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Waring’s problem in quadratic number fields
. o .

J. H. E. Coux (London)

For each square-free integer d =1, the algebraic integers in the
field Z(d“*) form a ring Z[0], with integral basis 1, § where 8 == /2 if
d =2 or 3(inod4) and 8 = $(1-+d"*) if d==1(mod4). For each rational
integer % > 2, denote by J, the set of elements of Z[8] which can be
written as a finite sum 4of+of .. 4 of with a, as, ..., a.eZ[0], and
by P, the set of elements which can be written similarly, but with only
positive signs. Clearly P, is & subget of J,, and J, is a subring of Z[6].

“The object of this paper is to determine J, and F,, for each d and %.

We have attempted te make the paper self-contained, and this has
involved specialising some results of Siegel ([2], [3]). Thus for example,
Siegel has given a result corresponding to our Theorem 2, applicable to
any algebraic number field. He also gives a finite number of congruence
conditions modwlo powers of prime ideals in the field, which together
are necessary and sufficient for an element of the field to bhelong to J,
and shows that all totally posifive elements of J,. with sufficienfly la,rge
norms algo belong to P,,.

Throughout we shall refer to the case d =2 or 3(mod4) as Case I

~and to 4 = 1{mod4) as Case 1I. For »eZ[§] we have v = m—[—y& Wlth' ‘

&,y eZ and write raty = =, 11'1' = y: It should be noted that in Case II,
n‘d”z = 2, since then @' = —1-+26. .
In the first place we observe that Z < J and since

e = —4(l—1) (kﬁ+2( —1ye *r(7f—1)(§+r)’°

it follows that if %! 1 iy, then ved - This well-known eondition is sufficient,
not only for quadratic fields, but with suitable modifications in notation
for all algebraic mumber fields, but it is not necessary; for in Z [2”2] we
find that 17412242 = (142"%)%¢J,. We make the

DeFiNirroN. Let w(k) = g.e.d. {ir(z+y0)*| =, yZ}.

LeMuMA 1. There ewist a, feZ (0] with '

(k) = ge.d. {ir{a®), ir (89}
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Proot. Let aeZ[6] with ir{e*) # 0. Such an a certainly exists. Let
a = w~tir(a"). By the definition of w, if p is prime and p°|lw, ¢ 0,
there exist m,, ¥, such that Pp°|ir (m4-y0)* for ', ¥ = Ty, Yp a0 50 obviously
for @,y =a,, ¥, (modp""). Letting p range over the prime factors of a,
and nsing the Chinese Remainder Theorem, there exist uc, y wuach that
is the g.c.d. of aw and ir{z- y0)~.

THEOREM 1. of; = {»| w(k)]ir+},

Proof. (i) It is obwous from the definition ot w (k) that if w{k)+irw,
then »¢dJ,. :

(if) Suppose that w(k)|iry. Choose ¢, f as in Lemma 1. Then we
can find rational integers 4., B such that

iry = Air (o) +Bix(p*) = ir(do*+BgY),
and 50 ¥ = Ao Bptla, where <% < J,, which concludes the proof.
Trporem 2. If d< 0, or if & is odd and 4 >0, then J;, = P,.
Proof. If k is odd, the result is trivial since —a® = (—a)% If d< 0,
it is sufficient to prove that —1eP,.
< nfk, and then o* has negative real part.. Thus o*+ & ix real and negative,
and so0 equals a negative rational integer, —mn, say. Then

w1 = g" - @ (n—1)15 P,

w(k) = 2RH1‘71”'Q;’”"

where p runs O’U@?" all odd primes with (d|p) = —1, (p-+-1) |k end I = L1,
where Lz 0, |\ k; q runs over all odd primes with q|d; gk and m = M
where g™ ||k, except that if g =3, k>3 and d = 6{mod9) then m = M—i 1;
and n is given by
(8) in Case I, % == 0 if & is odd,
=1if kb =2, o
=N if 2Y|k, ¥ 21 if d is even,
= N1 if 9k, N 21 4f d 45 odd, & >2;
(b) én Cese TI, n = 0 if d = 1{modg),
=0if d = 5(1110(18) and 3 +k;
=1 if d =5(mod8) and 3k, 2 1k,
= N+ 2 zf d = 5(mod8), 3|k, 2V||k, ¥ = 1.
The prooi for Case I, is contained in the following five lemma,s
For Case IY, the. proof is entlrely gimilar and is omitted.
Lemma 9. If p is.an odd pmme with {d|p} =1, then pd‘w(?s) for
any k.
Proof. Since (d|p) = 1, we can find #<Z such that 2? = d(modp),
and so°we can find o, yeZ such that 22— dy? = Ap, and p +4. For, let

THEOREM 3.

Choose aeZ[f] with 2x/3% < arga’

5
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22—d = Bp. If p1B, then we take # = z, % = 1. If p|B, then we can
take 2 = », ¥y == p+1 for then

—d{p+1)* = p(B—dp—2d) = pA, say,
and since p|B, p+d, it follows that p+4.

We shall show that with this choice of 2 and y p rir(z+ yo).
suppose that piir(z--y8)*. Then in Z[6],

(2+y0)* = (&—y06)* (medpl),

where as usual [p] denctes the principal ideal generated by p. Now the
diseriminant 4 of the ficld equals 4d, and so (A4]p) = (d|p) = 1, from
which it follows that the ideal [p] factorises into distinet prime ideals
[p] =PP;. Now .

(2+y0)(z—yh) = a?— dy? = ApeP,

—dy? = 2*

For

and so

(@+y0)* = {(x+y9)(z— 0¥ (nedP,) =0(modP,).

But Py is a prime ideal and so (w+y6)eP,. Similarly (x—y6)<P, and so

= (+ y6) (2—y0) P}
Similarly 4peP] and so since P,, P, are distinct prime ideals, 4peP?P?
== [p?], i.e. p?|dp, which is impoq.aible since p+.4.
Levma 3. If p is an odd prime with (d]|p) = —1, then p|w(k) zf
and only if (p--1)|%.
Proof. (i). Bince (4|p) = (dIp) = —1, it follows that [p] is a prime
ideal. Suppose that p{w (k). Then fcr s = 0,1, 2, ..., p—1, plir(e-+ 6), i.e.

(34 6)* = (z— 0 (mod [p]).

Also {5+ 0)(z—0) = 2"~ d = 0(mod[p]) sinee (d|p) = —1. Thuy z-4 8
g O (mod[p])and so for & = 0,1, ..., p—1 (a-} 8}/(z— 8) all satisfy & =1
in the field F = Z{0}/[p], a finite ficld with p? elements. Also these p
solutions are distinet from the solution & =1 and from each other; for

= (2+0)/(c—6) in F would imply 249 = z— 0{mod[p]), which iz

 Impossibkle, and

g0 2+ 0

—0 0

2 |

in F would imply 20(¢z—2*) =0{mod[p]) and this is not the case
z # 2%, for the values of z considered.

Furthermore, 1 and these p solutions of £ = 1 in 7, form a subgroup
of the set of all solutions of & =1 in F; for let

_ &b (z?*+c?)+(’+2*)
T e— 8 *—4§ (22 ‘~|—d}—(z+z*
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T ¢fz* =0(modp), then sz*--d = —ed = 0(modp), since (d|p)
= —1, and 80 n =1; if #4-#* ¢ 0(modyp) then there existe a ! in the
- get {0 1,...,p—1} snch that #(z--2*) = (ee*-+d)(modp), and then
g =({I+0 (t— o).

Now the multiplicative group of the flelc'l Fig » eyclic group of order
p?—1 and so the subgroup of all solutions of & =1 has order (%, p?—1).
But we have seen that this subgroup itself has a subgroup of order p4-1
and so (p+1)|k. .

(ii) Conversely, suppose that (p+1)1k. Let & = (p-+1)I. Let
{5-+y0) = X+ ¥6. Then,

ir(z--y0)* = ip(X-+ Y 6P+
(1) XY+ (p“i-l)X””"Yéd{—...

e <P+1) YR yr- o 3)_|_ (p+1) X X YP ghe=1
p_

= X?Y+XF¥Pa-Y (modp)

= XY (L+ @Y (mod p)

= 0 (modp)

since @¥*~0 = —1(modyp), since (d|p) = —1.
This concludes the proof.
Lmmma 4. If p is an odd prime with (d|p) =
2Pk, with L= 0, then piw(k).
Proof. Let % == (p+1)p"n, where ptn. Let § = p~ For every
%, yeZ, we have by the previous lemma, that if (z-+y&HPT" = X ¥,
then p|XY. Thus :

ir(z+y6)

—1,{p-+1)}k and if

— it (X4-Y8)°
x3-1y3+( )XS SY3d ... =0 (modps)
and so p¥{w(k).
On. the other hand we find that
iz (p+ 0)% —p"“lk-!—() Ll B +(k ) @ 4 gl

= pkdt*~1 (mod p™*?) = 0 (modp®*?)

and so p"t* v (k).

o Ly 5. If ¢ is an odd prime with ¢|d, then q|w(k) if and only if
¢l k. If g™\ %, then ¢™||w(k), excopt that if ¢ = 3, & = 6(modl) and & >3,
then 3™ |4 (k).

icm
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Proof. We have, since ¢|d,
ir(o-y0)* = k- (§) Ryt dt.

and. §o gliv(z-+y0)* for all ‘choices of ®,yeZ if and only if g|%.
We also have if ¢™ |k, and if ¢ £ 3, then

ir(p+y0) = ko" 'y (mod g™+
and. the result follows if g 3.
If g = 3, this last argument needs modification, sinee then SM‘I]l(;;)-

kg (mod q)

If however 9!d, then the previous argument still works. We suppose
therefore that 9+d. Then

ir(e+y®) =ka* ty+ (g) " 323 d (mod 3% 1)
b—1)(k—2) d
= ka® %y {w2+ L%ml -—3—@/2} (mod 32+,

i
= k" "ty {m2—|~ E);y*} (mod 3¥+1),

Now, if & = 3, and therefore M = 1, we see that with 5 = 0,y =1 the
right hand side is divisible by 3 but not by 9, whereas for all z,y the
right hand side is divisible by 3. Thus the general result is trne in this
cagse. Moreover, if & = 3(mod9), then for all k,» —y = 1 leaves the
right hand side divisible only by 3. However 1f E 53 and also d =
&= 6(mod9), then for all @,y the right hand side is divisible by 3%+,
and so 3%F1|w (k). However, it is easily seen that in this case, 3%+ rw (k);
for

ir(1436)¢ — 3k+()3 dt... = 3k (mod3¥*?).

This eoncludes the proof.

LEMMA 6, If & is odd, then 2 xw (k). If 27 |k with N > 1, then 2% | (k)
if @ is even, and ZN“Hw(ic) if d 48 odd, except that w(2) = 2.

Proof. (i) It &k is odd, then 21w (k); for if d is odd then

(Y = @Y = 1 (mod2),

whereas if d Iz even, then
ix(t 0 = o (5) a+(5) 2+
(i} Tt 4 is even and 2¥||k, with N =

. = 1(mod?2).
- 1, then we find that
it (@b yOF = kot 1y+() ... = ko'~ ty (mod 2V+Y)

and so 27w (k).
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{iii) I 4 is odd, consider first w(2™). We have
(m-+y8)? = (@ dy*) + 20ay,

and so clearly w(2) = 2.
Now define for each ®,y,n

@418 = (@ y o).
Then '
By == m:?b"{_ (11/’2” Ypa1 = zwny'n'

Since d is odd, we find that for all o, ¥, 4 |2,¥,; for if either 4 or y is even,
then, ‘1W1 whereas if z,y are both odd, then both 2, and y, are even.
Thus 2° |y, and 8o by a simple induction, 2+ |y, for # 2 2. On the other
hand if @ == 1,y = 2 then ®, iy odd and 2%||y,. We then find that a, is
odd and 2”“”%. Thus 2" w(2™). Now let & = 2%+ where » is odd,
r>1 and N 2= 1. Then, '

ir(o+y0)* = ir(oy+ g 0 = 705wt (3ol

Now it is easily sesn that if » > 1,2V dlwdes each ferm on the right,-

even if ¥ = 1. On the other hand if # = 1,y = 2 then a8 we have seen
above, @y is odd and 2%y, whence 297 does not divide the right
hand side. This concludes the proof.

Lemmas 26 between them prove Theorem 3 in (ase I The proot
“for Oase II is entirely similar; and in fact only the proef of the result
corresponding to Lemma 6 Is essentially different. The details are omitted.

We have therefore determined J, completely, and so in view of
“Theorem 2, the remaining problem is to determine P, when d >0 and %
is even. In the following, we restriet our atfention to Case I, as some of
‘the details are simpler; similap results can no doubt be proved in Cage 1.
Cleaxly if yeP), then also »' P, where » denotes the conjugate of ». Thus
we consider » = x+y8 where y > 0, the case 4 = § being trivial. Since %
it even and every element in the field is real, for veP,, we mugt have
»22 0 and » > 0 and sv we need only Lonslder ® >yf > 0. We have in
- faet

LemMMA 7. In Case I, d =0, k even, a-+y0eP;, is possible o'relly/if
x> Y8 =>0 with wkliy or =0,y =0.

However, these neceqqmy conditions for »<l, are not alwayy suffi-
cient. For conqlder d =3, k = 4. Then by Themem 3, w = 8. However
14+4-8-3"¢P,, although 14>8 3> 0. For we find if o = o+ y-34
then o = (24182 y*+ 9y*) - day (0*+ 3y*) 3%, and so 1448 37 = )ja,,
would imply ‘

2 = Zmryr(.m?—l_ 3y”2')’
14 = 3t 1802y + 997,

icm
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and these are impossible, since if ire* # 0, we must have rata'z 28.
Actually, we see without difficulty that n--8-3'%¢P, for any n < 180.
For if this were possible, we see that for each r, |y,| < 2, gince otherwise
9yt > 180, Also if W, = 2, then », = 0, sinee otherwise rata* > 1+724
144 > 180. Therefore for all terms which contribute to the irrational .
part, we have g, = +1. Again we may show that », = 1 or 2, and so
the only possible summands in such a representation of mn-48-32 are

(18 =28 416-3"  and (2434 = 97 £56-31

Tt is now easily seen that the smallest value of «# for which a 1‘ep1'eaeﬁmtion
existy 18 181, given by

1814 8-3' = (2 3" 4 3 (1L — 3",

1t is now clear that n-+8-3"* has a representation as the sum of
fourth powers if and only if % > 181. This ftype of behaviour is not
exceptional, and we prove, _

TuworeM 4. In. Uase I, lot d ==0,21k and w(kily, whore y >0.
Then there swists « least positive integer f(y), which excesds y0, such that
a--ybelP, if and only if x= f(y). '

"Proof. It is clear that to prove the theorem, we must find one
value of » for which z-}- 48P, for each given vy, satisfying the conditions.
‘We choose a, £ as in Lenuma 1, with aw (k) = iro* and bw(k) = ir* where
(@, b} = 1 and we may assume, taking conjugates if necessary, that
both & and b are positive. Then there exist positive integers 4, B such
that yjw(k) = ad—bB. But then y = ir{dc*+B(§')*}, and the result
follows.

It is clear fhat the sum of two members of P, is qga,m a member,
which yields

Lavna 8. flys-+ye) < f(y)+F @)

- To proceed, let s, denote the fundamental unit in Z [67 with & > 1.
Lot & =& = a--u(k)0. Since k is even, N(g) =1, eg’ = 1. Thus
a >l = 0. Let 20p, = £'— ™y ng = ¢+ ¢ Then fu( -) Ip, for each =.
Also w(ky | w(k), since u(k) = ivel.

We prove

Lsmya & fip,) = g, for n >0.

For, g,+p,0 =& = (e)'eP, and so g, f(p,). Bub, (g,-+2,0)x
X (go—D0,0) = %™ =1 since N (g) = 1. Thus ¢,—p,§ < 1, and so f(_pn
> p, 0 > g¢,—1, which concludes the proof.

In what follows [#] denotes the greatest mtegel not exceeding .

. 'We have

Tumorem B. If w(k)ly, y >0, then fly) = 14[y0]
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Proof. Cleatly f( = 14-[vf). We have u|p, for every « = 1, and
Py = Also since ee' =1 and e+ & = 2¢, Doy = 200, Dy and 80
Ppra < 2ap,., for » = 1. Now suppose that p, <y < P,,,. Then we may
write ¥ = A,P,+Y1, Where 1< A, < 2a—1, and p, >y, 0. If g, >0
we may proceed. in like fashion until we obtain

Yy = ZA'?'PTHI—AU’

with 14, <21, 04, <201 1oxrr=1,2,...,n—1, and 0«

Ay < p,. But w4, since u|y, and w divides cach pn But p, = u and
so it follows that 4, = 0. Thus we have

7
Y = Z—Arpr'

r=1
We then have in view of Lemma 8

y) < D A f (D)
r=1
= Z.A,.q, by Lemma 9

= %ZA (& — ™) [— vA i

r-—l

=0 ZAa.p,,—l— ZA &

=1

_y6+2A &,

and 5o the proof will be complete if it can be shown thafu

pRET

LS

' I i
Now we recall that each 4, was chosen so that if y = 3 A,p,+
re=a-L

b U gy THED O K Y, < P Thus for each m = 1,2, ..., n—1 we have

,pqw.»i-l = 24 -41-231*1

Pe=l

and as before 0 << 4, < 2a—1. .
But it iz easily verified that
-]

pm,+1 = (‘)a, 1 p1+(2a— 2 pw-|—(2a, 1)pm!

Fe=2

® : : .
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and so there are three possibilities
(a) 4, < 2a—2,. ‘ ‘ -
) A4, =2a—1, A, =Ay=...=A, , = 20-—2, 4, <2a—3 for some

W< 1y
(6) A; =2a—1, 4, = Ay = ... = 4, =2a—2.

We consider these possibilities in. turn.

T o )

- (a) =1 YA, < =14 (2a—1) X &8
=1 =

r=1
— 1 20—1 1 _ 2—¢ <0
- e—1 e ele—1) ’
ginge & = ct-i—uﬂ =1+0>2,

-]

(b) —1+ 2A,,a"< —1+e +(2a—0)28” ™4 (2a—1) 3 &7
=] 1 PF=in41

. ' —2 oy (Za—1)e™

= 1-|-6+ p—) (I—e™)—e L —

e
&

(¢) —1+ fArs” = ~—1—|—a -|—(2& -2 Z
r=1 =1

2a—2

< Sl

= 0.

This coneludes. the proof.

The convergse of Theorem 5§ is however f&lse in general. Thus for
example in Z[3'®] we find that & = 2-13Y%, & =97+56-3" and so
#(4) = 56. On the other hand 5404+ 3120-3"* = (5 3-3'*)* and b6 13120
yet 5403 == [3120-3]. ‘ '

LeMmma 10, For oll y >0 awith w(k)[y,f(y y9- A, where A is
o constant depending only wpon 4 and k, and not upon y. _

Proof. Since wly and wiu we find unique &,% such that y/jw
= g tufw with 0 < s << ufw. Then ¥ = sw+ fu and so in view of Lemmas
8 and 9, and Theorem 5, we find that

Fl) << Flsw) -+ flud) < Flsw) 4 Out -1 = f(sw)— Osw—+ Oy+1 < A+ 0y,

where 1 is the greatest value of 1-f(sw)— fswfors = 1,2, ..., —1+ufw,
and depends only upon & and k.

LEMMA 11. For all 4 =0 with w(k) |y, flo) < [(dy2+N)VP]-+-1 where
N is an integer depending wpon 4 and L only. Tor all sufficienily large such
¥, F(y) < [y0]+2.

Proof. We obsgerve in the first place that for any » and m,tlona.l
integer 7, and »s” both belong to P, or neither belongs to Py, since
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& = (¢))%, Now suppose that v =2--»8 where w|y and @ >y0>0. Let
M = N(v) = #*—dy* > 0. Now let #,+vy,.8 = (2+y6) . Then

29,0 = (v yﬂ)é”'*(m-yﬂ)aﬁ

from which it follows that y, > y..,. Also a8 r > o0, ¥, — — o0, and
" so we may choose 7 to be the largest integer for which %, > 0. For brovity
write X =, ¥ =¥, It ¥ =0, then clearly r<P,. We suppose then
that ¥ > 0. Since y,,, < 0, we find that ¥ < «.X, and since M = N (»}
= N(v&") = X>—aY?% we find that ¥ < «M'? ¥ < oM™ Thus

4 N _M'lj2 8',
X+ Yo

—¥0 =

and so it follows from the previous lemma, that if M = e, then X ~+ ¥,
and hence also @#4-y6 belong to P,. Thus if N = [le¥]+1, fly)
< [(dy*+N)"*]1+1. The last part is trivial, since

N 1z
W} < 8 'l/{1+

(d!yz—]—N)W = By{ Nz} < fy--1
for all sufficiently I;mge 9. 7

We zee thevefore that for all sufficiently large ¥, fly) must equal
[%0141 or (6] 2. It is natural to ask whether this result can be improved
to exclude the latter possibility. That this is not possible in general follows
from

Lepa 12, f(y) =
Jly) = lwol+1 for all 4.

- Proof. Suppose there exists » = w4- 8 with » >y > 0, and 'w(}’n)iu
but with v¢P;. Then also v&"¢P;. Let

(w0141 for alt sufficiently large y faf and only if

= (o +y0) {0+ 0, 0). = (g, + IYP) + (e, + 2Pa) 0
Thus ¥, - co as # — oo, and w(k)l']{%. Algo -
— dy? .
e S VR U
_ n"E' Ynﬁ
Thus for all sufficiently large w, X, — 7T, 0 < 1, that iy X, =Y, 6]+1,
yvet X, -+ Y, 0¢P,, and this proves the regult.
LeMma 13. f (y) = [y0]4-1 for all y > 0 with w(_l) |y -only in the three
wases d =2,k =23d =2,k =4;d =3,k =2

[y0]+1, and that

Xt T, 0 = ve®

X, ¥, 0=

o 00

Pr oof Suppo%e that # =

B4yh = Z o = 2(m,+y,,9)’~

=] r=1

icm
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Since for this y,  is minimal, it follows that for no » is @, or 4, zero. Without
loss of generality, we assume that each z, > 0. Then also sach ¥, > 0,
sinee ctherwise changing the gign of y, would increase y, and leave »
unaltered. Since # = [y#]-F1, this would be impossible. Now if f(y)
= [yf]41 for all y divisible by w, it follows in particular that f(w)
= [wf]-F1. For a representation as 2 sum of kth powers of f(w)-- w0,
it is clear that there can be only one summand, since the irrational part
of each kth power iz divisible by w. Then
w = it (X + 7O = X+ ’YL—E—( )xr" SYIG4 .. 2 ir (L B)F,
and so it follows that f(w)+wd = (L+ 8% But then (1— 6 = flww)—
—wf << 1, and this can be sa:tmfle(l only if # 3, thatin d =2 op 3
Gonm{ler d = 2. Then we have

21[2 1](.'__ 21!2___1 & 1
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Now suppose that there are exactly r» odd primes p with (p-+1}|%, with

Pr>Pe > =P, Then p,+1 <k, po+ L < B2, ..., 0,1 < By, and so
k I k
) PiPee Pr s (k——l) (5 —-1) (?3_ —1) (_?: gl)
(k—1)! o
orl(k—1—r)!

Now by Theorem 3, w(k} = 2" ][ """ where 2"k, and p runs over all
primes = 43 (mod8) with (p-+1)|k and p'|[k. Thus w(k) < kpyp, ... p,
< %2572 by (2). Thus by (1) we should have fo have

2% > (142220
o1
4 3k 4
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Now for # >e, the tunction # 'loge iz monotonically decreasing,
and so since the above inequality is not satisfied for &k = 12, it ig clearly
nob satistied for any greater value, Thus we need only consider n = 2, 4, 6,

8 and 10. We find that

w(2) =2 = ir(14+2") = irs = u(2),
wid) = 12 =ir(L4+ 2V — ire = u(4),

w(6) =10, ir(14+2"%°>10,
w(8) = 24, ir(1--212) > 24,
w(l0) =2,  ir{l-+2"3" =2,
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and so using Theorem 5, we see that & =2 and k = 4 do indeed give
the only & with d =2.
Consider d = 3. We need, writing # Ior flaw)

m+g,u-31 (31.’o+1 _ (4+2 31.[2)15/2 e 3ME = (31/2_1)].-.
whence
e Bup? = 2%
Also C
98 (24 3V == (- w - 3M2)? =t Bw?-- Qo - 3

and so 2% ]ir2%(2+ 3V = 2mw. Thus @ = 2" 'z,. Thos
22]«: 2 2 3w2 2-1::. .

But if % > 4, we may divide throngh by 2%, and then the resulting equa-
tion is impossible modulo 8. Thus & =2 or % = 4. But & = 4 can be
dismissed, since w(4) = 4 and ir(1+3")* > 4. There vemains the case
L =2 We find that w(2) =2, &, = 23" ¢ = & = 74+ 4-3Y%, and so
%(2) = 4, Thus Theorem 5 iz only applicable for ¥ = ((mod4), and we
shall have to verify thatif 4 is an odd multiple of 2, then indeed &y -3¢ P,
for each # >y 3. The proof consists of applying ouwr previous lemmas
to reduce the amount of ealculation required, and then performing this.

Using Lemma 10, we see that the result is true provided o > y 3241,
where 4 = 14 7(2)—2-3'% thatis 2 = 523" We then use Lemma 11,
in the courge of the proof of which we saw that the result is true provided

— 3y > Ae® = (5—2 -3V (T+ 4-3V% = 297-056.

Thus we need only consider values of &, ¥ with ¥ - o?— 3y? =L 297, For

such o, 9 lst

X4Y 32 = (w4-y- 32"

Then clearly, we need only show that X+ ¥ -3"¢P,. We now choose »
80 that | Y| is minimal. It is then easily seen, since &’ = T—4-3"2 that
we then gét | ¥| << N2, and so we see that we need only verify the result
for ¥ =2,6,10, 14 since the values divisible by 4 are ireated using
Theorem . We find in these cases

2:3]1 =8  and 428348 — (1 3%)e,

(6:3%%] = 10 and  1146-3" = (1+3"4)24 (2431,
[10-312] = 17 and 184103 = (14821 2(2-4 840,
[14:3%%] == 24 ' and 25-+14-3Y% = (1_+31’2)= -+ 3(2+ 32y,

This completes the proof.

Combining these results, together with similar ones for Cage II,
~details of which are omitted, we obtain finally,
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THEOREM 6. If d > 0, k even, P, consisis of all tetally positive members
of J;, only in the nine cases d =2, k=2 or 4; d =3, bk = 2 and 4 = 5,
k =2,4,6,8,12 or 24. In the other cases there ewists an effectively com-
putable N = N(d, k) > 1, such that Py consists of all totally positive mem-
bers of J, with norm at least N, logether with some but not all of the other
iotally positive members of Jy.

We have seen 2t the beginning of this paper that kl]iry is a sufficient
condition for »eJy, and so clearly w (k) must be a factor of k!. However,
we observe that w (k) is far smaller that %!, for all but very small values
of k. We prove the following result, although the constimts in the actual
bound are easily improved:

TaEOREM 7. For every d, w(k)< 3k 2% As k — oo, logw(k) = o (k%)
for every 8 =>0.

Preoof. In virtue of Theorem 3, we find that

w(k)
k < 12'np’

where the produect is taken over odd primes, p, such that p+1|k and
{d|p) = —1. Thus if there are exactly » such primes, with.p, > p, >
> p,, then '

k

k .
P b—1, Pssx“/t‘z“:"*lz crey Pré?“—l-

Thus
(k—1}{k—2) ... (b—1)

= 3k-2%
r!

w(k) < 12k

1
_12k( )<12k -9

To prove the second part, we observe that r < d(k), where d(k)
denotes the number of divisors of %, and then usihg the well-known result
that &(k) = o(%k%), we find that since p,> 3, r < Lk, and so

logeo (1) < log12+log -+ log ("’( ;“)

< 10g12+10g?a—|— d{k)loghk = o(%k",

where & was chosen smaller than 4.

We have not considered the question of how many kth powers might
be needed to represent any element of J; (or P,), and we make only two
observations. From Theorems 3 and 6 it follows that every element of
Z[5%] is the sam of squares provided it iz totally positive. Maass [1]
has proved the extraordinary result that three squares always suffice,
and moreover has given a formula for the number of representations as
the sum, of three squares. We prove, in any guadratic field a regult for
cubes, viz. '
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TurorEM 8. Any dement of Jy can be represented by af most five
cubes.

Proof. The idea of the prooﬁ is very simple; from the two well-
- known identities
6 = (1--1)' (1 1)°— 24,
68+ 3 = 13- (44— )* - (2 —B)® - (4 — 2¢)°

we see that if ved,, then » can be represented as the sum of at mogt
five cubes if we can find I, m such that

N

rat {v— (I m8)*} = 0 (mod3)
and also
ir{y—~ (I m0)°} =0 (mod6).
We shall show that this is always possible, but the proof is rather
long in view of the many cases that arise.

Case L. (a) 3+d. Then w(3) = 1. We then need to choose L, m if
possible so that, since % == d,

@ %&Zﬂ(modé’), b ESlﬂm—}—m?d(modG).

The first of these is satistied if 1 = a(mod3). The second requires simul-
tanecusly, b = md(mod3) and b =m{i+-d)(mod?2) and it ix clear that
these are consistent. Thus a- b8 can be expressed as the sum of five
cubes for each e, b.

(b) 3{d. Then w(3) = 3. We then have » = a~i— 3b0 and so muagh
choose I, m 11" possible so that

d
¢ =1P(mod3), b =mt m3g— {mod2),

and again it is clear that these can be satisfied.
Case IL. (a) d =1{mod24). Then w(3) = 1. We now have

a—1- '
g2 = BJF.T = f(mod 8}, 0* = 0% == 0 (mod 6).
Thus
(b+-mB)* =1+ 31mO+ 3lm® 04 m® 0 (mod6) =

and &o

and so

et mf (mod 6)

o080 = (a-bOP-L6&,
and the result follows. .
(b) d =5(mod 24). Then w(S) = 2, ¥ = a--2bd. Then

- .
= EH—T =0+1(mod6) and 6 =20+41(mod6).
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Thus ‘ : ‘
(I+m8)P® = P+ 3mb+ 3lm? (61 1) - m® (26-+1) (mod 6)
and 80 we require

a =P4m® =1+mmod3), b =m®=m(mod3)

and it is clear that these can be satiafied simultaneously,
(¢) & == 9(mod24). Then w(3) =3, » = a+300. In this case we
find that
0 = A-+2, 0 =36-+2(mods)
and so
(I+m0)¥ = P+ 312mb+ 3lm? (6 2)-- m*(36+2) (mod 6)
= I+ 2m+ 3m8 (mod 6)
and so we require that . |

b =m(mod2), @ =1-+2m(mod3), : -

and again these are consistent.
(d) d ==13(mod24). Then w(3) = 2, v = a-+2b6. Then
=43, 6 = —26+3(nod6),
and we find as before that
-+ mﬁ;)a =1 2mf{mods),

and so we ean have [ = @, m = —b.
(e) & =17(mod24). Then w(3) =1, v = a4 bf. Then

& g2 =02, @ = —0—2(mod6),
whence _
(I4-m0)® = (I— 2m)— mb(mod6)
angd. 80 we require a Eﬂl—zm(modB), b = —m{mod6), and again we.

can find such i, m.
(f) d = 21 (mod24). Then w(3) =6, v = a—+6b6. Thus » = a’+6¢,

and the result followsy.
. From the method of proof it-is clear that the representation as the.

sum of five cubes can be carried out in infinitely many ways. This raises. .

the question as to whether four cubes might not suffice. In some cases.
this is to — for example if d = —1 we have the ring of Gaussian integers,
and in this case T have been able to find a number of identities which
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together show that four cubes suffice. But I have not heen able to prove
a similar result in general; perhaps this is not aii,oo‘ether surpriging, smce
the corresponding result is unproven even in Z.
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OO0 ougHKe XOMHYECTBA MPeACTABICHH CHEMHANLHEIM
KJAcCOM GHIapHBIX KyOmgeckmX (opy TONOMKHTENLHOND
MHCKPHMBAANTA

3. T. Amwrcos (Hucnosoner)

‘ 3
lyere F(m, y) = o+ 3 a,8**y" — nenpusopumas Gupapuas ryOn-
=1 :

ueckad dopMa ¢ NenEME Koadfuimentamy u puckpmvunantoM D. Ecmu

D < 0, To 3a7ava ONpPEeHENeHMA BCeX NelbIX pemrenwuil (2, y) Heompeme-
TEHEOTO YPaBHEeHUA :
(1) Elw,y) = m+2aw“‘y*—1 : :
{=1
PAaspeaercs ¢ noMomplo peayanraror [lemome [9] Haremna [13]. Hpua
D> 0 UX MeTOJ OKASHBAETCA, BOOOINE TOBOPA, HEIPYMEHNMMBIM. .
Ha oCHOBANME M3BECTHHX pesyinTaros Baiikepa (cm. mampumep, [4])
JUTA BOBMOJRHEIX IEILIX pemennu (%, y) ypapHenua (1} copapeNiuBa cle-
nyxomaﬁ OLCHKA
max (i, o]} < oxp (55 B,
TIe : '
H = max |o,].
i

Ouesumyo, NpuUMeHeHHe I0CIeTHefl OHMGHHH Ha ROHKPETHREX TPH-
MEPAX. [OJHHHO IMPABONHTE K YpesBhYaino GompImomy 00beMy BLITHCIIEHEH,
TpebynImery HCIoIL30BAMNA Moumoﬁ 3neHTpOHHO-BH'mc:mTenLHoﬁ TeX-
BHKE {cM.. [5]). _
" B cBASE ¢ 3THM BOBHHKAET HeOGXOLUMOCTH PASBHTHA METOROB (ak-
THTECHOTO  OTIPEISNEHHA PEIICHNH Ml MOHMHEHHA ONEeRKN Baiinepa, Ha-
IpuMep, A ypasfenus (L) B cIydae MONOMKATEIHHONO AMCHPUMIHAHTA.

MU HmCCHeXyeM CHeIuAlbHbll KIacc. GHHADHER KyOUHUECHIX dopm
TIONOMUTENLHOTO HCKPUMHHANTA

) o — masty— (- 3) 2y —

% — MPOMSBOIHHOE IeI0e UYKCIO.
916 KITACCHUECKOS YPaBHeHNe (JACTHBIM CYIAAM ero, nonyqammuMCH
opy 4 = 0, —1 ¥ 2, TOCBAEHE COOT CTCTREHHO paborer [12], [6] = [1]}

yr =1,

2 — Acta Arithmetica XX.1



