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Proof of Theorem 3.1. Here the details are identical to the proof

of the corresponding theorem in [1]; the method is due to Strichartz [8].
Let felf,. By (2.2), f = Hjp for some g@el” and ||fll,.q, ~ ||fl,+

+[|<;fs|’[(2,). By (3.2), (3.3), and a density argument, we have |,
~ 18- ’

On the other hand, suppose both f and S{f are in L?. Let g, be
a gequence of functions in O such that

(1) g, =0,
2) gl = 1,
(8) || F*g,— Fll, 0 for each FeLP.
A routine argument shows that both g, and fxg, are in IZ . By what
we have shown, '
1% Gnllp,ay < C(IF* Gully+ I8 (F* gl -

But ||f*g,ll, <|[fl,, and since g, >0 Minkowski’s inequality gives 8&(f+g,)

<g80f and thus (189 (Frg,)ll, < lg 8PSl < 8971, Hence {f+ g"}

forms a bounded sequence in If . It is shown in [3] that L2, is reﬂéxivz H

consequently, some subsequence fx Iy, 18 weakly convergent in Iz . Sinee’a

Fga,— 0 IP, it follows that fe ZE,. Y
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Convolution of functions in Lorentz spaces
by

LEONARD Y. H. YAP (Singapore)

Abstract. The well-known results of M. Rajagopalan, W. Zelazko, and N. Rickert
concerning the LP-conjesture are extended to the Lorentz spaces L{p, q) (G) defined
on (non-eompact) locally compact groups ¢. Related results for compact groups are
also given. The theorems presented here are complementary to, and motivated by,
earlier results on convolution of functions in Lorentz spaces by R. O’Neil and the
author.

1. Introduction. In O'Neil [2] and Yap [8] convolution of functions
in various Lorentz spaces L(p, q)(X, p) (for definition, see (2.1) infra)
were considered and interesting and useful results were obtained. For
example, if ¢ is a wnimodular locally compact group with Haar measure
2 and p,, p, are real numbers such that 1/p+1/ps =1, then for f in
L(P1, 0)(G A) and g in L(pe; g2)(G) 1), the usual convolution product
f*g is always defined (under some mild restriction on ¢, and ¢,) and it
has further pleasant properties 2], [§]. In this note we consider the case
1/p;+1[p. <1 and thus answer some natural questions left open in the
earlier papers. In addition to this we also consider the Banach algebras
L(p, )(@, 2) when Gis a compact group and p > 1. Our results are gen-
eralizations of theorems in [11,[37, [41,[7], [9]).

2. Definitions and preliminary results. In this section we review the
basic definitions, and give some preliminary results which are needed
in the sequel.

DrrmNITIONS 2.1. Let f be a measurable function defined on a measure
space (X, p). For y == 0, we define m(f, y) = p{zeX: |f(@) >y}, and let
f* be the function on [0, oo) which is inverse to m(f, -} and right-contin-
nous. For # > 0, we define

o) = [
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We also define

dx e
4—} i 0<p<oo 0<g<oo;
@

17l ={ f [27f" (@)]
0

2 WG = SUpaPf*(@) i 0<p < oo}
x>0

L(p, q) = L(p, 9) (& u) = {f: Iffp.ey < 0}

If we replace f*(#) by f™(x) in (i) above, the resulting number will be
denoted by ||fllg,q) -

Remark. It is known that .

(8) for L<p < oo, we have [[flltg= Iflma = C(®, @)lIfliGs,q, Where
C(p, g) is a constant depending only on p and ¢ ({8], p. 652);

() for L<p < o0, LK ¢< 00, |1l 18 & morm for L(p, ¢) ([2], p.
136);

(¢) for 1 < p < oo, we have L(p,p) = L7,
to [l ipa ([2], p. 136). A ,

We now state without proof a simple fact for later reference.

Lemma 2.2. If (X, u) is @ measure space with u(X) =landr>pz 1,
then L(r, ¢) = L(p, ) and [fl.g) = 1flineys Ifloa £ Mg -

3. The closure problem. Throughout this section @ will denote a locally
compact group: with left Haar measure 4, and L(p, g) will denote the
Lorentz space L(p, g) (G, ).

TaEOREM 3.1. Let py, py, and ¢,, g, be positive real numbers satisfying
1<p; < oo, 1/p+1{p, < 1. Then we have

(i) f G is.won-compact, then there exists an open set U in @, and func-
tions feL(py, qv)y 9eL(py, q,) such that fxg(x) is not defined for x in U;

(i) If & is compact, then for feL(p,, q,) and geL(p,, ¢5), f*g(w) exists
and is finite for A-almost all  in @, and it s in some L(r, 8).

Proof. (i) We begin with the case of a unimodular group G. Let T
be a compact symmetric neighborhood of the identity element e in @
and choose a sequence {x,} of distinct points in @ such that

Ve, ) Vo, =0 if

and |.|, is equivalent

m FEn.

Sinece y > A(¥™'V N V) is a continuous function, there is an open set
U < Vsuch that A(y~'V n V) > 0 for y e U. Define 7 by r(1/p;+1/p,) = 1.
Choose &, = 41, so that > ¢,/n is divergent. Now define

00 oo
f=20nll"zn7 g =2b'nxVa:n!
n=2

n=2
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where ¢, = 1/0"1b, = &, [n"P2, and x, denotes the characteristic function
of A. We assert that f and g have the desired properties. Indeed it is
easy to see that

m(f,y) = (n—1)A(V) for Cpp1 S Y <0Gy

@) =c,  for (n—1AV)E z<nl(V).

Now to show that feL(p, q). By Calderén’s theorem [2], [8], we
may assume that ¢, < 1 in the following caleulations. We have

© AF) o ¥}
[ o @)ds = [ a0 (@) dot+- 2P 6
0 . 0 n=2 (n—1)A(F)

oo ni{F)

=0+ 20%1 0Pt gz (0 = Constant)

n=3 (n—1)4(F)

— O Y o (paJan) AV )P [ (n— 1))

n=2

o0
=04+ 2 nTPL Q (TP P g —1 <o, <n

n=2

(by applying the Mean-Value Theorem to the function z — 29u/P1)

0+ ) (n— 1)~ (n— 1P LA (V)9 < co.

n=2

Thus feL(p;, ¢,). Similarly, we have geL(p,; g2)- But for zeU,
F9(@) = [ fangy i) = 27T V) Y efn,

which is not defined.

Finally, suppose that @ is a non-unimodular group. Then we define
@, = {we@: A(x) = 1}, where A is the modular function of G, and apply
the preceding argument to G,.

(i) Suppose that @ is compact. Let feL(py, 0), 9eL(py, ). Define
a by a(l/p,+1/p,) =1, so that 1 < a < p;. Choose Eso that l <a <k
< p;. Hence p;>p;/k >1 and (p,/k)~"+(pa/k)™ = k[py+E[p, >1. By
Lemma (2.2) we have feL(p/k, ¢1), geL(py/k, g5). Finally, by Theorem
(3.5) of [8], f*g(z) exists and is finite for A-almost all #e@, and fxgeL(7, ),
where 1/r = k[p,+k/p,—1, and s is any positive number with 1/g;+
+1/g, = 1/s. )

Remark. A portion of the proof of (i) in the preceding theorem is
borrowed from Rickert [4]. Rickert’s result is an extension of those in
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Rajagopalan [3] and Zelazko [9]. Our vesult is a generalization of the
results of these authors (see Theorem (2.7) of [7] and the remarks
immediately following (2.1) in this connection).

4. The case of a compact group. Throughout this seetion @ will denote
a compact group with Haar measure 4, and L(p, ¢) will denote the Lorentz
space L(p, 9) (&, 2).

THEOREM 4.1. Let L < p < co and 1< q <oo, then L(p, q) is a chdch
algebra with respect to some norm which 48 equivalent to the norm I lls,a)
(multiplication in L(p, q) is the usual convolution of functions).

Proof. Define r by r = 2p/(p+1), so that 1/1‘—]—1/1"——1 =1/p and -

p >r. Thus L(p, q) = L(r,q), by Lemma (2.2). Now let f, g be in L(p, q),
then f, ¢ are in L(r, ¢) and hence

1 * gl = C Il g)lglere)»

by Theorem (3.5) of [8], where s is any positive number satisfying 1/s
< 2/g. (O is a constant depending only on the indices of the spaces involv-
ed and it need not be the same at different occurrences.) In particular,
f#*gis in L(p, ¢). Furthermore

=0 ”f*g“(ja a/2)
< Olfll) 19lqy (bY Theorem (3.5) of [8])

If*gllp,q S (by Calderén’s theorem, see [8], p. 653)

£ Olifl.o 19l ) (by Lemma (2.2)).

This last inequality and a well known theorem of Gelfand eomplete
the proof.

COROLLARY -4.2. Let 1 <p, ¢ < oo and suppose that @ s infinite.
Then the Banach algebra L(p, q) fails to have the factorization property,
t. e., not every function in L(p, q) can be written in the form fxg, with fr g
in L(p, g).

Proof. Let s = (g+1)/2, so that 1 <s < ¢ and 1/s < 2/g. It follows
from the preceding proof and [71, (2.7), that
L(p, Q*Lp, q) = L(p7 ) L(p, 9).

Remark. This corollary is a generalization of results of Edwards
([1], p 93) and the author [7], (2.8). It is not difficult to see that
L(p, )*L(p, @) = {f*g: f, geLi( (P, @)} is & first category subset of L(p, g).

Remark. In view of the preceding theorem, it is interesting to

note that if @ is infinite and 1 < g < oo, then there exist fygin L1, q)
such that fxg = co.
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Proof. Since G is non-discrete, there exists a sequence {Vn} of mea-

surable sets such that A(V,) = 1/n{n+1). Now define f= Z(fn/loorn APps

n=3

g = 1 These two functions have the desired properties.

Remark. If 1 <p < o0, 1< g < o and G is Abelian, then it can
be shown that the maximal ideal space of L(p, ¢) is the dual group é,
and that the Shilov—Wiener Tauberian theorem holds in L({p, ). See
[5], [6] for related results.
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