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Abstract. A pseudo-Banach algebra is, algebraically, an inductive imit of Banach
algebras. In this paper it is shown that a great deal of the general theory of commuta-
tive Banach algebras extends to commutative pseudo-Banach algebras and also that
this latter class includes many interesting examples not contained in the class of Banach
algebras.

Introduction. The definition of a pseudo-Banach algebra arises from
work of the first named author on spectral theory for locally convex
algebras [1], and in particular from the notion of a bound structure in
an algebra. The importance in this context of a structure analogous to
a system of bounded sets has also been recognized by Waelbroeck, who
has developed a theory of ‘algébres & bornés complétes’ in a rather differ-
ent direction. (See for example [12].)

The psendo-Banach algebras are characterized immediately from
their definition as the (algebraic) induetive limits of induetive systems
of Banach algebras and continuous monomorphisms. Their interest lies
in two facts: the extent to which their properties parallel those of Banach
algebras, and the fact that the psendo-Banach algebras form & conside-
rably larger class than the Banach algebras. We shall see that a commu-
tative pseudo-Banach algebra with identity has a space of characters
which is non-empty and compact in the weak*-topology, that every
maximal ideal is the kernel of a eharacter, and that the analytic funetio-
nal caleulus holds for such algebras in a form analogous to the strong
functional caleulus for Banach  algebras. Moreover, the pseudo-Banach
algebras are characterized, among commutative algebras with identity
and compact space of characters, by the existence of a functional caleulus..
Thus, pseudo-Banach algebras form the natural setting for such appli-
cations of the functional caleulus as Rossi’s local peak set theorem and
the Arens-Royden theorem, and we shall see that such resnlts hold for
pseudo-Banach algebras with only minor modifications to the Banach
algebra proofs.
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In this paper, we shall consider only linear associative algebras over
the complex field C. Also, although the definition clearly applies in gen-
eral, we shall throughout restrict ourselves to commutative algebras.
If an identity were not present, we could adjoin one as in [1], Proposition
(2.8), and so we consider only algebras with identity.

The second named author acknowledges the financial support of
a Science Research Council studentship, and the third named author
that of a Commonwealth Scholarship. The paper was written while the
three authors were at the University of Cambridge. '

1. Definitions and basic properties.

DrrirviTioN 1.1. Let A4 be a commutative algebra with identity e.
A bound structure for A is a non-empty collection # of subsets of 4 such
that

(i) B is absolutely convex, B* = B, e¢<B, for each B in 4%,

(i) given B,, B, in #, there exists B, in & and A>0 such that
B, U B, c 1B,.

(4, #) is then a bound algebra.

For B in 4, let A(B) = {b: A<C, beB}; in view of (i), 4 (B) is the
subalgebra of 4 generated by B. The Minkowski functional of B defines
a submultiplicative semi-norm .| on A(B). If each |.|; is a norm,
and if 4 (B) is a Banach algebra with respect to |. ||z, then (4; #) is com-
plete.

From (ii), 4, = | {4 (B): B4} is a subalgebra of 4. If 4 is complete,
and if 4 = A, then 4 is a pseudo-Banach algebra.

ProrosiTION 1.2. An algebra A is pseudo-Banach with respect to some
I.mmd structwre if and only if A is isomorphic with the inductive limit of am
inductive system {4; wg,: a, fed, a < B} of Banach algebras with identity
and continuous unital monomorphisms. .

Proof. Let A be a pseudo-Banach algebra and let the bound struc-
ture be indexed by a set A. The set A is directed upwards by the relation
< defined by ‘a<f§ if and only if B, = 1B, for some 1> 0’. Write 4,
ft?r A(B,) and |. ||, for the norm on 4,. For a < g, 4, A, and the inclu-
sion, map ms, is a continuous unital monomorphism. It is clear that {4.;
Tg,) 18 the required induective system.

Conversely, if {4,; ms,} is such an inductive system, the unit balls
of the algebras 4, (when identified with subalgebras of 4) can be taken
for the members of a bound structure with respect to which 4 is pseudo-
Banach.

_ The notation for the bound structure used in the above proposition
will be used for the remainder of the papef.

A character on a pseudo-Banach algebra A is a homomorphism of
4 onto C. Let (X ,, 0(X,, 4)) be the space of characters on A with the
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relative weak-* topology, and for a in 4, let (X, 0(X,, 4,)) be the carrier
space of the Banach algebra 4,. Define g,5: Xz — X, (a <) by re-
striction. It is clear that {X,; o.s: a, fed, a<<f} is a projective limit
system of compact Hausdorff spaces and continuous mappings.

LemMaA 1.3. X, is homeomorphic to limproj{X,; .z}

Proof. For each a, let p,: X, X, be defined by restriction, and
let p(w) = (0. (#)) elIX, for z in X,. Then p is a continuous bijection
onto the projective limit L. We show that ¢! is continunous. For zeX ,,
a basic neighbourhood of z is :

U={yeX : lyla)—a(a)l <1, ¢ =1,...,n},
where a,,..., a,eA. Choose g such that a,,...,a,ed;. If
V = {(&,)eL: lamg(a;)— op(z){a)] < 1,i=1,...,n},

then V is a neighbourhood of o(#) in L and V < o(U).

Thus, ¢ is & homeomorphism and the lemma is proved.

COROLLARY 1.4. X, is a non-empty compact Hausdorff space.

Proof, See [1], Proposition 6.2.

PROPOSITION 1.5. Let J be any ideal in the pseudo-Banach algebra A.
Then J is a proper ideal if and only if J = kerx for some x in X 4.

Proof. The sufficiency is clear.

For the necessity, suppose that J is & proper ideal in A. For each
aed, let J, =J N A, and let K, = {z,eX,: #,|J, = 0}. Then K, is
a compact subset of X, whieh is non-empty because J, is a proper ideal
of 4, — it cannot contain the identity. Also, g.(K;) = K, for a < f.
Thus, K = limproj{K,; g.;} is non-empty, and J < kera:‘for any weK.

This completes the proof of the proposition.

COROLLARY 1.6. If J is & maximal ideal in A, then J = kerz, some
reX 4.

COROLLARY 1.7 (GELFAND-MAzUr THEOREM). If A is a field, then
A is isomorphic to C.

With each a in the pseudo-Banach algebra A, associate a complex-
valued function @ on X, by

a(z) = x(a) (reX,).

Each such function is continuous on X . The map a— o is a homomor-
phism, the Gelfand representation of A. In view of 1.6 the (Jacobson) radi-
cal.of A is equal to the ideal B = {acA: @(a) = 0, weX 3. The algebra
is semi-simple if R = {0}. In this case, the Gelfand representation is
a monomorphism, and 4 can be identified with an algebra of continuous
functions on X 4.
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Let X be a compact Hausdorff space and let O(X) be the algebra
of continuous complex-valued functions on X. 4 function algebra is a sub-
algebra of ¢(X) which separates the points of X and which containg the
constants. The algebra is natural if every character iz given by evaluation
at & point of X. We shall consider (natural) pseudo-Banach function
algebras in Theorem 3.8.

DerinrrioN 1.8, Let 4,, 4, be pseudo-Banach algebras with bound
§tructures %y, %, respectively. A unital homomorphism u: 4, - 4,
ig called bound-preserving if, for every Bed,, there exist B, <%, an(i
>0 such that u(B)crB,.

The Dbound-preserving homomorphisms are the ‘structurepreserv-
ing’ homomorphisms for pseudo-Banach algebras. It is clear thlat the
composition of bound-preserving homomorphisms is bound-preserving.

2. Examples.

ExAMPLE 2.1. BANACH ALGEBRAS. Of course, every commutative

Banach algebra with identity is a pseudo-Banach algebra with respect
to the bound structure consisting of the unit ball of the aigeb_ra..
) ExavMprE 2.2. LOCALLY CONVEX ALGEBRAS. A locally ‘eonvex algebra
is an associative linear algebra A equipped with a topology.z such that
gA, 7) is a Hausdorff locally convex space and such that multiplication
in the algebra is separately continuous. '

Denote by # the collection of all subsets B of A such that

(i) B is absolutely convex, B* = B, ¢eB,

(ii) B is closed and bounded.

It (4,7) is complete (or sequentially complete or quasi-complete)
then (4; #) is a complete bound algebra. . o
. The algebra (4; %) is pseudo-Banach if and only if every element
is bounded, i. e., for each element a of 4, there is a non-zero complex
]03;1].3})61' A for which the set {(Aa)" : n=1,2,...} is a bounded subset

For details of the above remarks, see [1].

EXAMI’LE 23 LOCALLY MULTIPLICATIVELY CONVEX ALGEBRAS.
Locally multiplicatively convex {(or LMC) algebras are studied .in the
monograph [8]. We adopt the convention that an LMC algebra is required
to be complej;g and to have an identity.-Write X, for the character space,
2, for the carrier space (set of continuous characters) of an LMC algebra A.

PROPOI.SITION. Let A be an LMC algebra, Then there emists a bound
s_)tcwgtm:e with respect to which A is a pseudo-Banach algebra if and only
Y X4 08 compact. If X, is compact, then X, is i ’
Trionct, e y 4 18 compact, and if A is also

Proof. If 4 is pseudo-Banach, then X 4 18 compact by Corollary 1.4.
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Conversely, suppose that X 4 is compact, and let # be the collection
of subsets of A described in Example 2.2. Then (4; %) is a complete
bound algebra. Since 4 has continuous inversion, ([8], Proposition 2.8)
it is sufficient, after [1], Corollary 4.2, to show that every element @ has
a hounded spectrum o(a). But o(a) = 4(X,), which is bounded when
X, is compact, and so A is pseudo-Banach.

By [8], Corollary 5.6, it is also true that o(a) = a(Z,), so that, if
X, is compact, 4 is pseudo-Banach and X, is compact. (Aliter, since
@(X ) = a(Z,) for acd, every character on A is continuous with respect
to the uniform norm ||. Jj, on X, and so X, is identified with the compact
carrier space of the Banach algebra obtained by completing the algebra
of Gelfand transforms of elements of A in the norm [f. [l-)

Tf A is a Fréchet algebra and X, is compact, then the topology of
A is stronger than or equal to that of uniform convergence on X, (81,
Proposition 8.2), and if zeX X, then there exists aecA with la(z)|

> |lill,, & contradiction of the fact that a(X ;) = &(Z,). Thus, X, = Zy-

This concludes the proof of the proposition.
PrROPOSITION. If A 4s a Fréchet algebra, then the following are equi-

valent:
(i) 4 is a pseudo-Banach algebra;

(ii) 4 is a Q-algebra — the set of invertible elements is open;

(iii) X', is compact;

(iv) every element of A has bounded spectrum.

Proof. See [8], Theorem 13.6, and use the above proposition.

BXAMPLE 2.4. p-BANACH ALGEBRAS. For the theory of p-Banach
algebras, see [13]. We use the term ‘p-Banach’ rather than (p-normed’
to stress that the algebra is complete. Note that the topology of a p-Ba-
nach. algebra is not locally convex in general.

A particular example of a p-Banach algebra is the algebra L”(Z)
with convolution multiplication, together with the p-norm llzll = 2wy, |7
0<p<1)

We shall describe a bound structure in a commutative p-Banach
algebra with identity e which makes it a pseudo-Banach algebra.

Let A be a p-Banach algebra (0 < p < 1). Suppose that ay, ..., a,
are elements of A with 0 <flaf <1 (i =1,...,n). Let Bla,..., a,)
= A{dit...aip: 4y, ..., 4, >0}, the absolutely convex combinations of
monomials in a,, ..., 4, (where a = e).

PrOPOSITION. Let B consist of the collection of the _closums of the
sets By, eeoy @)y 0 <l <1, 2 =1,..0y 0 B = 1,2, ... Then (4; %) 4s
o pseudo-Banach algebra.
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Proof. If Bes, then B iy absolutely convex, B®c B, and eeB
Also, B(a,, ey @) U B(byy iy by) @ B(Gyyeney Gy byy .y by), 80 that
(A; %) is a bound algebra.

We prove that B = B(a,, -.., a,), and hence B, is bounded. Choose

7 <1l'such that fla) <» (i =1,...,%). A member b of B can be repre-
senﬁﬁed a8 b= ZAiy, ..., 4%,) ... an the sum over n-tuples of non-ne-
gative integers (i, ..., 4,), at most finitely many of the A(i\, ..., ,) non-

zero, and X|A(4,...,1,)] < 1. Then

ol < X1t ...

<( Xl .. ( f lagll) < (=),

=0 =0

Gl ol [l

80 tha,t_ B is bounded. Thus, the Minkowski funetional of B is a norm
on A(B). : :
Since each B in # is bounded, the ||. |z — topology in A (B) is strong-

er than the relative topology from A. Also, B is complete in A. Thus,

A(B) is a Banach algebra ([3], I, Proposition 8).
A(Ea(;ﬁ)én @ in 4, choose 1 >0 such that ||Ae| < 1. Then & belongs to

Thus, (4; &) is a psendo-Banach algebra as required.

Many of the properties -of p-Banach algebras proved by Zelazko
follow from theéir representation as pseudo-Banach algebras.

EXAMPLE 2.5. A-HOLOMORPHIC FUNOTIONS. Let A be a natural uni-
form algebra on the compact space X, and let ||. ||, be the uniforn. norm
on X. A continuous function f on X is A-holomorphic on X if, for each
z in X, f can be approximated uniformly on some fixed neighbourhood
of z in X ].oy functions in 4 ([5], IIT, 9). Write H for the algebra of A-
holomorphic functions on X. In general, H is not uniformly cloéed [9l.
We shall show that H is a natural pseudo-Banach a;lgebrAa. on X. ,

-Let % = {U,} be a (finite) open cover of X, and let H, = {fe0(X):
flU;eA1U;, U;e®}, so that H, (with the uniform norm) is a uniform
algebra on X. If %, and %, are open covers of X, let Uy = {U, 0 U,:
U}, so that %, is an open cover of X. If B, is the closed uxlait bazll
of H,,Hand if # = {By}, then (i) B is absolutely convex, B < B,1<B(Be%),
Zl'ld (ii) By, v Bq,z S B.,,,u. Thus, (H; %) is a complete bound algebra).

ince H = | JH,, H is a pseudo-Banach algebra. By [9], each of the
algebras Hy,, is natural, and so H is a natural ‘pseudo-Banach function
algebra.
. EEXAA_LPLE 2.6. GERMS OF ANALYTIC FUNCTIONS. If U is an open set
in C* write 0_( U) for the algebra of funetions analytic on U, and H>(U)
for the algebra of functions analytic and bounded on 1’7 ‘With the
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compact-open toplogy, 0(U)is a Fréchet algebra, and H™(U) is a Banach
algebra with respect to the uniform norm on U.

Tet K be a compact set in C*, and write 0y for the algebra of germs
on K of functions analytic in neighbourhoods of K. Then {#(U); 7yy:
U, ¥ open neighbourhoods of ¥, V < U} is an inductive system of Fré-
chet algebras and continuous homomorphisms, where rpy: o(U)—~ O(V)
is the restriction map. We can identify 0 algebraically with the inductive
limit of this system, and we give g the locally convex inductive limit
topology determined by the spaces @(U). This is the inductive compact-
open topology.

We give an explicit representation of Ox as a pseudo-Banach algebra.
Let % be the set of open neighbourhoods U of K such that U is ecompact
and each component of U meets K. Then {H*(U); rpy: U, Ve,V < U}
iz an inductive system of Banach algebras with identity and continuous
unital monomorphisms whose inductive limit is Cg. If we write By for
the closed unit ball of H® (T), then, by Proposition 1.2, the set {By: U}
is 2 bound structure in @ with respect to which O is a pseudo-Banach
algebra. We shall call this the standard bound structure in Og.

“Note that each of the Banach algebras H®(U) is semi-simple, but
that 0 is not always semi-simple.

We detail certain properties of ¢ which we shall require.

PROPOSITION. The algebra O with the induciive compact-open topology
has the following properties:

(i) Oy is Hausdorff and fully complete;

(i) the topology of Ox is the strongest topology, independent of linear
structure, with respect to which each of the maps ry: 0(T) — Og (U an open
neighbourhood of K) is continuous; .

(iii) Og is an LMC algebra.

Proof. First note that, by choosing & countable base {U,} of neigh-
bourhoods of K such that T, is compact, U, = U,..,and each component
of U, meets K for all n, we may obtain @ both algebraically and topol-
ogically as the inductive limit of an inductive sequence {O(TU,); Tam: My B
=1,2,...,m< n} of locally convex spaces and restriction maps 7,
which, by the properties of the sequence {U,,}, are compact linear mono-
morphisms. Properties (i) and (ii) now follow from general resqlts of
Komatsu [7].

Property (iii) is given by an argument of Waelbroeck, [11], p.
156.

This concludes the proof.

3. The functional caleulus. Our first aim in this seetion is to estab-
lish the analytic functional caleulus for pseudo-Banach algebras,
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Let A be a commutative algebra with identity e. For @, ..., a,
in A4, let id,(ay, ..., a,) denote the ideal generated in A by a,...,a,.
We write A” = {a@ = (a;, ..., a,): 6,64} and 4° = (J{4": » =1,2,...}.
If a belongs to 4™, then the joint spectrum of @ in 4, o (a) or o(a), is
given by
04(a) = 0,4(0y, ..., @)
= {(Ayy eery Ap)eC™: 1d (0, — Ao, ...,

If A is a pseudo-Banach algebra with character space X ,, then it is an
immediate consequence of Proposition 1.5 that o,(a) = a(X ), and so
o4 (@) iz a non-empty compact set in C".

Write 0[c(a)] for the algebra of function germs 0,,. Algebras of
germs of analytic functions always have the inductive compact-open
topology described in Example 2.6.

Denote a general point of C* by 2z = (2, ..., 2,). For n> m, the
projection map p,,: C"— C™ defined by p,,.(2,...,2,) = (%, ..., 2y)
is continuous and open. Define a dual map ¢, 10 Ppy DY G (F)
= 0 Py(fe 0(T)) for any open subset T of €™, 5o that g,,: O(U)—>
O(Pws", (U)} is & continuous monomorphism.

In>m if @ =(a,...,0, ..., a,); and if a = (a,,..., a,), then
Pmnlo(@) = o(a), and therefore composition with p,,, induces a con-
tinuous monomorphism, again denoted by ¢,,,, from @[o(a)] into @[a(a’)].

We now give a statement of the existence and uniqueness of the
(strong) functional calculus for Banach algebras. The notation iz based
on, that of Bourbaki [4].

TeEOREM 3.1. Let A be a commutative Banach algebra with identity e.
Then there exists a unique map a - O, which associates with each @ in A™

a,— A, €e) is proper}.

a continuous homomorphism B4: O[c(a)] - A with the following proper-

ties:

Dif a=(a,...;8,), then O () =a,i=1,...,m), and also
04(1) = ¢;

) if L<m<n, and if @ = (ay, ..., ay; ..., a,), then O 0 G = Oy

Proofs of thls result may be found in [4] and [5].

Let A be a pseudo-Banach algebra, and identify A with the limit
of the inductive system {d.;mg,: o, fed, a<f} of Banach algebras
and continuous monomerphisms as in Proposition 1.2. We may regard
the 4, as subalgebras of A.

It acA?, leb o,(a) denote the joint spectrum of @ in 4,. The next
lemma gives the relations between joint spectra with respect to A and
those with respect to the A, which we require for the functional calenlus.

Lemma 3.2. Let @ = (ay; ..., a,) belong to A™, and let 5 = {a: ay, ...
voy e A}, Then

icm

Pseudo-Banach algebras 63

(i) o4(a) = M{os(a): ze5},

(i) of U is any ne@ghbomhood of o, (a) in C", there exists a in 5 such
that aa(a) < U,

(iii) the algebra O[o,(a)] is homeomorphically isomorphic with the
inductive limit of the system {0[o,(@)]; 74 a, feH, a < B} of LMC algebras
and continuous homomorphisms, where 74, is the natural ‘restriction’ map.

Proof. (i) Let the intersection be §; clearly, o,(a) = 8. Conversely,

€A such that 3 (a;—
. <

i=
—2,6)b; = e. Choose a such that ay, ..., @, b, ..., b,eds; (Ay...y2,)
¢o,(a), so that 8 = o, (a), as required.

(i) For each aeZ, o,(e)\U is a compact set in C*, and, by (i),
M {o.(@)\T: acE} =@. By the finite intersection property, some
finite set of the o,(@)\ U has null intersection, and from the directedness
of A follows the existence of ¢ in & with o,(@)\U = @.

(iii) If o, feE with a < §, then ¢,(a) > os{a). Thus each germ f in
0[o,(a)] determines a corresponding germ 74, (f) in Oloz(@)], and 74, is
a continuous homomorphism from @[c,(a)] to @[os(a)]. Since = is direc-
ted upwards by <, it follows that {0[c,(@)]; Ta' a,BeF, a<< B} is an
inductive limit system. Since any function analytic in an open neighbour-
hood of o, (a) is, by (ii), analytic in a neighbourhood of some o,(a),
it follows that the inductive limit of the system. {0[c,(@)]; 7.} is isomor-
phic with @[o, (@)]. That the inductive compact-open topology of O[c(a)]
coincides with the locally convex inductive limit topology determined
by the algebras 0[o,(@)] (aeF) is straightforward to verify.

The lemma is proved.

In view of (3.2) (iii), we identify @[c,(a)] with the inductive limit
of the 0[c,(a)] (aeZ). When this is done, the natural map 7, from 0[o.(@)]
into the inductive limit is just the operation of ‘restricting’ germs from
o, (a) to o,(a).

THEOREM 3.3. Let (A, B) be a pseudo-Banach algebra. Then there
exisis a unique map @ — 0, which associates with each a in A™ a homo-
morphism @q: O[o,(a@)]— A with the following properties:

if (A, ..., A;) ¢04(a), then there exist b,,..., b,

(1) if @ = (B, ...y ap), then Oy (z) =a;, (i =1,...,m), ond also
Oq(1) = e;
() if 1<m<n, and @ = (@1, .cuy Qyyy oeny By)y Bhen Oy 0y, = B4

(iii) for eawh a such that @, ..., a, are in A,, Qa(’l'a(@[da(a)])) A,
and @,,o'ru: Olo,(@)]— 4, is continuous:

Proof. First we clarify certain abuses of notation. For each a, there
is a collection of maps 7,: O[o,(a)] = O[o(a)], one for each aeAdy,
and we are using symbol 7, to denote any of these. Similarly, if @ and @’
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are as in (i) and « is such that a,, ..., @,¢4,, the projection p,,, induces

homomorphisms @[c,(a)] —~ O[o,(a')] and @[e,(a)]— 0[c,(a’)], and

we write ¢,,, for any of these homomorphisms. With these conventions,

the following diagram commutes '
Imn

Olou(a)]—= O[o, (a')]

71& Tﬂ

0lo,(a)] e Olo,(a)].

So, if maps @, with the properties (i), (ii), (iii) exist, then, for fixed
a in A, the maps @,0r,(@cA%) form a collection of homomorphisms satis-
fying the conditions of Theorem 3.1 for the Banach algebra 4,, and the
6,01, must be the unique continuous functional caleulus homomorphisms
for 4,. Thus the uniqueness of the @, follows from their existence, and to
prove the existence it is clearly sufficient to prove that the Banach algebra
functional caleuli for the different 4, can be superimposed to give a well-
defined functional caleulus homomorphism for 4. Precisely, if we write
O for the functional calculus homomorphism for A, (@cAy), we must
prove that Ofor,, = m;,005 for o< f. Bub this is an immediate conse-
quence of the continuity of the @or,, and the 75,004, the fact that they
coincide on polynomials, and polynomial approximation with the tech-
nique of Arens and Calderén [2].

The theorem is proved.

_ As a corollary, we state the weak form. of the functional caleulus.
It is the weak form which is required for many of the applications.
COROLLARY 3.4. Let @ = (ay, ..., a,) belong o A", and suppose that

I is a function which is analytic on some netghbourhood of o, (a) in C
Then there ewists an element g in A such that

(@) = fo(i(@), ..., dy(@))  (@eXp).

We shall also require the following result, which is a straightforward
corollary of the corresponding result for Banach algebrag.
QP(l;(;PtzsmmN 3.5. Given @ in A® and f,,...,[. in Oloy(a)], let b,

=0,(f) E=1,...,n), and let b = (b,,...,b). Then, for n

Ola b, ) 1y eees by) y Jor amy F in
Oy (F) = O4(Fo (fy, ..., fa).

) As we pointed out in (2.6), the algebra Ox of germs of analytic func-
tions on a compact set K in O is a pseudo-Banach algebra with respect
to a standard bound structure, say &, consisting of the unit balls By
of _the algebras H>*(T) for U belonging to %(K), the collection of open
nelghpomhoods of K which have compact closures and each component
of which meets K. We show that for a given pseudo-Banach algebra,
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the functional caleculus homomorphisms of Theorem (3.3) are bound-
preserving (Definition 1.8), and that the homomorphisms are charac-
terized by the property of heing bound-preserving, together with the
usual algebraic properties. Theorem 3.6 below is perhaps a more natural
statement than Theorem 3.3.

TamoreEM 3.6. Let (A; %) be a pseudo-Banach algebra. Then there
ewists @ unigue map @ — O, which associates with each a in A% & bound-
preserving homomorphism Oq: O[o (a)]; & — (A ; B) wich satisfies (i) and
(i) of Theorem 3.3.

Proof. Let aeA®. To show that the map 0, construeted in Theorem
3.3 is bound-preserving, it is clearly sufficient to prove that, given
Ue%(o, (), there exists a such that @,(H*(U)) = 4, and G,H*(U):
H*®(U) - A, is continuous. But this is immediate if, as we may, we choose
« such that aeA? and o,(a)c= U.

To prove the unigqueness, let @ — @, be any map satisfying the given
conditions. Fix @ = (4, ..., ) in A° and U in %(c,(a)), and let &
= {B,: aed} be the bound structure in 4. Since &, and P, are both
bound-preserving, we can choose a, f in A and s, £ > 0 such that 6,(By)
c sB, and 9,(By) < tB;. Choose y in A such that a<y, <y, and
o,(a) = U, and choose A > 0 such that B, VB, < iB,. Iir = max{1s, At},
then 0,(By) = rB and @.(By) = rB, so both 6, and &, when restricted
to H®(U) give continuous homomorphisms into 4,. )

Now fix f in H®(U). Using the technique of Arens and Calderén
"[2] we can choose elements a,,,,, .., 6, in 4 and a neighbourhood V of
o,(a) in O" (where &' =(ay,...;a,)) such that g,,(f) is in H*(V) and
is the uniform limit on V of a sequence of polynomials in n variables.
If necessary, take y further along the directed set A so that @, and @,
restriced to H®(V), give continuous homomorphisms into 4,,. By condition
(i), O, and &, coincide on polynomials, and then, using (ii) and the contin-
nity, we have 0,(f) = O (Gun(f) = Pur(gmn(f)) = Palf)- Since U in
(cr A(a)) and f in H*(U) were arbitrary, this proves that 6, = @, for any
a in A%, and completes the proof of the theorem. ’

All the examples of pseudo-Banach algebras which we considered
in § 2 are also topologieal algebras. It is therefore of interest to investigate
the continuity of the pseudo-Banach functional caleculus with respect
to the topologies of these examples.

TuroreEM 3.7. Let (4; #) be a pseudo-Banach algebra which is
also a topological algebra for the topology ©. Suppose each member of
% is t-bounded. Then the funciional calculus homomorphisms of Theorem
(8.3) are continuous with respect to <. :

Proof. Let acA®. By (2.6) (ii) it is sufficient to prove that 6,0ry:

. 0(U)— A is continuous for esch open neighbourhood U of o 4(a). Given
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U, choose a such that @eAy and o,(a) = U. There is a homomorphism
(formation of germs) »f: O(U)— Olo,(@)] such that O,0ry; = O.0r,0rf,
and it follows that 6,07y takes values in 4, and is continuous with respect
to the |-],-topology on A4,. But since B, is z-bounded in A, the |.|} .-
topology is no weaker than the relative topology induced by = on 4,
and so 0,07 is continuous with respect to r, and the theorem is proved.
Note that the hypotheses of this theorem include all the examples of § 2.

The existence of a continuous functional caleculus for p-Banach
algebras is due to Gramsch [6]. As such a calculus is necessarily unique,
Theorem (3.3) provides an alternative method of constructing the caleulus
which, given the result for Banach algebras, may be easier than the con-
structions involving integrals used in [6].

We now show that the existence of an analytic functional caleulus
essentially characterizes pseudo-Banach algebras. We consider only the
semi-simple case, where the result is most naturally formulated.

Let X be a compact Hausdorff space, and let 4 be a function algebra
on X. Given @ in A® and f in O0[a(X)], 6,[f) is the function in O(X)
defined by O4(f) (#) = (foa) (#) (xeX). We say that analytic functions
operate on A if 0,(0[a(X)]) = A for all @ in 4™,

THEOREM 3.8. Let A be a function algebra on X. If analytic functions
operate on A, then there ewists & bound structure in A with respect to which
A is a pseudo-Banach algebra.

Proof. For acd™, let 4, = 0,(0[a(X)]), with the quotient topology
from @la(X)]. The kernel of 0, is {fe0[a(X)]: f(a(X)} = {0}}, and is
therefore a closed ideal in 0[a(X)]. Since 0[a(X)] is an LMC algebra,
Example 2.6 (iii), so is 4,([8], Proposition 2.4(e)), and since 0[a(X)]
is fully complete (Example 2.6 (i)), so is 4, ([10], p. 114). Thus, 4, is
a (complete) LMC algebra. Since ¢[a(X)] has compact character space,
50 has 4,, and 4, is & pseudo-Banach algebra with respect to the bound
structure %, given in Example 2.2. Let # = | {4,: a<4A*}. Then we
claim that & is a bound structure with respect to which 4 is a psendo-
Banach algebra.

We verify condition (ii) of Definition 1.1. Let B,, B, be in %, say

B, ¢#B,, Bye#y, where @ = (ay, ..., a,,) and b = (b;, ..., b,).Set e = (ay, ...

vy Gy byy iy by), and let py: O™ s O™, Py O™ > C™ be the pro-
jections onto the first m and the last n coordinates, respectively. Then
P, (c (X)) = a(X), p,(¢(X)) = b(X), and the following diagrams commute.
In each case, the map ¢ is inclusion. )

0la(X)]—> 0le(X)] olb(X)]—2> OLe(X)]
@,,l l@° @”1 e,
-Aa _1._> -A-e Ab '_;_> Ac
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Since 4, and A, have the quotient topologies, the inclusion maps are
continuous, and therefore B, and B, are bounded in 4,. Then BB, is
bounded in 4,, and if By is the closure in 4, of the set 4(B, v B, U B, B,),
then By,e#Z and B,U B, <'B,.

The other conditions arve clearly satisfied, and so the theorem is
proved.

That a function algebra on which analytic functions operate is not
necessarily a natural pseudo-Banach algebra will be shown in Example 4.7.

4. Applications. Let 4 De a pseudo-Banach algebra with character
gspace X ,. Then we have identified the maximal ideals of A with the
kernels of characters, so that o, (a) = a(X,) (@<4A™), and we have estab-
lished the functional caleulus for A. Using these results, it is possible
to establish for pseudo-Banach algebras a number of the standard results
for Banach algebras.

THEOREM 4.1 (IMPLICIT FUNCTION THEOREM). Let ay, ..., a, belong
to the pseudo-Banach algebra A. Let h belong to (X ), and let o = (I, @, ...

oy @) (X ). Let F(w, 2y, ..., 2,) be a function analytic in a neighbourhood
of o such that F(h, &, ..., &,) = 0 on o, while dF[dw = 0 on o. Then there
ewists a unique element g in A with § = h and F(§,8y, ..., &,) = 0.

Proof. See [5], IIX, Theorem 6.1. The properties of A required are
those stated above, together with the substitution theorem which we have
stated as Proposition 3.5. This latter is required in the proof of both the
existence and the uniqueness of g.

COROLLARY 4.2. If a is an invertible element of, A, and if there exisis
b in C(X,) such that b™ = a, then there is g in A such that ¢" = a.

COROLLARY 4.3 (S1LoV IDEMPOTENT THEOREM). Let X, be a non-
empty open and closed subset of X ,. Then there is o unique idempotent a in
A such that a(X,) = {1} and a(X\ X;) = {0}.

The remaining results require a form of the Arens—Calderén lemma
[2] applicable to pseudo-Banach algebras.

Levvs 4.4. Let A be o pseudo-Banach algebra. If @ = (@, ..., @)
belongs to A™, and if U is a neighbourhood of o ((a) in C™, then there exist
Gy -1 Gy i A and an open polynomial polyhedron V containing o (@, ...

., 6,) such that p(V) = U, where p is the projection of C* onto C™.
Proof. Let 4, be the uniformly closed subalgebra of (X ;) generated

DY @y, ... Gy, and let o;(a) be the joint spectrum of @ in 4,, so that
6, (a) > a(X_,,) = o, (a). Suppose that zeo,(a)\ U, and let J =id,(a,—

—2, 8 ..., Gp—2y€). Then J is not a proper ideal in A, and so there exist
Gpp1y +-oy GopeAd such that 5’ —2;6)a,,.; = 1. Let 4, be the uniformly

closed subalgebra of C(X A) generated by ay, ..., @y, and let oy(a) be
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the joint spectrum of a in 4,. Then o, (a) c o,(a) = o, (a) and z{o,(a).
By a standard compactness argument, we can find @y, .

.., ayed such that, if B is the closed subalgebra of C(X ,) generated by
@yyeeey @y, then o (6) c op(a)-c U. The result follows from the facts
that. op(a, ..., a,) is & compact, polynomially convex subset of C™ con-
taining (&, ..., &,) (X4) = 04{a,..., a,), and that p (oz(ay,..., a,)) = opa)
< U. The lemma is proved. ’

If 4 is pseudo-Banach algebra, let A~! denote the (multiplicative
group of) invertible elements of A. For a in 4, and for o such that a
belongs to 4,, the series Ya"/n! converges in 4, to an element exp a.
It is easy to see that exp & is independent of « and that the map
a — exp & is & homomorphism from the additive group of 4 to 4~'. We
can now give the following form of the Arens-Royden theorem.

THEOREM 4.5 (ARENS-ROYDEN THROREM). Let A be a pseudo-Banach
algebra. Then A~ [exp A ds -isomoa"ph'i(' to HY(X ,, Z).

Proof. See [5], III, 7. In the proof, we require the above lemma
and a corollary of the nnpl]clt function theorem which states that, if a
belongs to 4, and if 4 has a continuous logarithm on X ,, then a = exp b
for some b in A4.

THEOREM 4.6 (ROSSI’S LOCAL PEAK SET THEOREM). Hvery local peak
set in the character space of a pseudo-Banach algebra is o peak set.

Proof. See [5], III, 8. We a.gmin use Lemma 4.4.

In particular, every local peak point in the character space is a peak
point.

If A is an LMC algebm, then 4 has a representation as an algebra
of continuous functions on its carrier space X, and a functional calculus
holds for 4 defined on X,. It might therefore be conjectured that the
local peak point theorem would hold for an LMC algebra with compact
carrier space defined on that carrier space. However, the final example,
‘which is a non-natural psendo-Banach a,lgebm on which analytic functions
operate, shows that this is not so.

EXAMPLE 4.7. A FAILURE OF THE LOCAL PEAK POINT THEOREM. Let

= {(z, w)eC®: |2|, w| <7}, so that 4, is a bicylinder in C€2. Let ¥

- ((ﬂ N U {5 w):w =0, z—}] < 3}, so that ¥ is a compact subset
of €. ‘

A slice of Y is a subset formed by fixing one coordinate, and if K is
a slice, int K denotes the interior of K with respect to the complex plane
in C* containing it. Let 2 be the collection of subsets of ¥ which are
compact and which are a counta.ble union of slices.

For Keot', let Ag = {feC(K): f| int § is analytic, for each slice
8 in K}. Then AK is a uniform mlgebra on K with carrier space K ([5],
II, Theorem 1.9). Let A = {f<C(Y): FIEedg(Ke X)), with the topology

icm
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of uniform convergence on the sets of . Then it is easy to see that 4 is

a (complete) LMC algebra with respect to the directed family of semi-

norms {pg}, where pr(f) = sup |f(x)] (Ke2), and that 4 = limproj 4.
reK

Thus, by [8], Proposition 7.5, ¥y, = (J K = Y.
With the topology of uniform convergence on Y, 4 = P(Y), and
the character space of 4 is 4, (c. f. [5], ITI, 3), a proper superset of ¥.
The origin is a local peak point for 4 with respect to the carrier space
Y, but it is not a peak point. Therefore we have constructed the required
example.
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