = ||f\nu(\tan(\varphi/2))|| < \infty\}$ where now

(80)
$$\sigma = (\sigma' \sin \varphi, \cos \varphi), \quad 0 \leqslant \varphi \leqslant \pi, \ \sigma' \in S^{m-1}.$$

As usual set $x \cdot t = \sum_{i=1}^{n+1} x_i t_i$ for $x, t \in \mathbb{R}^{n+1}$. The Hardy–Littlewood maximal

function is defined by

$$Mf(\sigma) = \sup_{-1 \leqslant \delta < 1} \left(\int\limits_{(au, \, \sigma) \geqslant \delta} |f(au)| \, d au \middle/ \int\limits_{(au, \, \sigma) \geqslant \delta} d au \right).$$

In analogy with the results of Section 2 there holds

LEMMA 16. (For the case v=1 see [25]). Suppose $f \in L^{pq}_{\tau}(S^n)$ and one of (a) $(p,v) \in T^{*2}$, $0 < q = s \le \infty$ (b) $(p,v) \in T^{*1}_0$, $q = s = \infty$, (c) $(p,v) \in T^{*1}_1$, q = s = 1 (d) $(p,v) \in T^*$, q = 1, $s = \infty$ and define F by

$$F(\varrho\sigma) = \int\limits_{S^n} \mathscr{P}(\varrho\sigma, \tau) f(\tau) d\tau$$

then

(81)
$$||F(\varrho \cdot)||_{ps, r} \leq C_{pq, r} ||f||_{pq, r}$$

If (a), (b) or (d) holds then

$$||Mf||_{ps,\,r} \leqslant C_{pq,\,r} ||f||_{pq,\,r}.$$

Proof. It is sufficient to assume f vanishes for $\varphi > \pi/2$ for the conditions on r are invariant under the transformation $\lambda \to \lambda^{-1}$ resulting from $\varphi \to \pi - \varphi$. If $\Phi = \cos^{-1}(\tau \cdot \sigma)$ (= the geodesic distance between σ and τ on S^n) then

(83)
$$1 - 2\varrho(\sigma \cdot \tau) + \varrho^2 = (1 - \varrho)^2 + 4\varrho \sin^2(\Phi/2).$$

The mapping $T: \ \varrho(\sigma'\sin\varphi,\cos\varphi) \to (\sigma'\varphi,1-\varrho)$ is a diffeomorphism from $\{\varrho\sigma\colon 1/2\leqslant \varrho\leqslant 1, \ 0\leqslant \varphi\leqslant 3\pi/4\}$ onto $\{(x,y)\colon |x|\leqslant 3\pi/4, \ 0\leqslant y\leqslant 1/2\}$ such that if (80) and similarly $\tau=(\tau'\sin\theta,\cos\theta)$ and $x=\sigma'\varphi,t=\tau'\theta$

(84)
$$C_1|x-t| \leqslant \sin(\Phi/2) \leqslant C_2|x-t|.$$

Define $Tf = f \circ T^{-1}$. Observe that for $0 \le \theta \le 3\pi/4$

$$v(\tan(\theta/2)) \leqslant Cv(\theta) = Cv(|t|)$$
 and $v(|t|) \leqslant C'v(\tan(\theta/2))$.

Since T maps the closed spherical balls

$$K_{\varrho} = \{(\varrho \sigma' \sin \varphi, \varrho \cos \varphi) : \sigma' \in S^{n-1}, 0 \leqslant \varphi \leqslant 3\pi/4\}$$

diffeomorphically onto the balls $\{(x,1-\varrho)\colon |x|\leqslant 3\pi/4\}$ it follows that the ratio between the image under T of the volume n-form on K_e defined by surface area on S^n and the volume form dx defined by Lebesgue measure on $\{(x,1-\varrho)\colon x\in E^n\}$ is bounded above and below by positive constants for $\frac{1}{2}\leqslant \varrho\leqslant 1$. Hence $F(\varrho\cdot)\in L^{pq}(S^n)$ if and only if $TF(\cdot,1-\varrho)\in L^{pq}(E^n)$, where TF(x,y) is set equal to zero for $|x|>3\pi/4$, and there is a constant C such that

$$C^{-1} \leq ||F(\rho \cdot)||_{pq,r}/||TF(\cdot, 1-\rho)||_{pq,r} \leq C.$$

Furthermore it follows now from (83), (84) that there exists ${\cal C}>0$ such that

$$\begin{split} C^{-1}TF(x,1-\varrho) &\leqslant C_n^{-1} \int\limits_{\mathbb{R}^n} (1-\varrho) [(1-\varrho)^2 + |x-t|^2]^{-(n+1)/2} Tf(t) \, dt \\ &\leqslant CTF(x,1-\varrho) \end{split}$$

for $\frac{1}{2} \leqslant \varrho \leqslant 1$. For $\varrho \leqslant \frac{1}{2}$ or $\varphi \geqslant 3\pi/4$, $\mathscr{P}(\varrho \sigma, \tau) \leqslant C$ hence

$$\int\limits_{S^n}\mathscr{P}(\varrho\sigma,\,\tau)|f(\tau)|\,d\tau\leqslant C\|f\|_1\leqslant C\|f\|_{pq,\,\nu}.$$

Thus (81) is equivalent to

$$\sup_{1/2 \, \leqslant \, \varrho \, < \, 1} \, \| \chi_{B^{n}(\mathbf{0}, \, 3\pi/4)} \, P(\, \cdot \, , \, 1 - \varrho) \, *T\!f \|_{ps, \, \nu} \leqslant C_{pq, \, \nu} \| T\!f \|_{pq, \, \nu}$$

which is contained in Lemma 3.

The proof of (82) is similar.

The next lemma follows similarly as did Proposition 2.

LEMMA 17. The mapping $f o F = \int \mathscr{P}(\cdot, \tau) f(\tau) d\tau$ is a topological isomorphism between $L^{pq}(S^n)$ ($[\nu(\tan(\varphi/2))]^{-1}\mathcal{M}(S^n)$, where $\mathscr{M}(S^n)$ denotes the space of Radon measures on S^n , in case p=1) and the space of harmonic functions F in B^{n+1} provided with the (quasi-) norm $\sup_{0 \le \varrho < 1} \|U(\varrho \cdot)\|_{pq}$, if (a), (b) or (c) of Lemma 16 holds.

It is well known that the transformation $f(x) \to |x|^{-n+1} f(|x|^{-2}x)$ takes harmonic functions in a domain $D \subset R^{n+1}$ into harmonic functions in $\{|x|^{-2}x: x \in D\}$ (see, e.g., [1] p. 160). Let now the mapping I from $\operatorname{cl}(E_1^{n+1})$ to the closure of the unit ball in R^{n+1} be defined by inversion in the sphere of radius 2 and center at (0, -2) followed by translation by (0, 1):

$$I(x,y)=4rac{(x,y+2)}{|(x,y+2)|^2}+(0,1) ext{ so that for } |\zeta|\leqslant 1,$$
 $I^{-1}\zeta=4rac{\zeta+(0,1)}{|\zeta+(0,1)|^2}-(0,2).$

Also define

(85)
$$(If)(\zeta) = 2^{n-1}|\zeta + (0,1)|^{-n+1}f(I^{-1}\zeta)$$

and so

$$(I^{-1}f)(z) = 2^{n-1}|z+(0,2)|^{-n+1}f(Iz)$$

so that I, I^{-1} map the class of harmonic functions in a domain D onto the class of harmonic functions in I(D), $I^{-1}(D)$ respectively.

Let $t=r\tau', \ r=|t|, \ I(t)=(\tau'\sin\theta,\cos\theta).$ It is easy to see that therefore $\tan(\theta/2)=r/2$ hence

$$\begin{split} dt &= r^{n-1} dr \, d\sigma' = 2^{n-1} (\tan(\theta/2))^{n-1} (\cos(\theta/2))^{-2} d\theta \, d\sigma' \\ &= 2^{n-1} (\tan(\theta/2))^{n-1} (\cos(\theta/2))^{-2} (\sin\theta)^{-n+1} (\sin\theta)^{n-1} d\theta \, d\sigma' \\ &= (1 + \tan^2(\theta/2))^n d\sigma \end{split}$$

 \mathbf{or}

(86)
$$d\sigma = (1+|t|^2/4)^{-n}dt.$$

Moreover

$$|\tau+(0,1)|=2\cos(\theta/2)=2(1+\tan^2(\theta/2))^{-1/2}$$
.

LEMMA 18. The image under I of the harmonic function $P(\cdot, y) * \mu(x) + cy$ in $R^{++}_{+}(\mu_{\epsilon}(1+|\cdot|)^{n+1}\mathcal{M}^{1}(R^{n}))$ is

$$\int \mathscr{P}(\zeta, \tau) I \mu(d\tau) + 2^{n} c (1 - |\zeta|^{2}) |\zeta + (0, 1)|^{-n-1},$$

where Iu is defined by

(87)
$$\int \varphi(\sigma) I \mu(d\sigma) = \int \varphi(Ix) (1+|x|^2/4)^{-(n+1)/2} \mu(dx)$$

for φ continuous on S^n (as a consequence $I\mu(\{(0,-1)\})=0$) (for functions this definition agrees with (85)).

Proof. If g is continuous and of compact support in \mathbb{R}^n then P*g is the unique harmonic function G in \mathbb{R}^{n+1}_+ which is extended continuously to $\operatorname{cl}(\mathbb{R}^{n+1}_+)$ by G(x,0)=g(x) and which satisfies $G(z)=O(|z|^{-n})$ as $|z|\to\infty$. On the other hand

$$H(\zeta) = \int\limits_{\mathcal{B}^{\mathbf{n}}} \mathscr{P}(\zeta, \, au) Ig(au) d au$$

is the solution of the Dirichlet problem for continuous boundary values Ig which vanish in a neighborhood of (0,-1) hence (e.g., by the reflection principle)

$$H(\zeta) = O(|\zeta + (0, 1)|)$$
 as $\zeta \to (0, -1)$

but also

$$IG(\zeta) = O(|\zeta + (0,1)|^{-n+1}|G(I^{-1}\zeta)|) = O(|\zeta + (0,1)|).$$

It follows that H=IG. Hence the lemma is proved for e=0 and $\mu(dx)=g(x)dx$. Any measure $\mu_{\epsilon}(1+|\cdot|)^{n+1}\mathscr{M}^1(R^n)$ is the weak limit with respect to the pairing with $(1+|\cdot|)^{-n-1}C_0$ (C_0 denoting the space of continuous functions vanishing at ∞ on R^n) of a sequence of continuous functions of compact support $\{g\}$. Since $\mathscr{P}(\zeta,\cdot)$ is a continuous function on S^n for

any $|\zeta| < 1$ it suffices to show that $I\mu$ is the weak limit of $\{Ig\}$ with respect to the pairing $(\mathcal{M}(S^n), C(S^n))$. For then

$$I(P*\mu)\left(\zeta\right) = \lim_{n \to \infty} I(P*g)\left(\zeta\right) = \lim_{n \to \infty} \int\limits_{S^n} P(\zeta, \tau) Ig_n(\tau) d\tau = \int\limits_{S^n} \mathscr{P}(\zeta, \tau) I\mu(d\tau)$$

It also suffices to consider $\mu \geqslant 0$ and $g \geqslant 0$. In this case weak convergence implies that

$$\lim_{R \to \infty} \sup_{n} \int_{|x| \ge R} g(x) (1 + |x|)^{-n-1} dx = 0$$

hence

$$\lim_{\varepsilon\to 0} \sup_{n} \int_{\tau_{n+1}\leqslant -1+\varepsilon} Ig(\tau) d\tau = 0.$$

Therefore it suffices to show that $\lim_{n\to\infty} (Ig_n, \psi) = (I\mu, \psi)$ for continuous ψ on S^n vanishing near (0, -1). But

$$\begin{split} \int\limits_{S^n} & \psi(\sigma) Ig(\sigma) d\sigma = 2^{n-1} \int\limits_{S^n} |\sigma + (0,1)|^{-n+1} \psi(\sigma) g(I^{-1}\sigma) d\sigma \\ &= \int\limits_{R^n} (1 + |x|^2/4)^{(n-1)/2} \psi(Ix) g(x) (1 + |x|^2/4)^{-n} dx \\ &\to \int\limits_{R^n} \psi(Ix) (1 + |x|^2/4)^{-(n+1)/2} \mu(dx) = \int \psi(x) I\mu(dx). \end{split}$$

It remains to show that the image of the function p_0 : $(x, y) \to y$ is the Poisson integral of the measure of mass $2^n \omega_{n+1}$ concentrated at (0, -1). But by (85) if $\zeta = (\xi, \eta)$ then

$$\begin{split} (Ip_0) \; (\zeta) \; &= 2^{n-1} |\zeta + (0\,,\,1)|^{-n+1} p_0(I^{-1}\,\zeta) \\ &= 2^n |\zeta + (0\,,\,1)|^{-n-1} \big(2\,(\eta + 1) - |\zeta + (0\,,\,1)|^2\big) \\ &= 2^n |\zeta + (0\,,\,1)|^{-n-1} (1 - |\zeta|^2) \,. \end{split}$$

Remark. This lemma yields still another proof of the well known last part of Lemma 10 (for the case n = 1 see [34] and also [22]).

Proposition 4. The transformation I sets up a topological isomorphism between the space of harmonic functions U in R_{+}^{n+1} satisfying

$$\sup_{y>0} (1+y)^{-1} \|U(\cdot,y)\|_{p,\omega} = \|U\| [H^p_{\omega}(R^{n+1}_+)]$$

and the space of harmonic functions V in B^{n+1} satisfying

(88)
$$\sup_{0 \le \varrho < 1} \|V(p \cdot)\|_{p,\nu} = \|V\|[H^p_{\nu}(B^{n+1})] \quad \text{where} \quad \nu(\lambda) = \omega(\lambda) (1+\lambda)^{2n/p-n+1}$$

provided $(p, \omega) \in S^{*2}$ and $a_1 < n/p' - 1$ or p = 1, $(1, \omega) \in S^{*1}_1$, $a_1 < -1$ or $p = \infty$, $(\infty, \omega) \in S^{*1}_0$, $a_1 \le n - 1$. Furthermore under the same assumptions

on p, ω , I maps the cone of non-negative subharmonic functions in R_+^{n+1} satisfying (39) and (40) isomorphically onto the cone of non-negative subharmonic functions in B^{n+1} satisfying (88), i.e., the norm M_0+M_1 where M_0, M_1 are given by (39), (40) is equivalent to (88).

Proof.

$$\begin{split} &\int\limits_{S^n} |f(\sigma)|^p \nu \big(\tan(\theta/2) \big)^p d\sigma = \int\limits_{R^n} |f(Ix)|^p \nu (|x|/2)^p (1+|x|^2/4)^{-n} dx \\ &= \int\limits_{\mathbb{R}^n} |(I^{-1}f)(x)|^p \nu (|x|/2)^p (1+|x|^2/4)^{(n-1)p/n-n} dx \,. \end{split}$$

For $\mu \in \mathcal{M}(S^n)$ such that $\mu(\{(0,-1)\})=0$ it follows from (87) that

$$\int_{S^n} \nu(\tan(\theta/2)) \mu(d\sigma) = \int \nu(|x|/2) (1+|x|^2/4)^{-(n+1)/2} I^{-1} \mu(dx).$$

Given ω define ν by

$$\omega(\lambda) = \nu(\lambda/2) (1 + \lambda^2/4)^{(n-1)/2 - n/p}$$

then, e.g., $(p, v) \in T^{*2}$ if and only if for some a_1 in the definition of $"(p, \omega) \in S^{*2}"$

$$n-1-2n/p-a_1=-\beta>-n/p$$
 i.e., $a_1< n/p'-1$

and

$$n-1-2n/p+\beta_1 = a < n/p'$$
 i.e. $\beta_1 < n/p+1$.

(Also note that if $\beta_1 < n/p + 1$ then $\delta = 0$ in Proposition 2 and (38)). The assertion now follows from Proposition 2 or the corollary to Proposition 3, respectively and Lemma 18.

It follows in particular that if n/(n-1) and

$$\|U\|[H^p(R^{n+1}_+)] = \sup_{y \in \mathbb{R}} \|U(\cdot,y)\|_p = \lim_{y \to 0} \|U(\cdot,y)\|_p \quad \text{(see [29])}$$

then

(89)
$$\lim_{\varrho \to 1} \|IU(\varrho \cdot)\|_{p,\tau} = \|U\|[H^p(R^{n+1}_+)]$$

(proof of precise equality is similar to the proof of (41), if $p=\infty$ then (89) certainly holds if $\lim_{z\to\infty}U(z)=0$).

Added in proof: A somewhat different proof of the criterion for harmonic majorization in Proposition 3 has appeared earlier in: Ü. Kuran, A criterion of harmonic majorization in half-spaces, Bull. London Math. Soc. 3 (1971), pp. 21-22. For lemmas similar to those in Section 3 see: Ü. Kuran, Harmonic majorizations in half balls and halfspaces, Proc. London Math. Soc., 21 (1970), pp. 614-636.

(208)

References

- [1] H. Bateman, Partial differential equations of mathematical physics, Cambridge 1932.
- [2] N. Bourbaki, Éléments de mathématiques, bk. 6, chap. 3, 5, Paris 1965, 1967.
- [3] A. P. Calderón, On the behavior of harmonic functions at the boundary. Trans. Amer. Math. Soc. 68 (1950), pp. 47-54.
- [4] Intermediate spaces and interpolation, Stud. Math. 24 (1964), pp. 113-190.
- [5] and A. Zygmund, On higher gradients of harmonic functions, Stud. Math. 24 (1964), pp. 211-226.
- [6] Y.-M. Chen, Theorems of asymptotic approximation, Math. Annalen 140 (1960), pp. 360-407.
- [7] L. de Branges, Hilbert spaces of entire functions, N. J. 1968.
- [8] A. Dinghas, Über positive harmonische Funktionen in einem Halbraum, Math. Zeit. 46 (1940), pp. 559-570.
- [9] Konvexitätseigenschaften von Mittelwerten harmonischer und verwandter Funktionen. Math. Zeit. 63 (1955), pp. 109-132.
- [10] A. Goldstein, Constructive real analysis, New York 1967.
- [11] I. Halperin, Uniform convexity in function spaces, Duke Math. J. 21 (1954), pp. 195-204.
- [12] Reflexivity in the L^{λ} function spaces, Duke Math. J. 21 (1954), pp. 205-208.
- [13] M. Heins, Selected topics in the classical theory of functions, New York 1962.
- [14] K. Hoffman, Banach spaces of analytic functions, Prentice Hall 1962.
- [15] J. Horvath, Sur les fonctions conjuguées a plusieurs variables, Kon. Ned. Acad. van Wet. 16 (1953), pp. 17-29.
- [16] L. Hörmander, An introduction to complex analysis in several variables, Princeton 1966.
- [17] R. A. Hunt, On L(p,q) spaces, Enseignement math. 12 (1966), pp. 249-276.
- [18] V. Krylov, On functions analytic in a half-plane, Math. Sbornik 6 (48) (1939), pp. 55-138.
- [19] N.S. Landkof, Foundations of modern potential theory, Moscow 1966.
- [20] J. E. Littlewood, On functions subharmonic in a circle, Proc. London Math. Soc. 28 (1928), pp. 383-394.
- [21] Lectures on the theory of functions, London 1944.
- [22] L. H. Loomis, and D. V. Widder, The Poisson integral representation of functions which are harmonic in a half-plane, Duke Math. J. 9 (1942), pp. 643-645.
- [23] G. O. Okikiolu, On maximal functions of fractional order, Stud. Math. 30 (1968), pp. 259-274.
- [24] I. Privalov, Boundary value problems in the theory of harmonic and subharmonic functions in space, Math. Sb. 3 (45) (1938).
- [25] H. E. Rauch, Harmonic and analytic functions in several variables and the maximal theorem of Hardy and Littlewood, Can. J. Math. 9 (1956), pp. 171-183.
- [26] E. D. Solomencev, On the boundary values of subharmonic functions, Czechoslovak Math. J. 8 (83) (1958), pp. 520-536.
- [27] E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), pp. 250-254.
- [28] and G. Weiss, Fractional integrals on n-dim. euclidean space, J. Math. Mech. 7 (1958), pp. 507-514.
- [29] On the theory of harmonic functions of several variables, Acta Math. 103, (1960), pp. 25-62.

- [30] R. S. Strichartz, L^p estimates for integral transforms, Trans. Amer. Math. Soc. 136 (1969), pp. 33-50.
- [31] M. H. Taibleson, On the theory of Lipschitz spaces, J. Math. Mech. 13 (1964), pp. 407-480.
- [32] E. Tolsted, Limiting values of subharmonic functions, Proc. Amer. Math. Soc. 1 (1950), pp. 636-647.
- [33] M. Tsuji, Potential theory in modern function theory, Tokyo 1959.
- [34] S. Verblunsky, On positive harmonic functions in a half-plane, Proc. Cambridge Phil. Soc. 31 (1935), pp. 482-507.
- [35] G. Weiss, Analisis armonico, Natl. Univ., Bouenos Aires 1960.
- [36] A. Zygmund, On the boundary values of functions of several complex variables Fund. Math. 36 (1949), pp. 207-235.
- [37] Trigonometric series, I, II Cambridge, 1959.

Received: May 20, 1970