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On weighted H? spaces
by

T. WALSH ({(Princeton)

Abstract. For p > 1 there is a well known isomor];]n“sm between the space of
harmonic functions F(z, ) in the half space y > 0 of B normed by sup {| F{-, 9)ilp:
y > 0} and L* associating to F its boundary value function F(-, 0) with a substitute
result in case p = 1. The present paper iz concerned with a generalization of this
result to weighted L” norms and more generally weighted Lorentz norms.

To obtain generalizations of corresponding results for H” spaces of systems of
conjugate harmonic functions (in the sense of Stein and Weiss) a criterion for har-
monic majorization of positive subharmonic funetions in a half space is proved. By
means of Kelvin’s transformation by reciprocal radii an isomorphism is established
between spaces of subharmonic functions in a half space considered earlier and spaces
of subharmonie functions in & ball with bounded weighted L’ norms on concentric
spheres. .

0. Introduction. The main coneern of the present paper will be with
harmonic functions in the half space

By = {(#,): e Ry >0}

of R™'. As usual for (z,y)e B*"' define |(z,9)|* = 3 al+y%. The
Poisson kernel for B%™ is

P(a,y) = 6 y(jo*+y?) "B,
where ¢, =1/2w,y, = #TRP((n41)/2)]"L I fOA+ )"V is inte-
grable on R" the Poisson integral P = f in R%*! is defined by
Pxf(z,y) =P(,y) *fl=z).

It is well known that for 1 < p < oo the mapping f — P * f establishes
an isomorphism between IL”(R") and the space of harmonic functions F
in R%™ subject to

(1) sup | F (-, y)ll, < oo
. >0 .
and normed by the left-hand side of (1). If p = 1 this is an isomorphism

between the space of totally finite regular Borel measures .#1 and the
harmonic functions satisfying (1) (see, e.g., [15], [29]). Stein and Weiss
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in [29] proved that the pth power of the length of the gradient of a har-
monie function in R* is subharmonic for p = (n—2)/(n—1). By means
of this result they generalized those results about H? spaces of holg-
morphic functions F in & half plane which can be p;roved by ha,rm(?mc
majorization of |F|P to systems of conjugate harmonie functions F, i.e.,
gradients of harmonic functions satisfying (1) for p = (n—1)/n.

Recall the definition of Loventz spaces, e.g., in [17]. For f measurable

set

Wi, = (afp [ (f*@e2)ayy)™
0

where f* denotes the decreasing rearramgement of f on (0, 00). ifllg
= [[f*"{jpy Where

1
0 = = (O erass)”,  0<r<i, r<g, r<p.

If w denotes a non-negative measurable function on R" define

T

: and I8 = {f: ||fllpg0 << oo} Also let Lf, = Ii7. (On one occasion it w.i]l

be convenient to denote L2 by L(p, ¢, w).) In ease w(z) = w(|#]} or mote
" particularly w(z) = [z|* the notation ||.lLg,» L% OF [llpg,q e ;'gspectwely
will be used. I w is a continuons function which does not vanish except,
possibly, at the origin define

wA (B") = {v: v = wp, ue A EY}, P [0A'] = o],

where the norm of a measure ue #* is its total variation |u|(E"). Hence
if w(0) = 0 and vew.#* then »({0}) = 0.

Tt is well known that the continuity of singular and fractional integral
operators between L7 spaces generalizes to continuity between the weighted
IP spaces IZ for —afp < a << n[p’, where 1/p+1/p" =1, (see [27], [28]).

These facts lead to the consideration of (systems of conjugate) hai-
monic functions F in B% subject to sup {F (-, y)ll,,. < so. In fact the norm

>0

[I7(, 9)lp,. Will De allowed to increase linearly in y as ¥ — co and in plac.ze
of || more general weight functions will be considered. In order to obtain

more precise results for singulaf and fractional integrals weighted Lo‘;ie,n:‘oz_‘ :

norms defined above will be used. Ty
Let p, denote the projection on the y-axis, i.e., po(2,y) =y for any
(x, y)eR*.. Pirst conditions are given under which

et

(@) s

>0

icm
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implies that ¥ is the sum of the Poisson integral of a function in IZ? and,
a constant multiple of p, (Proposition 1). Conversely it will be shown that
if w is radial, w(%) = w(|»}), then feI?? implies that F = P « f satisfies {2)
provided there are a<n/p’; f<n[p, 1< p < oo such that o(z)min(+~9,
777 (= decreasing) and o(r)max (v, **1)} (= increasing) and 0 < ¢
< oo with less general results in case a = n/p’, § = n/p or p = 1. There
are similar results for the Hardy-Littlewood maximal function M7(f)

defined by () @) =swe| [ ol
<1 lf-z)<s
for #>0. These will yield non-tangential boundedness of the Poisson
integral F by a function in the same space.as f or a related larger one in
case at least one of p, a, # is at an end-point of its permissible range.
The results discussed so far imply that f— P+ f((f,2) P = f+ep,) is
a topological isomorphism between L2 (LP4BC of o ' #*®C) and the
space of harmonic fanctions in B3+ normed by the left-hand side of (2).
To prove harmoniec majorization of certain subharmonic functions
in [18] and [29] use is made of the fact that if s is a non-negative sub-
harmonic function in RY*' and suplis(-, #)l, < oo then s -0 as y = oo
>0

or | > o0 while y is bounded below by an arbitrary positive number.

This does not appear to carry over readily in required generality to non-

negative subharmonic functions satisfying Supfis (4, 9)llp,0 << . In the
y>0

theory of functions of one complex wvariable, however, there is a well
known method of proving harmonic majorization in a half plane by use
of the formula for the golution of the Dirichlet problem for a semi-disk
and boundary values vanishing on the diameter. This can be extended
to R™*' and is used to prove Proposition 3, possibly, the main result of
this paper. It gives a eriterion for harmonic majorization of subharmonic
functions in R%™ and also asserts that the least harmonic majorant is
the sum of the weak limit of s(-, ¥) as ¥ — 0 and a constant multiple of p,.
This then permits extension of most of the results of [29] on HY spaces
to H” spaces with certain radial weight functions. In particular the range
—n[p< a<nfp’ valid for continuity on I? of fractional and singular
integral operators is enlarged to —nfp < a< n(n/(n—1)—1/p) for HZ
(H? with weight function |2|°). This is of similar significance for fractional
integrals of funcfions in IZ} . (see Proposition E) as in the well known
case p = 1, w = 1 (Theorem H of [29]). Lastly Kelvin’s transformation
is used to relate some of the sets of subharmonic funetions in RY** consid-
ered in the preceding sections to certain sets of subharmonic functions
in the unit ball of R™** (Proposition 4).

The Banach space of continuous functions ¢ such that im g(z) = ¢(oo)

Z|—>00

exists, that is, the space of functions which are restrictions to B™ of con-
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tinuous functions on the one-point-compactification R™ of R™ (with'the
topology of uniform convergence) will be denoted C(R™). Its dual, con-
sisting of the bounded measures (or in another terminology, totally finite
regulay Borel measures) on R™, ie., of the functionals

PRI q;——>f<p(m),u((lm)—|~z lm ¢(x),

- )00

where pe #*(R"), z¢C will be denoted ML(BY (MHEY) = A (B DC).
¢,, e.g., will be used to denote a constant not necessarily the same at
each occurrence depending on p and possibly .

1. Harmonic functions. The following generalizes Lemuma 3.6 of [29],

ProposrTION 1. Let B be a Banach space such that (14 D~ C(R™)
is (continuously) contained in B so that its dual B may be taken lo be contained
in (L |-)" A (R™). Suppose F is a harmonic function on R such that
3) sup [(1+9) P, Y] = M < oo

y>0

Then thers exist peB’ and a (complex) number & such that
{4) Pz, y) =P(,y) * pl@)+ 0y
and )
lully <Umind|F(, 9)lp, 6= Lmy ' F(,y),
0 Y00 .

8 =0 if im@y YF(, Mz =0. In case B' = (L4 (BR™) it can
be assumed that pe(L--|:|)" LAY (RY). Also at the boundary y = 0 F tends
non-tangentially to the absolutely continuous part f, say, of u a.e.
OOROLLARY. If F is harmonic in RY™, satisfies (2), where 1 < p < oo
1<g< o orp=q=1and
(5) o™ Q4 )" Mg < 00 ‘
and invase p = 1w is continuous on R™ then (4) holds with u = feIL! if
p>1, while pew " M(R") if p=1.
Proof. The hypot_heses imply

WGy @+ D" < CH(1+y), (¢ =Cp)

Pz, y) < Cmax(y™, 1) | (2, 5)| dtds

=22 +is-yi2 < min (42, 1)

y-+min (¥,1) .
P, 8)|dids.

< Cmax(y™, 1)
. y-min{y,1) [t—zi<min{y,1)

Heneé . ) ) . S
(6) - 1F(2,9) < Omax(y™™ 1) (L4+|a)™™ = sup  [F(; 8l

‘18-yi<inin (¥, 1)

< OMmax(y 1) (L+ o))" (1 +g):

icm
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*Fory>5>0 et W (o,y) =P(,y—n)* F(-, 5){z) so that

w@ui<e( [+

) Plhy—mIFla—t,n)dt.
|#<min (- —1,1)

i@ >min (-m—1,1
Hence

(@) 1T,y < € [max(n-", 1), min (g — )~} (L 2l (14 3)+

1+ ]m__ﬂ)n-i—l]
— S [ A
' +{y—n) ?P(,H—m
since (y—x)+ (y— )" > 2. Also by dominated convergence the second
term in the sum preceding (7) is o(y) as y — co. Consequently for any »

(8) lmy ='W, (0, y) = 0.
Y00

It is easy to see that for £ >0
sup  [(0)02)(9/0y)"P (v — -, y) (14 )" e L.
e<y<sjxml<e

Thus by dominated convergence W, (#,y) is a harmonic function for .
y >n. If f(14|])~! is integrable and continuous in an open set Q of R™
and if K is compact and contained in Q then there exist a continuous func-
tion g supported in 2 and funection A such that f = g+ % and & vanishes
in a compact neighborhood of K. Therefore P(, y) * g — g uniformly,
while P(-, y)* h— 0 uniformly in K by dominated convergence. Thus
W, can be extended to a continmous function for y =5 by W, (z, %)
= F(z, n). By the reflection principle the function W* defined by

W (@, y) = Fla, y+n)— W, (@, y+n)

for y >0 and W¥(z,y) = —W*(z, —y) for y <0 is harmonie in RV*.
Furthermore by (6), and (7) W*(z,3) = 0({(=, y)|"*) as |(@, y)| - oo.
Now by the Poisson integral formula for a sphefre:

- — o=l (] g2 12 -Wt@._')__._
Wiz, y) = ()n+l(1 e *|(w, y)l,)s-[ io’—(fl(-fv,?l)ln+ldg,

where 8" = {(#, y): |(z, ¥)] = 1}. By differentiation it follows that

sup | DPW*(z, y)| < Cpe® max |[W¥(as)|,
i, v)i<afz aeSM

where f is any multi-index with (»-1) components. If |f] = Zﬁi >n-2

this results in ’

\DPW* (2, 9)| < Cpliminta=#4m2 — ,
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n+2 . .
Thus W¥(z,y) = Z Y*P, o1 (®) where Py(») is a polynomial in
K=
By -eey @, Of degree & at most. As W*(w, y) = 0(ly|) for |y|— oo, for

all #,P, must vanish for 2<E<n, ie, Wz, y) = yP,1(5). Now
{](1—}-] )" P, |l < oo requires P,.,= const.= d(n), say. By (6) and (8)

8(n) = Uimy™'{F(0,9)| < CM
Yo

By hypothesis P(-—1, y)<B for any (¢, y)«R1. Since the family {F(-, »):
0 < <1} is bounded in B’ it is relatively compact with respect to the
weak topology of the pairing (B', B) so there is a sequence z; — 0 and
peB’ such that F(-, ;) —> p weakly and also § such that d(n)-> ¢ as
%k - oo and |6} < CM. Hence

F(z,y) = I}ilgﬁ’(w,?hwk) = xlﬁg (PCs 9) % F (- m0) (@) + 6(nz)y)

=P(:,y) * u(@)+ dy.
In case B’ = (14 ||)" ' #1(R™*) the notation will now be changed
from u to u* and & to y;. There are pe(l4|- |)"+1./{1(R"), 7o€C such that
#* = g 12 g v 1" 60 ot 8 = o+, then

Pz, y) = P, y)*p(@)+ vy tlim [+ D™ 2+ la— tB 2Ty y
=P, y)*u(x)+dy.

Clearly |jullp < [lu*llp. (It follows from (4) or Lemma 3 below that in fact
yo =0, p = p*). Also for u(1+|))™" 'eA? it is well known that Pxpu
tends to the absolutely Gontmuous part of x non-tangentially a.e. (cf. [15]
Proposition 2.1).
’ The corollary follows from LP? = (IF?) for 1< p < oo, =1 (see
[21). ‘
(6) clearly holds for any subharmonic function F satisfying (3). In
the special case when w(z) = |#|* and (%, y) > 0 is subhafmonic in R}
and such that

sup ”8(') y)”pq,a =M< 00
>0

' more precise estimates needed below can be given. Let B"(x, y) = {teR™:
[t—@| < y}. Then

2y -
8(2,9) <Oy~ [ s, Wllpg,a @111~ Ymieaple -
Haz0

Cy™
W Zevallor < N2l = O (f €803 = gy=etnir’,
4
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Also for |z > ¥

1™ 25 n b < C Ul —9) " iznpo, e < O(lal—y) g™

hence »

N 2l < C¥™ (Jo] + )~
and so
(9) 8@, y) < Oy~ (|z|+9)~°

for 0<a< n/p’ and a = nfp’, ¢ = 1. On the other hand if a < 0, then

2y
925 9) < Oy~ ol 90 [ 16, Dl ot mmo
< OMy™(jal +9)™"

(a < —mn/p implies s(0,y) =0 for all y >0), i.e., (9) holds in this case
likewise.

I F = Pxu, where ge(14 || )”"1.41 (B™) then u is absolutely continu-
ous with respect to Lebesgue measure in an open set Q of R iff for some
(and hence all) >0 the family of measures {F(x,y)ds,0<y <%} is
uniformly (or equi-) absolutely continuous in Q, in other words iff the
family of functions {F(-,%): 0 < y <y} is uniformly locally integrable
in Q. The necessity could be proved by approximating g in Li.(2) by
continnous functions of compact support. The sufficiency follows from
the readily proved, fact that u is the weak limit of the measures P (-, y)*u.
(Let o#"(2) denote the space of continuous functions whose support is
contained in Q. It follows from [2] bk. 6 chap. 3 sec. 2 no. 5 and chap. b

. see. 5 no. 2 Theorem 2 ¢’ that a family of measures {u;} is uniformly abso-

lutely continuous in 2 iff for any non-negative ge ¥ (Q) and for any
& >0 there is a 6 >0 such that he #(Q), |h] < g and [{h(»)|do < 6 imply
[[hap;| < & for all i. Hence also |[hdu| < & for any weak limit x of the
family {u;}.

2. Lemmas on integral operators in weighted I” spaces. It is well

_known that singular integral operators and the Hardy—Littlewood maximal

operator

M(f) (@) = supe™ [ |flo+D)d
#>0 e
preserve L2 if —nfp < a<<nfp’ (see [27]). Let now w(z) = o(2]). It
was proved by Chen in [6] that w increasing and (a) o(r)z™" decreasing
for some o< m/p’ or dually o decreasing and (b) w(v)7” increasing for
some f < n/p implies that (¢) M is bounded on L%. This result is gener-
alized below to the simpler statement: (a) and (b) imply (¢). While singular
and fractional integral operators only take L2}, , I, into L% for appro-
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priate ¢, 8 Lemmas 2 and 3 say, in particular, that M, P(:, y)* preserve
I, (p>1) and hence by duality P(-, y)* also preserves I2},. Also

for Poisson integrals the restrictions on’  necessary in the case of singular -

integrals can be relaxed at infinity.
Lieana 1. Suppose H is measurable on R X R" 0 < H (,1) < A Jo—1|™
and T defined by -

T(f) (#) = [H(z, )f(t)at
satisfies
(10) WL lles < AN Sllpa>
where .
(11) 1p'+1ifr =4n=0, s>=r.
If 1< p,r<< co and
(12) w(®)t™Y, o)t for some a< nlp',f < anlr
them . :
; 1T flls,0 < CAliflpgya (€ = C(®, 05755, a, B)-
If (12) holds with a = njp’, § = nfr it is still true 1hat | Tfle,» < O(A+
1) llpr, 0 (1 <P < 00).

»P'rooff Define K (z,1) = H(2, o (|z}) o(Jf]))" and let y denote the
‘characteristic function of the interval (0,1). Set K,(z,1) = K(z, )X
3

X (2 w7 t]) Ky(w, t) = K (#, 1) x(2 |2 [t]7Y), K = X K;. The K; give rise
to operators S;: ‘ =1

‘

_ 8.f(a) = [Eulw, Df ().
Note that .
| Eyfe, 1) <2 Ao (o) () 26l ) = 2K (2,1),  say,
Ey(@, ) <Al o (o) o () g (2|t 7) = 2°AKS (2,1),  say.
It :fo]lows from (12) that H d
(13) Sup {0 (71)/0(73): 12 < 71/7a <2} <O < oo.

Hence since 0 < H (s, 1) it follows from (10) that

(14) ) I82flhs < CA (g
If on the other hand for i = 1, 3 there holds one of
(15) iy <B, where  y(t) = I (-, ey

a8 - ek < B, whare (o) = [EI(@, )y

icm
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and the exponents are such that at most 1}-!1,; in (16) is not necessarily
a norm, then . i
[18:flls < CBfllpg for i =1,3.

This assertion is a fairly obvious generalization of well known results
for I” spaces (see e.g., [30], Lemma 2). In the present case

(8) = |EI (-, e < C4 sylpt‘w(iﬂ@i)imi”””"m(!ti)‘l
Il < 04 51 o) e (1)
Thus if ' =
an | e
then (15) and similarly (16) are satistied for ¢ = 1. Analogously
lpallyes < CA 213 w(o) o™ o (r) T M i gu(a) = S (25 Moo

that is, (16) (and (15) likewise) holds for i = 3 if

(18) w{z)T"}.
By the Maycinkiewicz interpolation theorem for Lorentz sﬁaces (see [17])

“(and ehoice of p,, p; close to p-and such that p, < p < p,) it follows that §;

and 8 satisty [8fls < CA 1l Together with (14) this implies Lemma 1.
Remarks. It follows similarly from (15), (16) that in case p = oo .~
and ' - :

@(7) r“”fm(o‘)'lo’"ldo' <C
e

(in particular if the first condition of (12) holds for some ¢ < #) and the
second condition of (12) holds for some f < 0 then || Tfllw,» < C4A 1+ 181N
1o, :

Temma 1 applies to fractional integration where H{z, 1) = Jo—t|™%
In the case of singular integrals with kernels bounded on the unit sphere
the operator S, has to be dealt with differently (cf. [27]). Lemma 1 applies
to M for it e() is a positive function y(e{z)™'jo—1) = 0 unless lv—1|
< g(®) 8o, ‘ .

e(@) "z (e(@) o —1l) = lp—1"

Lemma 2 below makes a stronger asse’rti(;n in case g = nfp, p >1.

Tn the case of fractional integration two different weights w(i|) and,
wy(jo]) = o(|z])}#]7%, ¢> 0 may be considered, then K(w,) = lo—1~*

o (e o) I 1/2 < [ile|™ <2 then {m—ﬁg‘lmi—}/—"ltlgﬁm and so ’,

K2, ) < Ola—t oy (o) o (i) 7 < Cla—t 7470
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Henece 1/r+1/p’ = (A+¢)/n is sufficient for (14) while in order that
Sy, 8; be of restricted weak type (p, ¢) (i.e., bounded from L** to L7)
it is sufficient that
sup o,(0)c™ o (7)1 e < oo
hence (17) along with (18) (proof similar) are sufficient. As before inter-
polation can be applied if (12) holds.
For the sake of clarity the following definitions are made. Let

- {19) o(7)min(z7%, 771 |,

and then

o(7)max (7%, +1)4

8 ={{p,0): 1<p< oo, ;
(19) with #/p’ = ao < ey <nf/p'+1,0fp = B, <y <np+1},
8 = {lp, 0): 1< p< o0, :
(19) with a0 < n/p’, a0 < @y < #[p'+1, fo<n[p, By < fr<nlp+1},
8= {(p, 0): 1<p< oo, ,
(19) with ay <nfp’, ay< ey < nfp'+1, fo < n/p, f < i< njp-+1},
8% =8NS = {(p,0): 1< p < oo, v
(19) with a,<n/p’; fo<n[p, ag < ay < nfp'+1, By < B, < n/p+1}.

8, 8;, 8}, 8 are defined in the same way except that a, — o, — a, By = By
= f. In order not to introduce more cumbersome notation some fixed

a;; f; (1 = 0,1) are supposed to be associated with each (p, w). If (p, w)

is such that, e.g., w satisfies the defining properties of § for = in a subin-
terval I of R, , write (p, w)eS in I. If, e.g., (p, 1%)<8® write (pya)eS®
sothat (p, a)eSiiff 1< p < oo, —nfp < a< nfp’, (p, a)e St i1 < p< o
—nlp<a<<nfp.

LeMya 2. Suppose (p, o) <83 then

1M\, 0 < O )1 — 3) ™ [ fllpoo, s
where ¢ s & possible exponent in the definition of 85.

Proof. For &(a) >0 let p,(v, 1) = e(e) ™y (e(2)~ lo—1)). Tt will be
sufficient to prove that the integral operator defined by

£ fw.ls Do (la)) o (1)1 (@) @

is bQIJ:nded in I with 2 bound foij its norm independent of the measurable
function & Let K,(»,1) = .42, o (jo]) o([t]) " if |2] > max (2e(2), [#) or
[t] > max (26 (), o) and  Ki(v, 1) = 0 otherwise. Then if K, (z,1) #0
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either [t > |o|—|z—1] > |]/2 hence 1< |o]lt]"*<2 or |z}> |i—jo—1]
> J#|/2 hence 1/2 < || {#|~' < 1. Thus by (13) which is & consequence of
the hypotheses K, (», t) < Cy, (o, t).

Next let Kz, 1) = vz, Do(z)eo(i)™ I 1< o] <2:(2) and
Ky, 1) = (o, o (l@)o(i)™ i |o| < |t]| < 2e®), =0 otherwise. Then

3
Pz, Do (zho ()™ = _;:K,-(m, )

Ky, 1) < 2" ol o (|o]) o ([H]) 7 {71~ < 2% e 0
for [t} < |z}, and = 0 otherwise. It follows that (16) holds for K, with
p=r0=s8=oc0. B=_0(n/p—a). Moreover
oo, 1) < v.(2, Yo (|2])2°0(2s(@)) " (@)1t~

< 2%9,(w, 1) {26 (@)"P 2] TP e (@) 11"

= 24P (g) " a7y (o (1)~ fo— 1))
80 .
I|K,(a;, ')”p’1< Ga(a;)“""”’"]mr"’h' f m"“""/pdi< C(ﬂ:/p’-— a)—l}m—nh)_

1H<2e(z)

Thus (16) holds for K, withp =7, ¢ = s = o0, B = C(n/p’—a)". Hence
if the operators §; are defined as in the proof of Lemma 1, 8, is bou.ndeg in

I? sinee M is, S, and 8, are by the proof of Lemma 1.

Lemya 3.
(20) 1P (s )% e, < C0) fllpg,o
provided one of
(8) (p,0)ef™, g<s< oo, ) (p,0)e8?, g¢=s=1,
(©) (P, )8y, ¢=85=o00, @) (p,w)e8, =1, 8=o00,

is satisfied. Furthermore in cases (a) with ¢ =1, (b), (c)

1 n -1 1lg
yid ('?T "‘ﬁo\) (l+ Y1 (?/))] X

o) = 0[(§+1—a1)
11q

X [(—%-l—l—ﬂx)_% Yo+ (%— ao)—1 1+ %(y))] ;

where

v = (g—nlp)", v =(f—nlp)* (s" =max(s,0))
and

pu(y) = yP"P, log Ty, (njp— Bo) (nfp—F1) ™
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according as B, >nfp, =nfp or < nfp and analogously
woly) =y, logty, (nfp’ — a) (nfp' —a)™
according as a, > nfp’, = nfp’, < nfp’. In case (a) and 0 < ¢ < 1
C(Y) < Cpryap(LFYIMH4gP om0 for any >0,
while in case (d) ‘
C(y) < Cp(L+49") where v = max (v, v,).

If o is continuous and does not vanish in [0, 1] and (p, o) satisfies (a)
with g1, (b), (e) or (d) then C(y) may be chosen so that lim Cy) =1.
Y0
In any case if (a) is satisfied with ¢ << oo and if feIP* then

(21) Lim 1P () ) *f~fllpge = 0.

P;."o of. To establish (b) note that it may and will be assumed that
a, > n/p’, since this does not alter the hypotheses nor the conclusion
(all a;, §; are supposed to be non-negative). Set ‘

K (@, 1) = y(y+ o)™ o (2] o (1) g (J2] 7 1),
K3 (0, 1) = y(y+ o)™ o (o) o (1) 1 (2] ).
Then
VS (0, Yo < Ostp L2021
T i (g ]

< yo(lz]) -1, ag oy —n—1 1a a
< ,szﬂw(ﬂ max (v, 7°1) < Oy (y -+ [o]) ™" max (|| |w|%).

w(z) e

Let gi(2) =1 if |o{<min(1,y) =y, say, =0 otherwise, g,(s) =1 if
[#] > max (1, y5) = y;, say, = O otherwise and 1 — @1+ @s+ @g. Denote
the double Lorentz norms defined as in (15), (16) by
[ Iz (1| 127 ()1, IS LT (2)]]| L2 ()]
respectively. Then
. N C'y;"
IS @ L7 ]| L7 (@)1 < Oy g [ 701 < o= < @
I L7 O @] < Oy |B(0, ya)o 4y [ losn—inio g

n
C’z/3

”n . ~1
< G(?-I- 1— al) y"l‘“’p' .

On weighlted HP spaces 121

Stmilazly [[[K¥ a2 @[T @)1 <€ (£ y>1 this follows from the
estimate for |o| < 94, if ¥ <1 from that for |#| >,). Hence by addition
HESIZZ > O] (L7 (@] < C {1+ nfp'+1—an) 'y 1 77).
Next

. o (7)Y
I (@, oo < Oy (2D SUP 07

max (th, )l
< Cyollel S0 ) max (2, P (g + 2

80 . . i 8 nmx(rﬁﬂ ’-,‘—51)-;"11;‘
(22) K (2 Moo < Oymin(jz] %, |o| )f;‘,?, Twro
Since ynis Al
d | 1 -1
e[|~ BereT <0
Bitnlp’ _
for > —;‘f]—;_}_—l:ﬁ y =08, 9)¥,

say, which is = C{B,, )y it follows that if |o| > C(8,, p)y then
max (%, ) max (o}, o) o

e s ST e
while i {z} < C(B, »)y then
max ‘(Tﬁa ’ Tﬂl) =
P ——
e
- LBotnin’ LAty )
— max| su T
— max{ s e S0
C{By, P)§°+"[p' Bo—nlp—1_|_ M__—yﬁr”/p‘l .

STH0Gn ol Y - OO, T
Let now A (@) = 1 if |#| < C(B1, )y, = O otherwise and 1 = A;+7..
Then if C(8;,p)y < 1.
(25) ffmin (7%, [/~ Ayl < C (12— B0) ' [C(Be, P)YT P
while if C(f;, p)¥ = 1 this is at most

el )

(26) G[(E—ﬁu)_llogc(ﬂl, ol

¢ [(—Z—— ﬁn)"l"l’ (%— ﬁl)—ly””’“‘“l] ,
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according as B, >n/p, = nfp or < njp. It OB, )y <

i T < n/p (81 p)y < 1.it follows from
MES NP @27 (@)] = M, (say)

< [( C(B,, p)foroiv'

. (4 , Br+nlp’
i o o

(1+0(6:, 2]
X Mmin(]-["ﬂo, I'I—ﬂl)llﬂpl"i— Cy’

yﬁl—n/p] %

l.ln/:n'

| e
" -1

<0 (? ""130) (1+ C(By, p)"Hhi=te (1+ C (B4, p))"”—‘yﬂrﬁo)

Pl

while if ((8;,2)y > 1 then by (26)
% -1 n |\t -1
oG] ) T of[3a) ]

n -1 n ~1
AR
aecorﬁg as By >nlp, = nfp or < alp.
§ proves (b) along with the correspondin, i 3 i

) ‘ ) ~co g estimate for C(y) in
1137rhlsx case. (c) is obtained from, (b) by duality. (a) in case ¢ > 1 is obtained
O_om (b) and (c) by the complex method of interpolation ([4]). In case
h< q§ 1 (a) follows from the Marcinkiewicz interpolation theorem by
?[‘ Ooslﬂng Po, Py Such that p; < p < p, and, e.8 (o, )eSy, (D1, .w)e‘g*l-
fo Aprove (Elz) ohserve Fhat if H(z,t)> 0 is bounded by &(|lz—1)) inste;d
o [¢—1]7" where @ is decreasing and satisfies (13) ie., D(7/2) < OB (7)
then the proof of Lemma 1 shows that h

e 1 sl
:11%) (0} ™ D () (7)™ G,’ s:;}l’) 0 (7)1 0 (o) 16™P B (o) <
ii:zﬁ;ﬁ?ﬁzioi i{ﬂqgaﬁf Olfllpy, o Also if &, (o)) = 07 min(1, y/la|) o]

y < y(7) and P(v, y) < D,(j2)). (d) foll i i
can be shown that (p, »)eS* and ’rg o ir;,plly” @ follows Eromided 1o

(27) w (o) .o‘“”’”'m,in(l, y[0) o (7)~1gu’ < 1y
and
(28)

But

w(t)’r"”’w(a)“la_"/pmin(l, ylo) < 1-yfrnip,

—nfp’ __ —nip’ s ,
(9)e Y =o(oe ™ min (o7, o~ max (o™ | g%)

< o(7)min (v, r=)max (1, g1-n7),

icm
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| This s <o (@T, 0 (0T 61 or o) T 1o Ko (n)T X

w7 gecording as o<1, T<1< o of 72> 1. Thus the left-hand side of
(27) is at most min(1, y/o) fof o<1 and < min(1,y/o) 1™ for ¢ > 1
and (27) follows. (28) follows from (27) by replacing o by ™' and p’ by p.
To prove the last part of the lemma observe that if o and o' are
continuous in [0,1], w(x)r™}, o(r)7?4 for 7>1 and p is defined
by w(e) = sup @(®) then lim w(e) =1. Also by Minkowski’s ine-
j~oi<e @ (0) ert0
quality for integrals WP (-, %) *fllpg < Ifllpg Whenever |l"llpg 18 & morm. Hence
if .

K(z,t) = Plo—t,)o(z)o(d)™, Kl,t) = K@, la—1l)

then
sup {[|[K.(, 070 a0 [log < 1} < w(e)-
It K, — E— K, then K.(z, 1)< Ce 'ye(e+ lo—1)) ™" o(je]) o ([#)) 7", There-
fore by what has already been proved
lim sup {“ TRy 0F @) @l 1fllpe < 1} =Ce ' limy =0
Y0 y—0

and so ’
Hmf:lpsup (e, v) *ﬂlps,w: '“f”pr,w <1< y(e).

If £is made to tend to 0 it follows that
limsup sup {"P(" y) *f”ps,m: ”f“m-,m < 1} <1.
y-—+0

T ¢< oo the continuous functions ¢ of compact support disjoint
from {0} are dense in IZ?. It therefore suffices to prove (21) for such
a function ¢. But then P(-,y)*¢p - uniformly and for |z < 1/2inf{|y]:
yesuppe} = 6, say, P (-, y)*p(@) < Oy 67" *|g|l; while for || > 2sup{jy|:
y esuppe}, P(-, 4) (%) < Oy |2~ [lpll, which implies (21).

LEMMA 4. If M" is defined by

M'f(2) =supe™| [ fe)a|
s | <s
then
(29) ) 1327 flle, o < Ollfllpg, o

provided one of

(a) <paw)fsz’Q<3< oo, (b) (P;UJ)ES%:Q =§ = 9, (e) (p, ®)e8,
g=1,8=o00

holds in the interval (0, 1) and w satisfies (lé).
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; Proof. If e(z) is a positive function on R*
e(@) "y fe(2) e —t) o (o) o (H) < Ce(@) ™"y (e(@) " fo—1)) for |a| =2y

and for |»| < 27 it vanishes unless 18] < 3y, Hence if w*(7) = w(7) for
T3y and = o(3y) for v > 3y then (p, w*)es?, 85 or 8 as the cage may
be. Also

e(@) "z (e(2) " e —1]) o (|2)) o (1) 7 < Oe(m)™ 4 (e(a)™ =) o* ([ o (J2) =

and so the lemma follows from Lemmas 1 and 2 and, the remark pertaining
to to the maximal operator M after the proof of Lemma 1.
Define

Ti@) = {(t, 9): {i—al < by < kn} (Ty(@) = I ().
LEMMA 5. Let F(z,y) = P, y)* f(z) and
F*(@) = sup{|F(t, y)|: (t, 9) eI} (@)}
Then |F*),. . < C(y) (Flpg,a Provided ome of the following conditions is
satisfied .
() (2, ©)e8% g <5< 00, (b) (p, ) €M, g = § = oo,
{c) (?y¢0)€S*yQ=1’3=°°- .
Ifp= mal}((qr %), (Bi— o)) then if (a) holds and ¢ > 0, 0ip<C.(1+
") while if (b) or (c) hald C(y) SOQA+7) (K C(1+1og* ) if gy =a,
=n(p’ fy =B,). T ‘
Proof, It can be assumed without loss of generality that f= 0. Then
B0) - FONSCF@9)  for (t,y)elia)  (soe, g, [29], (3.16)),
> hence ) :
- - @) < Oysup Pz, y)
. . . . Yy . . :
<O[Mf@)+sup [ P, Df=1)at]
: S N E) :
S G[M7f(@)+P(-, n) %f(2)].
Furthermore if, -8y o(7)min(r %, 7=} then for 1 Lr<ogpo(r)r™

=w(r)r e o(o) 0"“0(1/0')"1'“0 > w(o)o% gt Oleagly if in Lem- . o

ma 4 the condition w(r)z™%] is replaced by (o) o7 Ao (r)r e -
o)} by o(7)7? S dw(o)o” for t< o<y the conclusion is the ‘
except that the right-hand side of (29) is multiplied by A. In the préfent
case this yields ||Ar"fl,.. < C(1+9ifl,, .. Together with Lemma, 3
this proves Lemma 5. (sinee yC p),. R

_ The next lenima will be of sighificance in contiection. with Proposi-
tion 3 below. o o Rl -
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LEMMA 6. For y >1

o@x @ IDPC 9) * Fllut+ @™o ()P, ) * Fllos < C) I flhpg,
provided one of (a),...,(d) of Lemma 3 holds, and in case (a) with g=1,
(b), (e)

O < [(nfp'+1— o)y 1 L 11 (nfp’ — ag)~tymamnit 1
) +nfp+1—p) ),
where ’
(1) p) = (aa—n[p") "} loghy, (n/p'— a;) "y '
' according as a; < nfp', = nlp’ or >njp’.
In case (a) (and 0 < g<1) C(y) < C,(y ™™+ L1) for any >0 while
Cly) < Cp(y™ ™7 +-1) in case (d), in particular, if in addition a, < nfp’
(ay < nfp” in case (b) or (d)) then Cly) is bounded.
Proof. To establish case (b), for y > 1, set
K (@, 1) = o@)y(y+le—i) "o (i) y (v ),
Ky, 1) = yy+lz—1) " o (le)) o (1) 4 (y o] Y).
It is sufficient to show that K, K, satisfy (15) or (16) with r =p, g = ¢
= 1. Consider first K¥. Set _
KY(@,1) = K¥(2,7)(1/2y" ), K! — K'—KY
s0 that
KY(z; ) < Gy~ 1minJ¢] =%, |t| )
hence
Y (@, Yoo < Cy™™*“15up min ([t~ 0+ f]—1+m") < gyt
<2y

(it was again assumed that a, > n/p’, ¢f. start of proof of Lemma 3).
As a result : :
[ HEY ILZZ* @) L7 ()] < Oy 17"+,
On the other hand
Kz, ) < Oyt " o@o () <
hence |[K3 (2, )llyre < Og' 1 sup [t~ ""74P < Oy~"/2
t>2y.

and since KY vanishes for |z] >y
NEYIZ= @) (I ()] < C.

Oyl—ﬁl ]t‘—n—l‘{-ﬁl

Let now

By(@,8) = Ey0, )20 ), K@, 1) = K, (@, )12} ||,
K =K, —K.—EK:. \
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Thus
El@,1) < CP(a—1,9), K,(@,1)<0ylo/™(y+ o))" min(lt] =%, #[~)
and s0
[N (0| [Z7 ()] < OL(n/p’ +1—ay) Ty 417
PFinally K (a, ) <yl P1[a|~, so :
MBS (@, ) lpe < Cy | Sup [t|=rP=14P = Oy o~

=i

and || K37 @) [Z7 ()] < C.
Case (e) follows similarly from

Y ILE @) L2 (2)] < O (nfp’ — ag) 1y "7,
E T O I (@)1 < Clnfp+1—B)7,
MELILZ? (1] (L7 (@)] < O (n)p"— a0) y™ P+ Oy(y)
(see (31)) and .
BN @[ [ L7 (2)] < O(n[p+1—8)7".
(2) now follows by inte‘rpo}atibn and (d) is proved sihﬁla;rly.
The following will be needed below. ) )
(32) lo(D A+ 1D Mg < oo i (p, w)eSy.
For

Nl (1) (A 1D a0 (L) ([[117 220 DllpraH 12 (1= D)) < 00
It follows similarly that

(33) o@D A+ < oo i (p,w)e8”.”

Hence if feI??, p, o, g satisfying (a), (b), () or (d) of Lemma 3 then
F@+14)"™" is integrable. Tt follows from, limP( ,¥) =0 by dominated
convergence that hm y P P(yy)*f = 0. By the usual densmy argument
it (p, w)eS? then hmy*lnP( +9) s, = 0.

o >0, o(r)T%), m(r)r"“} imply, 'as is well known, that loge is
(locally) Lipschitzia.n, hence if (p, w)e8* then » must be continuous. In
case (1, w)eS® o™’ is continuous at 0 for in this case a, = 0 hence o'
is increasing.

By means of the preceding 1emma.s, in case w(@) = o(jz|); (p, »)
8" the conclusion of Proposition 1 can be strengtheéned and extended
to ¢ < 1. For the purposes of the following proposition let HZ? denote
the space of harmonie functions F in R4+ satisfying

(34) IFICHE] = ﬂﬂP(l—!-?/) IE (s 9)llog,0 < o0-

icm
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PROPOSITION 2. Suppose FeHZ. If >0 the convergence of F in
I to the boundary value funciion f (quaraniesd by Proposifion 1) is domi-
nated by a funmction f*--[8]p, such that !]f*”]pe »< O(n) ]lF’ﬁ[H”q] provided
one of the following conditions is satisfied:
(8) (p,®)ef8™ 0<g=s< 00, (b) (p’w)58;7q=l:s=‘?°,
() (p,w)eS5l g =8 = oo, (@) (p,w)e8% g =1; 8 = co.
Henes [|[F(-y Y)—fllpg,0 =0 if (a) and q < co. In cases (a), (b), p >1,
(p = 1), (c) and if the constant funciion 1eI7? the mapping

(fy 8) = P=f+dp,
is a topological isomorphism between IZ'@C ({0~ .4 )BC) and HZ. In
case 1¢IP2 it is an isomorphism between L2 (0™ ' A*) and HEL.
- Proof. To prove the first part, by comsideration of F— dp,, if neces-
sary, it is sufficient to consider the case § = 0. Let

F* (2, y1) = sup{IF (¢, 9): (8, y—ya)eTh(a)}, £ = F(, 0).
If ¢ =1 by (32), (33) and the corollary to Pmposition 1 F =Pxf(P*u
if p =1), where ||fllyy, o < HmInf|[F (-, 4)llp, - The first assertion therefore
0

Y
follows from, Lemma 5. If ¢ < 1 (hence case (a)) the remaining hypotheses
are also satisfied for ¢ replaced by 1. Hence by the proof of Proposition 1

Fw,y) = P(,y—y)*F(,y) for 0<y, <y,

80 by Lemma 5
|- ,yx)llpq o < O IFC, 93l o

Also F*1-¥1(-, y,) is decreasing as function of y, hence by the Fatou pro-
perty of the (quasi-) noxm. ||-|i,, .

IF* < C(ﬂ)liminfillf’(', Y)lpg, -

(I {f.} is a sequence of measurable funetlons such that f,4 f and ; denobes
the distribution funetion of f it follows that 4, 14, hence fyt f*. Hence
by Fatou’s lemma ||fll,, = ].un [fullpg)- In case p > 1, ¢ = 8.<< oo it follows

from, dominated convergence tha,t [F(-, ¥)—f)o]™ - 0 and hence again
by dominated convergence h.m 1B (-5 9)—fllpg,« = 0. The assertion con-

cerning the topological 1somorph1sm now follows from Proposition 1 and
Lemma 3.

Rematk. The existence of boundary values F(-,0) can also be
deduced from Calderén’s theotem ([3]) which asserts the equivalence of
non-tangential boundedness and convergence of harmonic functions a.e.
(Still, the proof of this theorem in [3] requires the weak eompa.cmess of
bounded subsets of the dual of a Banach space.) For in any case f*< co a.e.
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3. Harmonic majorization. This section is devoted to the proof of
the following proposition and corollary.

ProrposrTIioN 3. Suppose U is a non-negative subharmonic fumction
in RYY. Then U has a harmonic majorant iff

(35) sup 1T, 9) (141" = My < oo
0-<p<1
and
(36) sup (y‘"‘l f Uz, y)de+ f U(W,y)w!“”"dm) — M, < co.

1<y<ca lel<y >y

In this case the weak limit of U(-,y) as y — 0 ewists in (14 ||)" 2’ (R")
and if this limit is denoted u

(37) B | (+y ) (L )™ = L+ ).

Furthermore y~"! f Uz, y)dz converges as y — co and if the limdt s

l2i<y
written as (w,[n)6 the least harmonic majorant of U is given by

(38) Prput+opy,  (le@+D"< OM,, 18] < CM,).
CoroLLARY. Suppose U =0 is subharmonic in R and such that
(39) Sup ”U('!'y)”pq,m = -M0< OO;
0<y<1

(10) sup (@@ D TC Plg+ Iz @) TC, Wlhg o) = My <oo,

I<y<ca

wherep, ¢, o satisfy (a), (b), (c) or (d) of Lemma 3 then lim y—"—* [ Ulz,y)de
=00 lzi<y

Ka
= (w,[n) 8 ewists, <OM, and the least harmonic majorant is P p- 8p,
where p is the weak limit of U(:,4) in L* (o~ " (R™). Moreover

{41) elbg,e = Bm [T (-, Y)llpg, o
y->0

provided (a) with q< oo or (b) 18 satisfied or (¢’) q = oo, (p, w)eS7t in
[1, o) and o is continuous in [0,1], @(0) 3£ 0, co. Also U(-, Y) converges
to the absolutely continuous part U (-, y) of u a.e. as y — 0.

. The proof requires a few lemmas all of which are well known, for

= 1 and subharmonic functions vanishing on the boundary line y =0
(see [13] p. 112, [32] pp. 188194, pp. 149-153 and also [7] pp. 1~9)

For gef} = §*"n Ry let 6, o' be defined by

o= (o'cos 8, sin), '8, 0< <2

and define

(49) C om(U,r) = [ U(ro)sinodo.
o

icm
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For the sake of completeness a proof c;f the following known result (see
Theorem. 2 of [9]) will be given.

LEMMA 7. Suppose U is subharmonic in the domain
B(ry, ra) = {(®,9): ri< |o*+-y* <13, 9 >0}

upper semi-continuous in its closure and vanishes for y = 0. Then r~"m( U;r)
18 & conven function of v in [ry, ro]. If r; = 0 then v m(U; r) is increas-
ing.

Proof. Suppose a function h is harmonie in R(r,, r,) and continuous
in its closure and vanishes when ¥ = 0, then there are constants Coy C1
such that

m(h; r) = eor " eyr.

For since y =rsinf is harmonic, if ;< 73 < 7, <C 7y, then by Green's
formula

| |7 (ro)sin 6— (9h(r5) for) rsin 0)]rdolizrs

5L

=[] |r=,9) dy—(dh(x, y)yldzdy.
3z v)isrg
In other words r™ (m(h;r)—rdm{h;r)/dr) equals a constant (n41)ec,,
say, or '
(ddr) (rrm(h; 7)) = —co(n+1)r—n"2

hence #~'m(h; r) = ¢gr " '4-¢,. By continuity this last result holds for
i< r <7, To deduce convexity of m(U;r) with respect to the family
of functions egr™"-¢,7, ¢y, ¢;¢R, observe that for r,,r, as above there
is a sequence of continuous functions {p,} on the boundary AR(ry,r,)
of R(rs, r,) vanishing for y = 0 which tends decreasingly to U. For let
{zi} be a decreasing sequence of continuous funetions tending to U on
OR(rs, r,) (which exists by upper semi-continuity of U), v a continuous
function > U on OR(ry,7,) and vanishing on [—7r,, —73] and [ry,r,]
and let ¥ be the solution of the Dirichlet problem in R(r,, r,) with bound-
ary values y, then ¢, = min (g, ¥) is a possible choice for ¢,. Appli-
cation of the result for harmonic functions to the solutions of the Dirichlet
problem @, say, for the boundary values ¢, again the maximum prineiple
for subharmonic funections applied to U— @, and passage to the limit
as k— oo finish the proof of the first part of the lemma.

Also if r, = 0 then by upper semi-continuity of U r~'m(U;7) = o(r™")
a8 70, ie., r7'm(U;7) = o(r~")"*™), hence since r~'m(U;r) is
convex as a funetion of ™1, #~m (U ; r) is bounded near 0 and decreasing
as a function of +~™1 ie., r*m(U;r) is increasing.
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Let z = (w,y), w = (t,v) denote points in E"X R, = RB%*. The
Green’s function for R%*' may then be written

Gz, 1) = [(n—1) o, 1,17 (lo—w| " — Je— 1| ),
where w = (t, —2).
LeuwA 8. Let m = m(G(-, w); ) where @ is the Green’s fumction for
the half space B%, Then . :
(43)  r'm(r) = (n+1) ol or = (n41) eyt
according as r < [w| or > |w|.
If Ulm,y) = P(, y)*u(x), where pe(1+ ||\t 4" then

@8 rTm(Tsn) = k)7 (0 g+ [ ).
It

[E|>r
Consequently Lm r~'m(U;r) =0 and for p>=0 v m(U;4) is decreasing
700
and a concave function of r~"1. (The last statement is well known to be
true, see [8]).
Proof. Let u be a continuous function on the boundary of
Bl ={fz =(z,9): lel<1,y >0}

and vanish for y = 0. By the reflection principle and the Poisson integral
formula for a sphere the function harmonie in B%*, continuous in the
closure cl(BY™) of By and equal to u on 8B equals

45) [ E(z, 0)u(o)do, where K(z, o) = o7l (1— |2]?) x
sm
X(Io— 27 e o — 2]“”’"1)
and Z = (#, —y). It follows that
(46) (0/6y)K(0) = 2(n+1) oyl r~'m(h; r)

for any function 4 harmonic in 7B’ continuous in its closure and vanishing
for y = 0. Hence for r< |w}

20570 [w]" = (0/09)G (0, w) = 2(n+1) oty m(k; r),
i.e., (43) holds for » < |w|. Since if 2’ = B
le—w|> Clw]|e'—w'| for l2| = |w]|/2

and jo'—w’|~"* i5 integrable over 8" it follows from dominated conver-
gence that m is a continuous function of r even at lwl. For r > 2 [w], say,
m(r) < Cr~"|w|, hence by Lemma 7 rim(r) = O,r "' and (43) now
follows by continuity. Also

Plo—t,y) = (0/00)G (=, W)|pmo
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and for r = tt], say,
P(ro’ cos 0—1, rsin §)sin b < O, i7" (Jo" cos 8— 1’|+ sin ) ™ sin2 §
< O, [t ™[0’ cos 8— /|71,

Hence if m, = m(P( —1,); -), by dominated convergence differentiation
of (43) yields

(A7) rlmy(r) = (n+ )7 B e Y,

This latter function is easily seen to be & concave function of »~"! and

(n+1) 0 e > .

. @ decreasing function of r, hence so0 is fm,u(ds) for u> 0. (44) follows

from (47) by Fubini’s theorem. Obviously
lim [ =" u(d) =o.

0 S,

On the other hand

lim supr—"! fy(dzg)glim supr—™! f‘y(dt)-}—]im supr "t f u(at)

100 H<r ’ Hi<re rei<r-
=limsupr™t [ u(d) < & [ (14 )" u(d)
-00 Hi<rs s :

for any ¢ >0 and hence Lemma 8 is completely proved.

Levma 9. For @& non-negative function U subharmonic in R and
upper semicontinuous in cl{RY"') (implying locally bounded above) there
evisis & fumetion b harmonic in RY* and continuous in cl(B%™) end af
least equal to U if and only if

[U@,0@+ja) " tdr< oo and limsupr—m(U;r) < oo,
In this case r~'m(U;r) converges, and if the limit is denoted y the least
karmonic majorant is given by P+ U(-, 0)+2(n-+ 1) o, yp,-

Proof. It follows from (45) and the Poisson integral formula for

4 half space that the.solution of the Dirichlet problem for B3+ and contin-
uous boundary values % is given by

(48) [P@—t, p)uma— [ [ P(c'cosb—1,sinb)K(z, oyu(t)dido+
<1 g'_}_ltlél )

+ [E(z 0)u(o)do.
s

Now by the mean value theorem
K(0,2) = o7l (1— |} 2(n41) (sin 6)y&— 32,
where £ is between |Jo— Z|? and |o—2{? hence -

(1—lel)? < E (1422
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As a result
S .
(49) 2(n+1owy;, Arey™ ysinf < K (2, o)
R o
<2(n+ )wn+1W5951n .

It follows from (48), (49) and Lemma 8, (44) that the least harmonic
majorant k. of U in 7B" satisfies

YU, 0) _
SR =
I—fef2frr 1—lz2fr2 | i
e [oe, Odty+ (n-+1) s 1 m (T )y
yU(¢0)
‘< n+1 2 hr < (N1, -
((AJ - / ) (z) il (lm_t[z_{_yz)( +1)/2
1____ w12 [ 1___ 2[p2
— M(1+ILT}T4:+E r‘"*lfU(t, 0)dty + (n-+ 1)“(1_ ]’:jrl;ﬂ im(Usr)y.

Also it is well known that the kernel for solving the Dirichlet problem is
positive. It follows from the first inequality that if U has a harmonic
majorant A’ then

[ U, 0) @+ 1)~ 28 < (w,,,/2)%' (0, 1)
lt)<a B

for any @ > 0, hence
[T, 0) @1 2t < (0, 2y 1 (0, 1)

and more directly that »'m(U;r) is bounded for #— co. On the other
hand if the two conditions of the lemma are satisfied then it follows from,
the second inequality of (50) that the family {%,} of harmonic functions

which increase with 7 is locally bounded hence convergent to the least
harmonic majorant k. (50) then implies

2(n+1) m(U;r
2ntd) yhmsup“(;) <h(w, y)—P(,y)* U(-, 0)
WDy py 7200 r
<2OHD) i g T
W43 r->00

It follows that r'm(T;r) converges to y, say, and

ke, y) =P, y)* U(-, 0) (@) +2(n+1) o3, 9y
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LeMMA 10. Suppose U = Ggis subharmonic in R%*', then U has a har-
monic majoramt in R if and only if

700

limsup| U(,y) A+ )™ =M <oo and limsapr—m(T;r)< co.
y->00

In this case the weak limit u, say, of U(-, y) as y ~> 0 exisls in (}-{- Blisa¥ 4
and the least harmonic majorant is given by P u-+2(n-- l)w;_;_-1 YPas whe;rj
y = limr~*m(U; 7). In particular any positive harmonic fumction in B
has ;;:fof'm Pxptepyy, =0, ¢ 0. (The last assertion is well known,
see [8]). . -~

Proof. That the conditions are sufficient follows tron.a a modifi-
cation of the second inequality of (50) applied to the function U,(z, y)
= Ulw, y—i—ﬂ):
(B1)  (0p42/2) U, g+ )
1= Lo E (e (g0,
< e M, (M) Y — s | U, n)
<O Gy T O G T

+ [T @)+ PC, ) U (@),
)t;$f .

where z = (,y) and m, = m(U,, ). It will be shown first of all that
limm,(r) = m(r) = my,(r).
70

- [U(ro’ cos 8, rsin 4 ) do’

<O@sing)™  [[[  Ulro'cosf+1, rsind 44 n)dtdodo’
12+ 1o12<r2sim2e
2rsing ,
< C(rsing)™* | f U, v+7) f do’ dido.
0 jij<2r |E—rc’cosB|<raind
There is 2 constant ¢ such that for any aeR"
(52) [ a0 < Cmin(e*, 1)
o' —al<b

hence
[T(ro’ cos 8, rsinf+7)do’ < Cr= (1 +r)~"+ M (sin )~

(for 5, 8 sufficiently small depending on 7). Hence by dominated conver-
gence applied to the integral

nf2 .

[ [ U(ro’cos 8, rsin g+ ) do’ (cos 6)*~*sin oo

0 gn—1

it follows that limm, (r) = m(r).
70
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By considering also a lower bound fgr the least harmonic majorant
in (0, )4+ rBY"" similar to that of (50) the existence of Ums~"m(T; »)

700
can be deduced similarly as in the proof of Lemma 9. A somewhat different
argument which gives more information about the function m(Ujr)
runs as follows. Assuming first of all that U is: continuouns in R et
U, = U9+ U® where

U, y) = Uy(@,9)—P(,9)* U(, ) (x).
Also set m) = m(UP; ) for i =1, 2. By weak, compactness of the seb
of meagures {U (2, n)dw}oeye, in (1+ [-|)" 24" (R™) there is a sequence
7z —>0 and a measwre p*e(l+|)"FL#Y(R™) such that U(-, ) = p*

weakly as k — oo.
Let

= ptol™e,,  pe (R
(it will be seen that¢ = 0) '
Hence
Lmr=md (r) = (n+1)7 (7 [ pia+ [ (@ + o) = rim®(r),
ke = H>r

say, so mi) converges to m—m® = m®, say, as n—0 through the sequence
{n} Since lim r'm®(r) = ¢f(n+1) and lim supr~im(r) > oo, hence
=00

00
Lim suprm®(r) < co and since by Lemma 7 rim{)(r) is increasing
r—00

and a convex function of ! go is r~im® (r).

Hence, in particular,
Hm r~mf(r) exists and so does lLim r~ m(r) = y.
r—=00

00

If U is not necessarily continuous let @ be the characteristic function
of a bounded set in’ cl(R%*!) of measure 1 and define 2:(2) = e @ (s %)
then ¢, * U is continwous and subharmonic in B3 and

‘;’,#U——>—U . as >0

boundedly on compact subsefs of R%. It follows as in the proof of (37)
to be given below that

LT ¢ y+m)— U, )] @+ [, 0.

Furthermore it follows from the continuity  of the translation, operator
in ' and ) e

[(l+l~’0~tl)"‘“l~(1+le)‘“‘lKC'(l+lwl)‘“"2{il’ o<t
that :

WUC—8y+m)—TC, I A+ D™ >0 as () —0.

icm°®
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Hence Px((p,* U) (-, 7)) => P*U(-, ) boundedly on bounded subsets of
R for 5 > 0. -

im0, () =1 m(@x U, ) —P*lg.* U) (-, 1)1 7)
is increasing and also a convex function of "', moreover m{) -+ m{»
hence r“mﬁ}) {r) shares these properties Now the argument is the same

as before. .
H 5; -0 and then » — oo in (51) it follows: that

Ulw,y) < P, 9)*p(@)+ (2]ony,) (0+1)y+o)y

and, in fact, since the right-hand side is the (increasing) limit of a sequence
of least harmonic majorants it is the least harmonic majorant. It follows
nowuﬁ'om the last part of Lemma 3 that

lim sup T (-, ) (L4 D" HI< a2+ D7)

and since

—=n—1 it P S 14yt
le(@+10) _1]+e<h%ﬁ}iU( ) L+ 1D

¢ must be zero. u is unique since if x4’ is any weak limit t;‘hen Px(u— ;-e’) = 0
by the minimum property of u, y’, hence since p— ,ut is the weak limit of
P(-, y)+(u—p') a8 y — 0, u’ equals x and so U(-, y) is weakly convergent
= 0.
® yConversely suppose U has a harmonie majorant . By Lemma 8 the
least harmonic majorant of U, in B is PxU(-, )+ {2+ 1)/ 0} 7,9,
where y, = lim r~'m, (r). It follows that
~»00

lim sup ([T (-, 7) (L+ 1)~ +2 (n 4 1) 0rtyy,) < 3O, 1)

hence
Lim sup(JU (-, m) A+ "< oo and hIﬂn_jupy,,< co.
7-»0 .
If {n,} denotes a sequence such that 9, — 0 and U(:, )~ p*e(ll-]— 1-1)(:)“11
(R™) weakly and u* = u+0en, me(L+[|)"H s’ (R") and m®, m® are
as before it follows from m{ (r) > 0 that

lim inty, > Emr—tm® (T, ;1) = r"'m®(r)
70 koo

hence .
lim suprtm(U; r) = lim supr™m®(r)+ ¢ <lim 1°nfy,,+c < oo
=0 n—rd o

r—>00

(in fact ¢ = 0, and y, =  as follows from Proposition 3).

#
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Leaea 11 Suppose U= 0 is subharmonic in R and has a harmonic
majorant. Let h be its least harmonic majorant and v the measure given by
the Riesz decomposition theorem (see, e.g., [19] p. 132), then

U(2) = h(z)— fG(z,w)'v(dw).
RAEL
+
In particular
f ov(dw) < oc, f vlw| ™" v (dw) < co (w = (1, v)) for any & >0.
lwj<e Jw|>e

Also
(33)  rim(U;7) = (0p417/2)+ (n+1)""x

(= [utdn+ [ ud =t [ () — J ot (aw)).

tisr [i>r [w)<r [wi>»

Proof. For a >0 let G, (2, w) denote the Green’s function for aB%*!,

ie.,
Ga(za w) = [(n_l)wn-‘l—l]_lx . ) .
X Uz_w]—n-f—l__ ]z_wl—n+1_ a1 'w‘~zz+1(lzb_ww:‘—n+l_ lz_w:rn-!-l)J]

where w; = a®lw| 2w, for % >1. The ecase 1 — 1 is similar (see [32]).
Clearly lim @, (2, w) = G(2; w). Also it is well known that G,(z, w) is an

a—»oa

inereasing function of a. Now

U(t, n)dt

V=0

U(ac)do-- f%%‘i (2 (t,0))

lt<a

. oG .

U = = [0, v0)

— fGa(z,w—(O, 7)) v (dw).
vy

By Lemma 9 the first two integrals in the last equation tend to the least
harmonic majorant %, of U, in R+ It follows that

J ez, 0—(0, n)»(dw) = R, (e)— U, (2).

>0
Again since the Green’s function @ 'p 0f & domain D increases as D expands
it follows from the monotone convergence theorem that

[ Gz, wys(dw) = h(z)— U(z).
R'_ﬁ'l

Proof of Proposition 3. (85), (36) are necessary by the last part
of Lemma 10 and Lemmas 3 and 6 since (1, L+ )" eST, with
o =0, =0, 8,<ny, f; =n+1. :
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Let now (35), (36) be satisfied. To prove that U has a harmonic
majorant it suffices to show that lim supr~'m(U; 1) < co. But

rim(U;r) = [’ f U(ro'cos 6, rsinB)sin feos™ 6 do” df.
[ Sn—1
Also
Ult,v)didp.

- z R ad §
' cos 8,rsin 0) < C(rsinf)
U (ro’ cos B, ) < O( ra'o08 0%+ o —riin B <(rsint)2ls

Hence
3r/2

(U5 < Cr'”‘zf Ui, ») f X

o H<srl2 (20)/(3r)<sin o< (20)ir

X (sin 6)"*(cos #)* ! f do’ d9didy
J6’—t{rcos8)<gin d/(2cos )
since ; ‘
lp—rsin 6] < (rsin6)/2  implies »/(37) < (sin0)/2 < ojr.

So by (52)

3rj2 . f (si 0);,,' %
1 L) < Op? T, v) sin
[ m( U, T ) = _'f " gi( - 3 ol

x min((sin /(2 cos 0))*~,1)cos" " 0df dtdw
3r2
<o [ T, 0)- f 671dbdtdv
0 <3(ar) {2)(3r)<<sin 6=<20jr
32
<ot [ U@, v)dtd

0 jti<arf2
3rf2

<Crn? 1 [ v, vatav+orm=f ([ U @+
7 S 1 e .
) + f U(t,a;)dt) dv
o<|t<arf2
3rf2

<CMp 40 f (@'""1 [ U, vd+

1 <o
+ [ oa, v)itr"-ldt)dau < OMyr'+CM,.
ti=v

Define
w(U; 9) =?!—"f U(@,y)da.

lzl<y
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I h =Pxu+dp, is the least harmonic majorant of U it follows from
Lemma 6 that y~'n(Pxu;y) 0 as y — oo (since this holds for the mea-
sures of compact support, which form a dense subset of (14 |-|)" Lz (R™
in the weak topology). Also #(pe;y) = ( w,/n)y. It therefore remaing
to show that ¥~'n(g; y) - 0 where
9e) = [ Gz, w)r(dw)
R’_"*_"'l
(see Lemma 11). This will follow from
Leyvuma 12. Let 2z = (2, y), w = (, v) then

(54) yrt fG(z,w)dw< Colw|™"?
lzi<y

and also < Opy="1,

For then by Fubini’s theorem
v [ @< oyt [ wi@w)+0 [ vl s(@w) o
ey lwi<y/2 [wi>y/2

as ¢ - oo
as follows from Lemma 11.

Proof of Lemma 12. Gz, w) <
= 2y then
K

[ @, wyde <

Oyvlz—w|™™"* hence if y > 2v, [t

y™ [ wyli—a| ™" e < Oolt" < Co o],
lz|<y
It y > 2, |t < 29, then

f Gz, w
lz<y
If lw|/3 <y < 2v then
v [ @ w) <0yt [ le— i < 0y < O f] =71,
lzi<y lzl<y -
< |w|/3 then o]

< Coy~2 f dr < Ofvy‘"‘1< Cvjw|™"1,
Jxi<y

y implies [¢| < 2y < 2 |w|/3 hence le—w| =

v [ G, w)de < Cvyn jw| 1 [ o < Ovjw| ™2,
lzi<y

w/[3 and

lzi<y

P . .
o y>rolof of the corollary. By ( (32), (38) (39) implies (35) and similarly

v [ U, y)aet | U@, y)lal ™ do
lz<y lzl>y
< O DT WlgHa G = ol gy ) T 3 Wb,
< Co () o @)y ™2y (g~ [) U (-, 9) ||, +
AW P g W T 9) g, ]
S Co@T P @)@ D T 9l It 1) T(-, 9)lg, o]

icm°®
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So by Proposition 3 there are u, é such that (38) holds. For ¢ > 1 a weak
limit w', say, exists in IZ?c< (L4 |-)*".#'(R™ hence by uniqueness
u = u' eIl (Since o M (R™) c (1+|-["#'(B™) and since by Prop-
osition 3 the weak limit of U(-, ) in (14 )" A" (R")isin (L4 ]-|)** X
X A" (R") i.e., a measure on R"s0 must be the weak limit of U(-,y) in
o~ (R™). Hence if p =1 pew L#*(R™. Now by Proposition 4
below there is a well known conformal mapping I of RY*' onto B**' =
{eB™': |7| <1} such that it U is a snbharmonic function in R2+
satisfying (35) then If defined by

IE (£) = 2" |Z4 (0, LT F(I7Y)

is subharmonic in B™*! and has a harmonic majorant there. Now by
Littlewood’s theorem on subharmonie funetions in a disk ([20]) extended
to subharmonie functions in a ball in B* by Privalov in [24] (see also [26])
and since by & similar proof Littlewood’s theorem holds for approach
along the images of the straight lines perpendicular to y = 0 under the
mapping I it follows that hm Uz, y) = U(x, 0) a.e., where U(-,0) is

the absolutely continuous pamt of u. Thus by dominated convergence
in case (a) and g¢<C oo it follows that |U(-, ¥)— U(-) 0)llyg, 0. If (b) or
(¢') (also if (a), ¢ > 1) holds (41), and, in particular (37) follows from the
last part of Lemma 3 and weak convergence:

1im sup [T (-, 9) g0 \hmsﬂpfﬂ’( s ¥)* illpg, 0 < 8llpg,0 < BIIDE | T (-5 ) llpg, o«
>0 y—>0
< oo or (b} with » > 1 holds, then

U(5 0)lpg,0 =0

Rem_arks. If (a), g
(85) m (T(, 9)—
y—>0

In the first case this has just been shown. In the latter case for any
e >0 there is a compaet set K < RB* ~ {0} such that U(-,y)— U(-, 0)
uniformly in K and if y_z denotes the characteristic function of the
complement ~ XK of K then [f.x U(, 0 {lpy,o < & hence if u(dx) = f(z)d»
then (if without loss of generality, é = 0)

1T, )t lbgo< IXaxP (3 ¥) *flpgm
K tarP (5 ) * Alpg, ol Forlloo F l2m P L5 ) (fo)llm,m-
Let N (K, o) denote the g-neighborhood of K, i.e., N(K, g) = {z: mf le—

—y| < o} and leb y, denote the ehaaa,ctemstw function of N (K, g ~K
then P (-, ) *yz < 1 and for ¢ N(K, ¢)

P(-, y) % (@) < Ox,oy L+ le) ™"
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Hence
limsuup Mt P (3 9)* g0 < ngllm,w-i—limﬁupy(/’x,gH(I H D™ ngw
Y v

_ = llxtellog,
which tends to 0 as g — 0, hence

Emsupllz g P(:; ¥) * 1xllpge = 0~
y=->0
It follows that
Hmsup [T (', 9) toclhg,o < 2z P (- 9)* (f2es)lgo < G (by Lemma 3).

By uniform convergence in K|y [U(-,y)— U(-, 0)1llpy,» — 0, hence alto-

gether
IH%SEP ”U('7 y) - ( ”pq ) ”U 0)Z~K”pq,w +11msuP”U(: y)XNK“pq,m
- . Yy=0

< (041)e.

Since & is arbitrary (55) follows. In case 1< p, ¢ < oo (35) can be proved
without use of Littlewood's theorem. For in this case I igs uniformly
convex (see [11]) and hence weak convergence and (41) imply (55)
(see, e.g., [10] p.141). Also in casep =1 (and (b)) if x is absolutely contin-
uous by the same proof as before

10C, 9) =T, 0. —0.

The proof of Proposition 3 contained the following criterion: a non-
negative subharmonic function U in R®** has a harmonic majorant if
and only if (35) i¢ satisfied and

sup "2 ff Uz, y)dwdy< 0.
=l 2
L )
Hence

sup 7=t f Ty 9)log,w @ lxzngmllprg,e-1 < oo

and so
S'llp ”U( 1 :’/)”pg o ern+1lle"(n,r)[J1:';',m‘1

a.long with (4), (5) (for y < 1) are sufficient. In particular -
Sup IU(:; 9)llpg,0 < oo and
o<yl

UGy Y)llpg, o< May™1-Pmnl! — B ynloti=h gor 4>,
where 9, g, o satisty (a), (b), (¢), or (d) are sufficient.
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4. H” spaces. As in [29] let now P(2,9) = (u(z, ), 9,(,1),...

.-y 0,(@, 9)) be an (n+1)-buple of conjugate harmonic fanctions in R%H
(the same methods apply to higher gradients, see [5]). Define

17 (@, 9) = (lui@, )+ ) los(@, ).

" Attention will be restricted to the case » > 1. If m =1 it is clear that

the role of (n—1)/n may be played by any real number in the interval
(0,1).

PROPOSITION A. Suppose 729 f(n—1), o ngl(n—1), ns/(n—1)
satisfy (a), (b). (¢) or (d) of Lemma 3 and ) ‘

SHP{II" *s Plog,w -I- sup [ @ FDFC e+ G EC 9,0l

<y
S M<oo
or

(56) T () 9llpg,0 < M (L4 g)r/orO-Pinin=n,
Then F has non-tangential boundary values F (-, 0)eLE? a.e. In case (a) if
y @< oo F converges also in LEI. If F* is defined as in Lemma 5 stariing
from F then
) W"”ﬁm < Oy,
where C {5) can be found from Lemma 5. If
8 = njo, hmy » [P, y)[‘““”"dv

i<y
then in all cases emcept when p = (n—1)/n
(87) [F(z, y)|* 0 S P(, y)* | F (-, )|V (2) 4 by

Proof. By the result of Stein and Weiss in [29] |F|™~!/ is subharmon-
ic. It follows from the askumptions that |F|"-D/» gatisfies the hypotheses
of Proposition 3. Hence there exists ueL{np/(n—1), ngj(n—1), o™ ") x
X (pew™ ™ g1(R™) such that

|7 (@, )| < Py y)* p(@) 4 by
hence by Lemma 5 F iz non-tangentially bounded a.e. at the boundary
y =0 and hence by Calderén’s theorem non-tangential boundary va.lu_es
exist a.e. If p > (n—1)/n then u is absolutely continunous with respect
to Lebesgue measure and so u(ds) = [F(z, 0)|"V"ds. It (56) is satisfied
the assertions follow from the last remaxrk of Section 3.
In the special case w(|z]) = |o|® it follows from (9) that
0 < 6 << ¢ lim yolr-Din—tr-1liz—1 _ ¢,
Y0

Hence Proposition A with condition (56) yields the following
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COROLLARY. Suppose FcHY (i.e. supllF (-, §)lpa = | FI[HY < o)
and one of =0

(382) (n—1)[n<p<oo, —mfp<a<n(n/(n—1)—1/p), 0<g=s<o0,

(38b) (m—1)n<p<oo, a=—nfporp=nco, 0<a< n?f(n—1)

and g =8 = oo,

(38c) —1)n<p<oo, a=mnln/(n—1)—1/p)or p = (n—1)/n,
—n<e<n/(n—1), ¢ =n—1)/n, s = co,

then F has. non-tangentiol boundary wvalues F(-,0)eL?? g.e. Moreover .if
F'(@) = sup{|F(t, 9)l: (,9)elp(@)}  then |\F*,, . < O|F|[H].

If p > (n—1)/n then i

(59) B (2, )| Py ) # | F (-, 0)0-DIn (),

Remark. As for Theorem C of [29] asserting convexity of the function
y—>F(, P& it FeH?, p> (n—1)/n it is clear that the same proof
works for H™ whenever |||« is a norm for p* = np [(n—1), g* =ng/’
[tln—1), ie., p > (n—1)/n, ¢ = (n—1)/n or p = ¢ = (n—1)/n. The well
known fact that if u(s', #”) = u(sy, ..., @y, Bypy1y evey By) = 0(@yy ..., 1)
= 0(¢)  is subharmonic in Dx R*™™, wheré D is open in R™, it and
only v is subharmonic in D can also be proved as follows. Since upper
semi-continuity of « is equivalent to upper semi-continuity of v # is sub-
harmonic if and only if in addition for all 2D and r sufficiently small

(7, 0) f aw < f w(z)de or
le—(zg,0))<r lz—(zh,0)l<r
,u(m;) - f f dw”dm’< f v(afl) f do' dw’.
-ty e Pr g AR la|<r? ~ o'~ g 2

Hence if ¢(¢) = (1+#2)"~™" thiy condition can be written

I ele—aimar < [ o@)p(le’ —a) )i

Izl o —afcr

v(2p)

which (under the assumption of upper semi-continuity) is equivalent to
subharmonicity of v (see, e.g., [16] p. 17).

Tt appears sufficient to restrict attention to the weights |o|* from
now on. .

ProPOSITION B. Supposs FeHZM, F(-,0)eL2% where p,, ¢y, a; ond
Pa; s a» satisfy (58) and in addition p, > (n—1)/n then FeHp%.

This follows from (59) and Lemma 3. . ’
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Theorem X of [29] asserts that if # is a finite measure such that each
of its M. Riesz transforms », = R, u is also a finite measure then all the
MeASUTes L, vy, «.., ¥, are absolutely continuous with respect to Lebesgue
measure. As usual let & denote the space of C™-functions of compact
support in E". For any set B 2(E) will denote the subspace of functions
of 2 whose support is contained in B. 2 is provided with the usual inductive
limit topology. The (vector-valued) Riesz transform of peZ is defined by

:

, . _ s—1
Bo(o) = Im o7 [ T gt

lz—ti>=

It is well known that RpeC®. For a measure & such that
(60) L+ ull < oo

its Riesz transform in the distribution sense R is defined by

(61) (Bp, ¢) = —(u, Bp),
where ¢ is any element of 2.

It will be convenient to define two function spaces 4,, A;. Let 4,
denote the space of continuous functions ¢ such that jip||[4,] = sup(1+
+ [#])*lp(@)] < oo and let 4, denete the space of continuousty differen-
tiable funetions ¢ such that -

liph[41] = ligl+ sup {1+ le))" " [(8/0z)p(@)]: 1< i< n,meR"} < 00
and such that
max (1+[a])**!|(0/0z;)(x)] >0 as
I<i<n

The latter condition implies that @ is dense in 4,.

— )t
1R¢(w)1=a]p.v. %}dz!

<C [ ple—t—p@H@#+C [ lplo—b)|jat
=<lz|/2 ) Hi=ixif2

<0 max |gradg(w)] [ [("@+Clal gl
[r—ul<zl 2 H<izif2

h’] =T X ] -n
< O(W +lol ) IIL4.] < CllgliT AL lol—".
Algo

[Bep ()] <C f lp (2 —8)— g ()| [§| ™+ Cllgll, < Cligli [44]
<1
thus |Rp(@)] < Ollp] [4,](1+ o)™ or [Bpl[4,] < Clip|[A,] hence Ru def-
ined by (61) is a distribution and can be extended continuonmsly to A4,
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so that (61) is v&hd for any ped;. If ¢ =P(-,y)e Ay, then Rp = Q(-, y) X
X(Q(z, y)= ¢; @ (y*+ |z") V", the conjugate Poisson kernel). Hence if

Ry is again a meagure v = (1, ..., ,) such that [»(14|[)7" << co then
by continuity
(62) : P(yy)xy =Q(,y)*u

BCm*v@ =P, Pla—-,9), QU 9)*u@) = (u, Q@—-, ).

Let (61) be satisfied and let the restriction of Ry in the distribution
sense to an open set £ be a measure ». Let K be a compact subset of
0, peZ(Q) and such that y = 1 on K. Then for 92 (K)

(R(yp), ¢) = —(yu, Bg) = —(u, pRy)
— 4y B(yg))+ (1, B(yg)) —yRy
= (v, vo)-+ {, B(yp)—pRg).
Also .
(4, R(yp)—9Ry) = C [ [ [p(@—1)—p(@)]p(@—1) |t~ tdtu (do)
=0(—7,9),
where
(@) = [ [p(@)— p@)]le—u~" (@—u) u(du) e A,
hence
(R(“P'u'): ‘P) = (pr—y,9).

It is thus apparent that in the case of periodic measures Theorem E
of [29] implies a local version since the function corresponding to 4 will
be in I of the fundamental cure. (For more details on Poisson integrals
and Riesz transforms of periodic functions and measures see [31].)

In the present case, however, y may not be integrable. It would

- be sufficient to establish an extension of Theorem E to finite measures
such that [(14-|-))"“Rul| < co for some « >0, which by the above will
imply & local version: if (60) and the restriction of Eu to the open set 2
iz a measure » then p,» are absolutely continuous in £. The proof of
Theorem E of [29], however also implies that the Riesz transform of uin
the distribution sense.is equal to the Riesz transform in the function
sense a.e. if the former is integrable (which can be proved without the
use of H” spaces for more general singular integrals).

ProPOSITION C. Let u be a measure on B" satisfying (60) such that the
Riesz transform of u in the distribution sense Ry is a measure v — (v vy oee

<y %) Such that |lp(1+| N7 < oo then u and v are absolutely continuous
mth respect to Lebesgue measure and if v(dw) = g(a; dawy’ ,u(da;) = f(x)dz
then g is the Riesz tramsform of f a.e.
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Proof. (P(-, y)*p(w), Q(-, ¥)*u() is an (n+1)-tuple of conjugate
harmonic funetions. By (62)

F(z,y) = (P (5 y) *ui(=), P(, y) *w( .)3))

hence if w(z) = (1+7)™" it follows from Lemma 3 with ay = a; = S,

f, =n that
¢y i« < O ) (ol + pol) Cly) = O(1+1og¥y).

Also by (condition (56) of Proposition A where p, =n—1 (for o™
= (14 ])7"*") the fact that logy = O(y™*~Y) as y— co is sufficient for
the conclusion of Proposition A. So F* ¢TI}, hence the family of functions
{F(,9): 0<y<1} is uniformly integrable (loeally) and so u,» are
absolutely continuous with respeet to Lebesgue measure by the
paragraph of Section 1. If then f, g are defined by u, » as in the statement
of the proposition Q(-, y)*u = Q(-, y)*f tends to g a.e. as y > 0. If R,
denotes the truncated Riesz kernel: R, (z) = ¢;*|z|™ 2 for j#|>y =0
otherwise then (see [35])

(@, 1) — By +f1 < CP(-, 9) *|fl-

By nieans of Lemma b5 it follows as in the L? case that g = Rf a.e.
As in [29] for F<HZE? define the fractional integral of order A of F by

where

(63) LF(@,y) = Fy@,y) = [T [ Fla, y+w)v'du.

LevMA 18. If FeHY, 1>0
(64) (n—1)/n < p < oo,
n(nj(n—1)—1/p),
(66) atnlp—iz=0

(65) —nfp<a<

and al most one of (65), (66) is not sirict and if moreover ¢ = (n—1)/n if
at least one of (64), (65), (66) is not sirict then (63) defines a sysiem of con-
jugate harmonic funciions.

Proof. The condition that at least one of (65), (66) is strict is equiv-
alent to the validity of at most one equality in i< a+n/p<<n?/(n—1),
Le., to

A< n?(n—1).
It follows from (9) applied to |F|®~Y™ that
Y OM (y+u) P (e y+u)twt Tt (M = (B [E2]).

Hence if a4 n/p— A > 0 then (63) is locally uniformly convergent which
proves the assertion in this ease.

|F (2, y+u)lu'~
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T L =atafp let s(@,y) = |F(z, y)|* " Then
(67 [ |F(@, y+wlv' " du

0
L

< sup [F(z, y-+u) u‘!”"f s(@, y+u)uw'e=Dr=1qy
u>0 H

By (9)
SuplF (@, y+u)u*| < OM sup (|o}+y+u) ™ (y-+u)""Pu
w>0 Ce u>0

uSY+(3| Uzl +y

S OMT sup (lo]+9)~*(y+u)""Pu’4 sup u=o—nr+d)
< CH[(fo|+y)™*+y=P 4 (fo] - y)—e—"P+i]

< OM(jo|+y)~=+y~m/2.

f

For 0<pu<nand f>0
[ Prflm, 9)y* Ay = C, 1|55 (w)
1]

(see (6.4) of [29]). Hence
68) [ @ ytwwr Vg o [ 8(@—1t,y) [pnrin=Dingy,
0 : - BN R
The last integral is at most equal to

¢ |

s(@—1, y) [~y
It <e(y+il) ’

O [ (ot g) gt -0 Dingy
1=>2(y+12i) .

Since further for any two functions f, g in L1+ L, [fa<[f*g* where

ag before f*, g* denote the decreasing rearrangements of f, ¢ on (0, oo)
(see [37] IIp. 124) the last sum is at most

O(y+2l)®" sup s(t, )40 [ &, (r) a0 g
: I3y I]) :

where s, denotes the decreasing Tearrangement of s(-, y)|-|*"~ D for
py (64) ()‘.— a) (n—1)/n = (n—1)/p <n and so the above power of |
is decreasing. By (9) again the last sum is
< OMODIn(y - | =D gz ((y 4 [a])—ln—Din, Yol y=tn=hip 4
O, 9Iean,
<C MYn-Din (1+ Je] /y)maxlllﬂ, Afn)(n—1) .
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Thus [ |F(2, ¥+ u)|u**du is locally bounded in R, Since the systems
0 &
of conjugate harmonic functions [ F(z,y-+u)u*'du, k =1, 2,..., tend
0
boundedly to F,(w, y) the latter is a system of conjugate harmonic funec-
tions.
*  Remark. In case at#/p—2i = 0 it is sufficient to require
1/g = max(1,1/p, 1/p+a/n)
in place of 1/g = %/(n—1) and 1< n/g. This follows from consideration
of |F|? in place of ||/,

The fractional integration theorem in weighted norms (see [28])
may be stated as follows. With the notation a* = max(a, 0) suppose (i)
atm<1lp’, (i) pr<nfr, abf20, 0<i<an, Ljr—1jp = (—Aitat
+8)n, 0< g< 8< oo exeept that ¢ = 1, s = oo if equality holds in )
or (ii) then

ML+ % Flle, 5 < €' flhpg, -
This slightly more general version for L™ spaces of the theorem given
in [28] follows from Lemma 1 by the last remark after the proof of that
lemma (here o(t]) = [t{®w,(|2]) = |#|"**°w(jx])). This result ean be
generalized to weighted H” spaces as follows.

ProrosirioN D. Let p = (n—1)/n, 0 < A< 2%/(n—1), a+§> 0,

1jr—1fp = (—A+at+B)n
and

(69) nf/in—1)—1fp>a*fn, 1jrzptn,
0 < g <8 owoept that if equality holds in one of the inequalities of (69) then
q = (n—1)[n, s = oo and if F, is defined by (63) then
WEAIILE™,] < OFITEZ).
Proof. Observe that atn/p =n/r—pf+24> 1 hence (66) holds.
Also (69) implies )
nlr—p< njr—p+24 = at+nfp < nj(n—1),

(7o) nfpta=njr+i—F>njr—p=0.

Also
sup |F (@, y+u)u’[" " = supu =g (2, y4-u)
u>0

u>0

< Osup [wHr-0intls (i, y) (jo— g2+ u?)~ 00 gy

u>0

< C'fg(ti ?l) supul‘"_n/”“(!aa-—t}’-l— %’)—(M'])“zdt. )
u>0 . :
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Moreover

YSHPM}'(W'I)[“'HHQU}Z*}- u2)~(1»+l)12 — Clmll(n—l)/n—n for
u>0

An—1)n<n

hence by (67), (68)
() EE I G s () (@),

Now the assertion follows from the fractional integration theorem . in
weighted norms.

Remarks. If F(w,y) is the Poisson integral of a function feI??
and «, p, q, A satisfy the hypotheses of the fractional integration theorem
in weighted norms then consideration of P x|f| instead of [F|®"~D/" yge of

the fact that P(-, y)*|f|(#) is bounded for a.e. # and interchange of the
order of integration yield

Fi(z,y) = P(, 9)*(Lf)(z)  ae.
Here ILf = i ["*+f, y3 = a"*2*T'(4[2)[I"((n— 2)/2)] .
(71) implies
(FF @) < 0 sup (Ligoayn 8 (-5 9) (3= 0) < O yypl 50D 8(+, —, ¥)) (@)
|vl<ky . vi<ky

or

(72) (T3 @) < O gy [(BH D) ().

Incase 1/r = f*[nbut n/(n—1)—1/p > o™ |n the assertion I,: Hr-1n
—~ H7 can be improved to I,: H??— H™, where ¢ is only required. to
satisfy -

('”'—'1)/‘"'<Q<11 4<p, 0 << A< nfg,
which follows by consideration of |F|2.

In case r = oo it follows from the assumptions that necessarily

1/g—1p= a*/n

q = (n—1)/n (or in the situation of the preceding remark ¢ <1 at any -

rate), hence since the functions in I?¢ of compact support are dense in
LE® it follows from (72) that |@|~" F} (%) - 0 as |#] - co. Also

{#9): @|>R or y> Rfk} = | I(w)
=R

hfance any (#, y) with 4] < R, y > B[k belongs to some I (»,) with |z, > R.
Since also by (69) — f = 0 it follows that

[272 18, (@, y)| < |o, P | Fo (e, W< |ay| PTG ().
Hence if R is allowed to tend to oo it follows that

lim of F (@, 9) = 0.

@l yd
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Proposition D can also be proved by use of the semi-group property
of I, as in [29] (see also [37]). For simplicity, suppose
(78) at < nnjm—1)—1fp), B*<ajr

(taking a™, ¥ in place of a, § amounts to requiring.p > (n—1)/n, r < oo).
Then

I P)lrg, - < [(F Co ) PP (Las (5 o) 172y
< CIF g lL28 (s 9)llpy, gy —5—ers
where 1/p; = 1/r— 1]np, 1/g, = (n—1)/ng. If
(74) 1fr—1fnp > (B+ajn)*jn
the fractional integration theorem in weighted norms yields
1Za8(*s oy, y, i < CI8C s Y Whupitnmry mattn- . cn-viain < CUFILHZIEH.
Let now N be a positive integer and for m =0,1,..., N
1Upm =1ty = A—m[N)p+(m[N)]q; an = —fms
= (1—m[N)a—(m[N)B.

(73), (T4) 0T Py, Tmy Gns B TOQUITS @y < m{n(n—1) —1/p~+ (m[N) (A—
—a—p)/n) or

(75) at < nnf(n—1)—1/p)+ (m/N) i,
(76) (=) < B[Py
(77) 1Pmir—L[(0D3) > (— Gmg1+ am[1)* .
(75) is true for all m >0 by (73). (76) is satisfied by hypothesis for
m = —1 (since (—a)* < n[p, i.e., p< oo and also « > —n/p which is

implied by the present hypotheses) and for m = N—1 (since §* < n/r).
Also as N — oo the terms of (77) for m = 0 tend to —(n—1)/(np) and
(—(n—1)a/n?* respectively while for m = N—1 they tend to (n—1)/
(), (m—1)8%/n? and thus by hypothesis (77) is satisfied for N snﬁ?-
ciently large. Hence it is satistied for m =0,...; N—1 provided N is
sufficiently large. So

IFAHS] = [FA[H < O v puwll (HEY =1 < ... < O FI[H]-

IN—1
By change of the order of integration it follows that (#,), = Fa., provided
both are well defined by virtue of Lemma 13. (It seems that this argument
does not work for all a, 8 with o« = n(nf(n—1)—1/p), B* = njr covered
by Proposition D.) . . )
It has been proved in [29] that if f and its Riesz transforms are inte-
grable then I,f, L R.f, ..., LR, feIM™ A for 0< A< mn. By use of the
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enlarged range for a in the case of H%? spaces it will follow that an analogous
statement holds not only for feIl, —n < a<0 but also for feLg}p,,
This requires an observation about Riesz transforms or more general
singular integrals of functions in ZZ},..

Tt is well known that singular integral operators with bounded kernels
preserve If for 1<p << oo, —nfp<a<nfp' (see [27]). The following
lemma is concerned with the case when ¢ = —n/p or a = nlp’.

Lmyma 14. Suppose K(x) = |o|™Q2(x) is o singular integral Fernel,
1.6, 2(dm) = Q) for 1>0, 2 %0 and Q has mean value zero on S*L,
Also suppose Q is bounded (for simplicity). Let the singular integral operator
p.0.K* be defined a.e. by

poExf(@) = po. [ K@—y)fy)dy = im [ K(w—y)f(y)dy

0t jz—yi>e
< Cpllflln Sfor some p, 1<p << oo. Then also
10K *flye, < Cyllflna for  —nfp<a<nfp'.
Proof. It is sufficient to prove that the kernel
E'(@,1) = jo—1™[1— |a[*[t] |

gives rise to an integral operator which. is bounded from I to IP® (see
[27]). As in the proof of Lemma 1 let

Ki(o, 1) = E'(@, )3 2la|[t)), Ko, 1) = K (2, ) 5(2]a] [f| ),
‘ K, =K —-K,—K,.
Tt is easy to see that Ky, K (in place of K7) satisfy (16) with P =rq=1

§ = oo, Also K, can be estimated as in [27]. In fact a somewhat different
argument for K, might run as follows ‘ -

Ky (2, )] < O~ fp—t™™  for E<t/l2| <2, =0
Hence '

and suppose ||p.v. K xf,,

otherwise.

sup ”K; (=, M <€, sup ”Kzl)(y Hh <.
x 2

.Henga it follows that the integral operator 7'; defined by K, is bounded

in L™ and *Ll, hence by the Riesz interpolation theorem 1T Al < CIF1l

(@80 175 N0 << ISl [lly < 1ll)- ’ ’

Another lemma will be needed to prove the next proposition.

» LEM_&SA 15. Suppose F = ‘(Fo, Fiy .oy F)eHP (0< 8 00), where
o(@Y) =P, y)xfy(3) foel2%if p > 1 while Jo=pel ™A (BY if p =1

and —nfp<a<nlp), 1< p< oo and g=11if a=—nlp or njp’ or

P =1.Then for a > —nlpi=1,...,n : :

Fi(z,y) = @() Y)*fo()
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while if « = —n[p there are constanis C; such thai .
Fi(@,9) = Q:(, y)*fole)+C;.

If § < oo then C; = 0 for all 4.
Proof. Consider

G(@,y) = F(2,9)— (P, 9)*fo(2), Q(-, y) o (@)

which is in HE™ by hypothesis and Lemma 14. @ is the gradient of a har-
monic function u, say, such that (0/0y)u = 0 (since the first component
of G is 0), hence (9/0y)@ = 0 and hence G(z, y) = g(z), where g is harmonic
in R* By (9) if a< n/p’ then |g{z)] < Oy ™P(|z|+-y)™® which tends to
zero as y — oo for a+njp >0 while ¢ is bounded for a+n/p = 0 (set
y = |#|). So ¢ vanishes if a-}-n/p >0 and equals a eonstant ¢ = (Cy, ...
..y 0,) if @ = —nfp. If $< co this constant must be zero. For then
F(-,y) # 0 implies that the decreasing rearrangement of F(-,y)| |
evaluated at v near 0 is at least equal to Cp 77 hence [F(*, 9)lps, —nim
= oo, 80 F(0,y) = 0 for all y >0. Also by dominated convergence

Hm [Q(, 9)*fo(0)] < limG';‘f]fu(t)]]t}(y’—a— i}y a = 0
Y0 y0 )
(foeI?, ;). Thus it follows that ¢ = 0.

In the remaining case a = np’ observe that g is a system of conjugate
harmonie funetions in R%** and by means of (9) applied to g/~ it can

‘be proved as above that g = 0. (Alternatively the hypotheses imply

geI” N I® since g is independent of y hence g being harmonic must
vanish).

ProPOSITION E. Suppose feIZ', Bfelf, p =1, =1, —0<a<0
orl<p<ooa=anlp,0<i<nlfr= 1p+{—Ai+a+p)m, atF >0,
(—njr' <)< nfr then I,f, BI,feL”,.

Proof. Let

F(@,y) = (P(, 9)*f(), Q(-, ¥) xf(2)-

By Lemmas 3 and 14 F<H?™. Since its boundary values (f, Bf) (see the
last part of the proof of Proposition C) belong to IX? F must be in HE? by
Proposition B, hence by proposition D F,<H™;. By the first remark after
Proposition D,

(Fi)ol@,y) = Pl y) ¥ (L) (#)-

Hence by Lemma 15 the boundary values of F, are I,f, RI,f and these
are in I77. ‘
REMARK. If in proposition  p = ¢ = 1 then it can be shown that

(18) P(-, y)*Ef(z) = Q(, ) *f(®)..
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. 1 . o . .
Also L2, = L' continuously since for any measurable function % -

J @) = [ {f@)la (2= ds < 0 [ (FI-1) ()7 dx = O||fl1 0
[ ° ’

(Besides f*(7)7"™" < COsup (f]-[*?")*(z) implies Lﬁ:f;, < I', hence inter-

polation gives L, = L' for 1< ¢ < o). Hence by the same result (78)
holds for any p, 1 <p < co if ¢ = 1. Thus

F(x,y) = (P(',f’/)*f('”)fP(':'lJ)*Rf(m))-
Hence it ¢ = 1 by the first remark” after Proposition D
Fi(m,9) = P(, y)*(Lf, I,Bf).

Thus I,(Rf) = R(I,f). This proves the following
CororLARY. If in Proposition B q =1 then I,f, RI,feL%.

5. Relations to subharmonic functions inside a sphere. The Poisson
kernel for the unit ball B"*! of R™! ig

P 7) = 0 (1= |01) (1—2¢ + v [¢5)~r e,

For the sake of conciseness the following definitiyons analogous to those

* . .
of 87, ete. in Section 2, are made. Let » be a positive function on (0, oo)

such that

(9)  w()AY, »(WA for A< 1,

and define

v(4) A%, v(l)l“*’\],‘for A>1

%
" = {{p,: 1< p < oo, (79) with a=unfp', § = n[p},
T;q' ={(p,»): 1< P < 00, (79) with a< nfp’y p < n/p},
. A
I = {(p,7): 1<p< o0, (79) with a< nip'y f<n/p},
*3
T2 =TI 0T = {(p,9): 1< p < oo, a< nfp', f< n/p}.
Sl'lﬁhﬂy mo‘-re generally, e.g., instead of requiring » ()47 for A< 1 it
;vxc belregl}}red that there is a constant ¢ such that for A<V <L w(A)ae
= Cv(2)2'= Lf)ﬁ LP (quasi-) norms of functions on " beé defined with
resPect to euclidean surface measure on §™ and let 28" = {f: |IfI
= |[f»(tan(¢/2))]| < oo} where now e B

(80) 0 = (¢'sing; cosp), 0< < n, o e,
n+l

As usual set @ - £ ) I + ;
gl &% for &, teR"". The Hardy-Littlewood maximal
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function is defined by
Mf(o) = sup If()dx / dr|.
—1£6<1((,’&{>6 : ! (,,;,{;, )
In analogy with the results of Section 2 there holds
LEMMA 16. (For the case v = 1 ses [25]). Suppose feLl?(S™) and one
of (a) (p,%)eT™, 0 < g = s< oo (b) (p,)el}', g =8 = oo, (¢) (P, ») T
g=s=1(d) (p,»)el", g =1,8 =00
and define F by ’
F(go) = [Pleo, f(x)dx
it

then

(81) (@ “Mips,» < Cpg, » 1 llpg, 5+
If (a), {(b) or (d) holds then

(82) 1M llps, » < Cog, /1 llpg, »-

Proof. It is sufficient to assume f vanishes for p > =2 for the condi-

tions on » are invariant under the transformation A — 1" resulting from
p—>am—g. I @ = cos™ (7o) (= the geodesie distance between o and <
on §") then
(83) 1—2p(0 - 1)+ ¢ = (1— g)'+ 4psin’(D[2).
The mapping T: g(c'sing, cosg) ~ (', 1—p) is & diffeomorphism from
{,9): l2| <8njd, 0 <y <1/2}
such that if (80) and similarly 7 = (v'sin8, cosf) and @ = o'p, ¢ =78
(84) O, jr—1] < sin(B[2) < Calw—1].

{oo: 1/2< < 1,0 < ¢ < 3znf4} onto

Define Tf = fo T *. Observe that for 0 < 8 < 3=n/4
v(tan(6/2)) < C»(6) = C»(tl) and »(jE)< C'v(tan (6/2)).
Since T maps the closed spherical balls
E, = {(0o"sing, geosp): o' 8™, 0 < ¢ < 3x/4}

diffeomorphically onte the balls {(#, L—g): |#] < 3=/4} it follows that
the ratio between the image under 7T of the volume n-form on K, defined
by surface area on §" and the volume form do defined. by Lebesgue measure
on {(, 1—g): weR"} is bounded above and below by positive constants
for 1 < g < 1. Hence F(p -)eI2%(8™) if and only if TF(-,1— p) e IPH(B"),
where TF (z, y) is set equal to zero for |z > 3n/4, and there is a constant ¢

such that
. o< HF(Q')Hﬂa."/MTF(-’l— Q)“ﬂq,'<c'
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Furthermore it follows now from (83),

(84) that there exists ¢ >0 such
that

0T IR (0, 1= )< C;" [(1—0)[(1— )+ [o— ']V f (1) gy
R'n
< OTP(z,1— )
for $<e<1. For o<1 or @ = 3n/4, P(po, 7) < C hence

]?(ea, @) &< Ollfll < O fllyg, -
&

Thus (81) is equivalent to

sup

”xBn(O, 37/4) P(5 1— Q) * Tf”z;s, S qu, » ”Tf”pq, ¥
2<0<1

which is contained in Lemma 3.
The proof of (82) is similar. )
The next lemma follows similarly as did Proposition 2.

Lewyva 17. The mapping J>F = [P, )f(v)dr is a topological
isomorphism between ILPI(S") ([» (tan (p/2))] 2 (8™, where 4 (8™) denotes
the space of Radon measures on 8", in case p = 1) and the space of harmonie
Sfunctions F in Br+1 provided with the (quasi-) norm Sup [[U(e Mg, if

I<e<1

(a), (b) or (c) of Lemma 16 holds.
It is well known that the transformation f(z) - @] ™" f (|| )
takes harmonie functions in a domain D = R* into harmonic functiong
in {[2]2: & « D} (see, e.g., [1] p. 160). Let now the mapping T from
¢l(BF™) to the closure of the wnit ball in B! be defined by inversion

In the sphere of radius 2 and center at (0, —2) followed by translation
by (0,1):

\ ,
I(@,y) = 4B Y+2) +(0,1) 5o that for [¢<1,

(2, Y-+ 2))
_ {+(0,1)
Ilp—yg 2T 005 )
o, oF 02
Also define
(85) TIN5 = 2"z (0, 1)|="H7(1-2¢)
and so

(I7f) () = 2" o4 (0, 2T (Iz)

S0 that I, 7! map the elags of

harmonie functions in g domain D onto
the elass of harmonic funetions

in I(D), I"Y(D) respectively.
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Let t = rt’, 7 = |#], I(t) = (¢'sin0, cos ). It is easy to see that there-
fore tan(6/2) = r/2 hence
‘ dt =" ldrde’ = 2" '(tan (6/2)]" " (cos(8/2))dbde’
= 2" {tan (8/2))"*(cos (0/2))*(sin 6) "+ (sin )* ' dO do”

= (1+ tan®(6/2)]"do
or ’
(86) Cdo = (14 i 4)""at.
Moreover

[r4(0, 1)] = Zeos(8/2) = 2{1+ tan®(8/2)) 2.

LemwA 18. The image under I of the harmonic function P{-, y)* u(2) -+ cy
in R pe(L4 |- LA (BY) is

[2(c, 7 Tu(dn)+2me(1— 1P T+ (0, 1),
where Ty is defined by

(87) [#(0)In(do) = [ ¢(Ia) (1+ |of*/4)~ 1" u(dz) ,
for ¢ continuous on 8" (as a consequence Ip{{{0, —1)}) = 0) (for functions
this definition agrees with (85)). .

Proof. If g is continuous and of compaet sgpport in R” tl%en P#i g
is the unique harmonic function @ in R which is extended contmlx;ms y
to cl(R™) by G{wz,0) = g(z) and which satisfies G(2) = O(l2|™) as

+

|2] = co. On the other hand

- HQ) = [2, 0g(xde
i

is the solution of the Dirichlet problem for eontinuous b-oﬂnda.ryﬂzz}iez
Ig which vanish in a neighborlioed of (0, —1) hence (e.g., by the re
principle) .

H) =0(g+(0,1))) as £—(0,-1)
but also

16(2) = 0(1+(0, DIT™GI ) = 0(Z+(0, 1))-

is proved for ¢ =0 and u(dz)
It fO]lO;V;S ?na‘t ie;uii “i[alf [jﬁil)l’?’f}i;nf(x;?")l?sptie weak limit with I:e—spect
t——; il(li) pa:ivringy with (yl-i.—]'])"‘“l(}0 (0, denoting the space of eﬁr;;gg:
functions vanishing at co on E") of a sequence of co?tmlgclia e o
of compact support {g}. Since #({,-) is a continuous fune ’
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any || < 1 it suffices to show that Iu is the weak limit of {Ig} with respect
to the pairing (#(8"), C(8™). For then

I(Pxp)(8) = m I(Psg) () = lim [P(¢, 1) Ig,(x)dv = [#(Z, ) u(dr)
T-r00 ﬂ—*wsﬂ, N S"’

Tt also suffices to consider x> 0 and ¢ = 0. In this case weak convergence
implies that

lim sup [ g(o) (14 [af)™""dz =0

. R0 n 1Z>R

hence

Ilim sup

&0

Ig(r)dr = 0.

"o S—lde
Therefore it suffices to show that lim (Igy, v) = (Iu, y) for continuouns y

on 8" vanishing near (0, —1). But

Jp@Ipirdo =227 [lot (0, 1)1 pla)g(T ™ 0)do

I

[ @+ |24y (To) g (0) (1+ |o]*/4) " de
Rﬂ—
-~ Rf (o) (1+ [0 [4) 2 (do) = [ p(2) Tu(da).

It remains to sHBw that the image of the funetion Po: (B,y) >y
. is the Poisson integral of the measure of mass 2"w,., concentrated at
(0, —1). But by (85) if £ = (&, 5) then .

(Ipo) (£) = 2" 7T+ (0, 1) po(I710)
= 2MC4(0, 1) 2(n+1)— 1L+ (0, 1)F)
=2"[¢H(0, )| @— 12

Remark. This lemma yields still another proof of the well known
last part of Llemma 10 (for the case # = 1 see [34] and also [22]).

PrOPOSITION 4. The transformation I sets up a topological isomorphism
between the space of harmonic functions U in R satisfying

S (1+9) U ()l = DI (RE)]

and the space of harmonic functions V in B™ satisfying

(88) UZIZEIHV(P Moo =IVI[HF (B*H)]  where  »(1) = (4) (L4 Apn/r—ot!

provided (p, w)e8™ and a, <nfp'—1 or p =1, (1, w)eS, a0y < —1 or

P = o0, (00, w) eS8y, ay < n—1. Purthermore under the same assumptions
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on p,w, I maps the cone of non-negative subharmonic funciions in R}
satisfying (39) and (40) isomorphically onto the cone of non-negative sub-
harmonic functions in B" satisfying (88), i.e., the norm M-+ M, where
My, M, are given by (39), (40) is equivalent to (88).

Proof.

[1f(o)P(tan(8/2)Pdo = [ |f(T2)Ps(lo]/2)° (1+ ol [4) " do
5 Rr™
= [1T7) @) v (ol /2) (L+ laf )= da.
R .

For ue#(8") such that u({(0, —1)}) = 0 it follows from (87) that

[ (tan(9/2)) u(@0) = [ »(lolj2) (1+|a [4) "L u(dm).

s
Given o define » by
©(2) = »(2j2) (1 2[4)0wl

then, e.g., (p,»)eI™ if and only if for some @; in the definition of
“(P; a))sS*z” o

n—1—2nfp—a, = —f>—nlp ie, eo<nfp'—1
and . .
n—1—gnlp+py =a<nfp’ ie fi<nlp+l.

(Also note that if ;< m/p-+1 then 6 =0 in Proposition 2 and (38)).
The assertion now follows from Proposition 2 or the corollary to Proposi-
tion 3, respectively and Lemma 18. '

It follows in particular that if n](«n—l)v< p < oo and
(THHE?(BY™] = S‘I};HU(';:V)HP = ﬁfflo 1T(¢, 9, (see [29])

- then

(89) lim {|TT (¢ )., = IUIIH"(RY]
o1

(proof of precise equality is similar to the proof of (41), if p = oo then (89)
certainly holds if lim U (z) = 0).

|g]|—00

Added in proof: A somewhat different proof of the criterion for har-
monic majorization in Proposition 3 has appeared eazlier in: U. Kuran, A eriterion
of harmonic majorization in half-spaces, Bull. London Math. Soc. 3 (1971), pp. 21-22.
For lemmas similar to those in Section 3 see: U. Kuran, Harmonic majorizations
in half balls and halfspaces, Proc. London Math. Soc., 21 (1970), pp. 614-636.
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