ON WEAKLY ZERO-DIMENSIONAL MAPPINGS

 \mathbf{BY}

K. KUPERBERG AND W. KUPERBERG (WARSZAWA)

A continuous mapping $f: X \to Y$ is said to be zero-dimensional if each counter image $f^{-1}(y)$, where $y \in f(X)$, has dimension zero; it is said to be weakly zero-dimensional if each counter image $f^{-1}(y)$, where $y \in f(X)$, contains a point x at which it is zero-dimensional, i.e. $\dim_x f^{-1}(y) = 0$.

A finite-dimensional connected compact metric space X is called a Cantorian manifold if X remains connected after removing any subset of dimension less than dim X-1.

In [3], Lelek posed the following question (P 614, p. 316): does there exist a Cantorian manifold X and a weakly zero-dimensional mapping of X onto Y such that dim $Y < \dim X$?

The answer is affirmative. Indeed, let X, Y and $f: X \to Y$ be defined as follows: X is the subset of the euclidean plane

$$X = \left\{ (x,y) \colon 0 < x \leqslant 1, \left(\sin \frac{1}{x} \right) - x \leqslant y \leqslant \left(\sin \frac{1}{x} \right) + x, -1 \leqslant y \leqslant 1 \right\} \cup$$

$$\cup \left\{ (x,y) \colon x = 0, -1 \leqslant y \leqslant 1 \right\},$$

Y is the segment $\langle -1, 1 \rangle$, and $f: X \to Y$ is the projection defined by f(x, y) = y. It is easy to see that X, Y and $f: X \to Y$ satisfy all the requirements of conjecture.

The space X in the above example is not locally connected. But it is possible to construct a weakly zero-dimensional mapping of the two-dimensional disk Q^2 onto a segment; moreover, the following theorem is true:

THEOREM. If X is a compact space which contains topologically a Cantor set as a G_{δ} -subset and Y is a non-degenerate locally connected continuum, then there exists a weakly zero-dimensional mapping of X onto Y.

The aim of this note is to prove this theorem.

First we prove some lemmas.

LEMMA 1. Let f be a continuous mapping of a compact space X into a space Y and let $x \in X$. If $\dim_{f(x)} Y = \dim_x f^{-1}(f(x)) = 0$, then $\dim_x X = 0$.

Proof. We shall prove that the quasicomponent C of x (i.e., the intersection of all closed-open subsets containing x) consists of one point x only. Indeed, by the compactness of X, C is connected, hence $C \subset f^{-1}(f(x))$, because $\dim_{f(x)} Y = 0$. Since $\dim_x f^{-1}(f(x)) = 0$ and $x \in C$, we have $C = \{x\}$. Thus the point x has arbitrarily small closed-open neighbourhoods in X, because X is compact, and the proof is completed.

COROLLARY 1. If X and Y are compact, $f: X \to Y$, $g: Y \to Z$ are continuous mappings, y = f(x), z = g(y) and $\dim_y g^{-1}(z) = \dim_x f^{-1}(y) = 0$, then $\dim_x (gf)^{-1}(z) = 0$.

In particular, if f and g are weakly zero-dimensional mappings, then also the composition $g \circ f$ is weakly zero-dimensional.

Denote by I the unit segment of the real line, by D the standard Cantor set and by J_1, J_2, \ldots the segments which are the closures of components of the complement of D in I. Let K_i be a plane circular disk the diameter of which is J_i $(i = 1, 2, \ldots)$, and let K be the union of all K_i . Let us define four subsets of the euclidean plane as follows:

$$egin{aligned} Q &= \{(x,y)\colon \ 0\leqslant x\leqslant 1, \ 0\leqslant y\leqslant 1\},\ Q' &= \overline{Q-K},\ R &= \{(r,arphi)\colon \ 1\leqslant r\leqslant 2, \ 0\leqslant arphi\leqslant 2\pi\},\ S &= \{(r,arphi)\colon \ r=1, \ 0\leqslant arphi\leqslant 2\pi\}, \end{aligned}$$

where the pairs (x, y) and (r, φ) are cartesian and polar coordinates, respectively (see Fig. 1).

Fig. 1

LEMMA 2. There exists a mapping f of Q' onto S such that f(D) = S and, for each $y \in S$, if $x \in D \cap f^{-1}(y)$, then $\dim_x f^{-1}(y) = 0$.

Proof. Let \bar{f}_1 be the well-known mapping of D onto I (see, e.g., [1], p. 186). Denote by $\bar{f}_1 \colon I \to I$ the extension of \bar{f}_1 which maps the segment J_i into the point being the image of its ends. There is an extension

 $f_1: Q \xrightarrow{\text{onto}} Q$ of \bar{f}_1 which is one-to-one on Q-I. To prove this, let us take (see Fig. 2)

$$f_1(x, y) = ((1-y)\bar{f}_1(x) + xy, y)$$
 for all $(x, y) \in Q$.

Let $f_2: Q \to R$ be defined by $f_2(x, y) = (r(y), \varphi(x))$, where r(y) = y+1, $\varphi(x) = 2\pi x$ (see Fig. 3).

Fig. 2

The set $R-f_2f_1(Q')$ has infinitely many components, say P_1, P_2, \ldots ; let f_3 be a homeomorphism of R onto R, which does not move the points of S and such that each ray whose endpoint is the origin intersects infinitely many of the sets $f_3(P_i)$ (see Fig. 4). Finally, we define $f_4: R \to S$ by $f_4(r, \varphi) = (1, \varphi)$. We shall show that $f = (f_4 \circ f_3 \circ f_2 \circ f_1)|_{Q'}$ is a required

mapping. It is clear that f(D) = S. Let $y \in S$ and $x \in D \cap f^{-1}(y)$. The set $(f_3 \circ f_2 \circ f_1)^{-1}(y) \cap Q'$ is finite, hence, by Corollary 1, in order to prove $\dim_x f^{-1}(y) = 0$ it is sufficient to show that $\dim_y f_4^{-1}(y) = 0$. But $f_4^{-1}(y)$ lies on a segment L which intersects infinitely many of sets $f_3(P_i)$, the

sequence of diameters of $f_3(P_i)$ converges to zero, thus $L-f_4^{-1}(y)$ contains a sequence of points converging to y. This implies that $\dim_y f_4^{-1}(y) = 0$ which completes the proof.

LEMMA 3. If Y is a non-degenerate locally connected continuum, then there exists a zero-dimensional mapping ψ of the segment I onto Y (i.e., there exists a ψ such that, for each $y \in Y$, $\dim \psi^{-1}(y) = 0$).

Proof. Let φ be a continuous mapping of I onto Y, and let $\{A_i\}_{i=1}^{\infty}$ be the collection of all maximal subsegments of I, which φ maps into a point.

We write $B = I - \bigcup_{i=1}^{\infty} \operatorname{Int} A_i$. Clearly, $\varphi(B) = Y$. Since Y is non-degenerate, there exist $\overline{\varphi} \colon B \overset{\operatorname{onto}}{\to} I$ and $\psi \colon I \to Y$ such that $\psi \overline{\varphi} = \varphi|_B$. For each $y \in Y$

the set $\psi^{-1}(y)$ contains no segment. Thus ψ is a zero-dimensional mapping.

Proof of the theorem. By the assumption of the theorem, the compact space X contains a G_{δ} -subset D' homeomorphic with the Cantor set D. Then there exists a continuous mapping $\bar{g}: X \to [0, \frac{1}{2}]$, such that $\bar{g}^{-1}(0) = D'$ (see [2], p. 134). Let $h: D' \to D$ be a homeomorphism of D'onto D. Then h can be extended to a continuous mapping $\overline{g}: X \to Q'$, because Q' is an absolute retract. We can assume, for $(x, y) \in \overline{\overline{g}}(X)$, that $y \leqslant \frac{1}{2}$. Now, let $g: X \to Q'$ be defined by $g(z) = \overline{g}(z) + (0, \overline{g}(z))$. By the definition, $g^{-1}(D) = D'$ and, by Corollary 1, the composition $f \circ g$ (where f is the mapping from Lemma 2) is a weakly zero-dimensional mapping of X onto S. It is easy to see that there exists a weakly zero-dimensional mapping h of the circle S onto the segment I, and, by Lemma 3, there exists a weakly zero-dimensional mapping of I onto Y. The composition $\psi \circ h \circ f \circ g$ is a weakly zero-dimensional mapping of X onto Y. This completes the proof.

COROLLARY 2. If there exists a continuous mapping of a compact metric space X onto the segment, then, for each non-degenerate locally connected continuum Y, there exists a weakly zero-dimensional mapping of X onto Y.

REFERENCES

- K. Kuratowski, Introduction to set theory and topology, Warszawa 1961.
- Topology, Vol. 1, Warszawa 1966.
- [3] A. Lelek, On mappings on Cantorian manifolds, Colloquium Mathematicum 17 (1967), p. 315-318.

Reçu par la Rédaction le 2. 6. 1969