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1. Intreduetion. Let a, 8 be the roots of the equation

{1.1) #*—Pp-+Q = 0,
where P, @ are coprime integers. The Lucas functionsg defined on the
associated eguation (1.1) are given by

Ty = "+ ﬁn’

#, = (a"— ") (a—B).
We shall call {v,, u,} & set of ordinary Lucas functions. These functions
and their many properties have been discussed by several authors. The
most extensive works are Lucas [7] and Carmichael [2]. Because of the
many uses of these functiony in Number Theory and Combinatorial

Theory, a generalization of them should be of some interest.
We can give an alternative definition of {v,, u,} by noting that

¢ = @A w82, f = @—ud)2,
where § = a— f. Hence,
B, = ({0, uy )2 ({1 — u, 6)/2)7,
w, = 3‘1{{(v1+ uy 8)[2)" — (('ul—'.u:1 6)/2)”},

where ¢; =P, u; =1,8 = 4 = P*— 4§ and P, ¢ are coprime integers,
‘We shall uge thig definition of the Lineas functions in order to generalize
them. -

2. Notation and definitions. We denote by %, the complex field,
by Z, the field of rational integers, and by N, the set of positive elements
of Z. Let ¢ be any prime in Z and o — exp(2injg), where ¢ =V 1. If

g > 2, let: 6 be the real gth root of some nonzere deZ;ifqg = 2,16t § = V4.
Let : :
. l g—1
o =— D Uy o™ (i=0,1,2,...,0-1)

i=0
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be the ¢ roots of

aq
(2.1) Da T (—1Y0y =0,
k=0
where @, = 1 and Uy, ULI, ooy Uy 64 We define
o
(2.2) U, = o7 _z gfol (kb =0,1,2,...,4-=1).
i=t

For ¢ = 3 the functions U, UL), UF), were wsed by Pocklington [10]
in the production of an algorithm for finding the cube root of an integer
modulo & given prime. Also, if 4 = D, Uy == 3%, Uy, =3Y,, Uy, =32,
where D i not a perfect cube and (Xl, Y,,Z)is a fundamentcbl solution
(see Matthews [8]) of the Diophantine equation

- (2.3) . X4+ DY LD —3DXYZ = 1
then any solution of (2.3) is given by (U3, ULL3, UEL3) for some

integer ®. These functions are discussed more fully in Williams [14]. -

in order to simplify our notation, we shall consider ¢ to be an arbi-
trapy but fixed prime of Z; this allows us to drop the superseript of UQ,.

3. Identities. It may be easily shown that the functions U,

(k=10,1,2,...

, g—1), satisfy the following identities:-

Uj,]«: U;iw Lk Uj-—z,k Un,k 4 Uq~ 1% 4 Uj»]—l,k

Ul,m Uﬂ,’nl A Ug—-].,m """ A U2,m
(3'1) Uz,m Ul,m UO,'JJP d Ua,m

Uq—'l,’m. Uq-z,m Uqfa,m o Un,m

= 0" Q7 Uporms
Uu,n A Uq—l,n A Uq—&m . A Ul,n
(32) [ .Ul,ﬂ - Uo,n A qul,-n. A U:!,n '2 {“
} Uq-—l,n _Uq~2 1 Uq-—‘,fn. UG '
' glef |
(33) ' qui,n'-Q—m = y Uk n Uj e I"A 2 Ug—lku Urf it,m ¥
Je=1
. a—1 .

B4) (Y Unote)r= q""’IE U,o8  (G3=0,1,2,..., g—1),

i=0

?TH'Q

i=0

2( 1k+ Qk inta—k

On a generalizafion of the Lucas funclions ab

From Newtons Formulas, we obtain

k=1
(3.6) 2 (1 Uyt (18 = 0
and : o
U, 1 0 .. 0
i Uy Uy 2 ... 0
3.7 Q=571 Ups Tps  Una 0 |
Usr Usier Do~ - - Ungs

I
t LTl,n Ul 25 Ul (g—1)n
Ap=q| Usn  Usin Us,ig-1pn
i N
! Uporn Ugorom Ua—l,(qwl)n
then

=

Uf,(q—l)n—;-r Uj,(q_g)n.;_,.

(3-8) . -U:i,ﬂ’ﬂ%—r U:T,(q—l]n-l-r - - s U:‘f,ﬂ--'rr

} Uj-,(‘zq-ﬂ)n-[-r Uf’(ﬂqﬁa)n*_r PP U?'!(Qfﬁl)!’i%r
= (_1)(j+l)(g+1)q_ngAid“"l_‘; |
and
‘i LTU:T ) Ul r Uq—l,?‘ H
7 . ] . .
(39) E Un,n+r [ Lntr Uﬂfl,ﬂ-i—r _ Qgﬂn_

U gg-ymer |

Finally, we note that if @, 2, ..., #,., are defined ag the roots of
the g—1 linear equations ‘ :

-1 v _ :
o’ :~~—10g (3=0,1,2,...,0—2),
g1 Q’z
we have
(3.10) _ U, = Q@18 Ty (nwy, 0y, ..., NOg),

wﬁere y; is the y; function of Appell [1] and Glaisher [3].

-
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4, The extended Lueas functions of order g. It is clear that the fune-
tions Ty, (j =10,1,2,...,¢—1), are generalizations of the Lucas func-
tiong. In fact, the identities (3.1), (3.2), {3.8), (3.4), (3.5), (3.8), and (3.10)
are completely analogouns fo the fundamental identities (51), (46}, (49),
(7), (10), (30), and (5) respectively of Lucas [7]. However, one of the
most imporfant properties of the ordinary Lucas functions v, and u, is
that they are both integers for any neN. We shall prove in Theorem 1
that & necessary condition for U;,eZ (@ =0,1,2,...,¢—1), and » any
element of N, is that §,<Z ({ =1, 2, q); but We must firgt give

Levva 1. Let hy(z) = by Z‘ bf(mm“’“)” (4=0,1,2, ,q»—«l), where

byeZ for k = 0,1,2,...,¢—1, cmd me(ﬁ then, if f(#) = §, (ho(m), hi(m), ...
q_l(m)) where S (wl, Dyy ooy dly) 08 the v-ith elemeniory symmetric fime-
m'cm of 1y @ay .., By, we have '

fulm) = (gﬁ) b+ TZ—jL a;,a",
i=1

where a.eZ (r=1,2,...,¢—1; ¢ =1,2,,..,r-1).

Proof. This follows easily by observing  that f,. is a symmetric
polynomial in 2, 0™z, 0w, ..., ®~ "z and by using the symmetrie
function theorem.

TusorEM 1. If U,,eZ for ¢ =0,1,2, ..
QeZ (1 =1,2,...,9.

Proof. By Lemmal, §'Q,¢% (1 =10,1,2, ..
hence, if i< q, @;eZ. BSince U,,<Z {for

oq—1, and all neN, then

.y ) and by (3. 7) £1Q;eZ;
¢+=0,1,2,...,¢g—1 and

]f =1,2,3,...,¢+1, it follows from (3.5) that ¢Q,<Z a,nd. U; Q€% for

*{mO,l,Z,...-, g—1. If, for some 4,(') ¢+ Uy, Q,%; it g|U,;, for

z) :_:ZO,_I,Z, ..y q—1, then, by (3.2), we have ¢*|¢"~*(¢@Q,) and consequently
QE -

We may now define the extended Lucas functmns of order g

DuwvirioN. Let A, U, % (i = 0,1,2,...,4—1), be chosen such
that the expressions (2.2) are rational integers for any ne¥N and () (@4, Q.,
vy @) = 1. We call the set of functions {U;,;% =0,1,2,..., ¢—1}
given by (2.2), a set of ewtended Lucas functions of order ¢. It iy evident
that any set of ordinary Lucas functions is a set of extended Lucas func-
tions of order 2; on the other hand, there are gets of extended Lucas
functions of order 2 whick are not sets of Lucas functions. An example
of one of thess is given by {U,,, U,,}, where 4 =35, U,, =4, U,, =2,

() @, y,2, ... are rational mtegers we write as usual @ |y for » divides ¥, o +y
for & does not dnnde y and (», y, 5, ...) for the greatest common divisor of x, ¥, 2, ...

icm
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@, = 4, and @, = —1. However, it is not difficult to show that; the prop-

erties of the extended Lucas functions of order 2 are the same as the
well known properties of the ordinary Imeas functions. For thig reason
and for the sake of convenience, we shall henceforth consider ¢ to be
an odd prime.

We now obtain the conditions on 4, U;, (i =0,1,2,
which guarantee that U, for ¢ =0,1,2,
functions. We first require several lemmas

5. Preliminary results.

LrvmA 2. If ¢?14, r = (g—1)/2, and ¢|U;, for §=0,1
then UjneZ (=0,1,2,...,4—1), and ¢{U;n for §=0,1
where n 18 any element of N. '

Proof. This is easily proved from (3.3) by using induetion on #.

Tmvda 3. If the conditions of Lemma 2 are true and qim, where neXN,
then 2| U forj =1,2,...,7 and g1 Ujpforj =0,741, r+2,...,¢—1

Proof. From Lemma 2 and Theorem 1, @, ¢Z and, by (3.6), q|4; for
k=1,2,...,¢—L This fact, together with: {3.5) and Lemma 2, shows
that qgl for j =1,2,...,r and ¢|U;, for j=0,7+1,...,¢4— —1;
hence, the Iemma is true for n = ¢. We show that it is true for # = kq
by using (3.3) and induchion on k. __

LemyA 4. If the conditions of Lemma 2 are irue and g| Uy for
j=10,1,2,...,m, where m =71 and m, n, keN, then.

Ugor = 4 Uu,k/ g)* (mod g%,
Upsrre = 1(Uopl 0" Unmin e(modg),
QueZ  amd Gy = Uy, fg(mody).

Proof. The first two results follow from (3.3) and Lemma 2 by
using induction on n. From (3.5) and Lemma 2, Q,eZ, and

. g—1),
..,q—1 are extended Lucas

Uy, = g9 (mod ¢*);
thus,
Q@ = Uy, Jg(modg). ]
LeMma 5. If A = d%igh, Uﬂ = ed" 7 fgr; (j=0,1,2,...,4—1)
where d,¢,t,%5¢Z (j =0,1,2,...,4— —1) and q{do, then for any melN,

UsneZ and
e I oo S
Upn = qeit {( o+ 2 r,.d"“)“~ ( Ty d*)"’] (modg)
i=0 . i=0
Jor j=0,1,2,.., g—l
Proof. Let 4 = Z r,d'. Suppose that Uy, = Apd '+ Ry
==l . .



38 ' H. €. Willisms
(j = 0,1, ..., g—1), where
o | | _
. Z By = A"(modg) and A, = (c+A4)"—A™(modg).
. d=0 -
This supposition is true for m = 1. By (3.3)

. ’ a1
Viomar = E7H (04, @744, )+ 0 3T By ] +

7=0
&k q—k—1
+4q ;’1 Byt i1 g 2 Brejm¥a -+
=0 ) Gl
- gotd,, (g— k—1) P F (mod ¢7),
Thus, ' ' K
B Uk.m*"l = Am+1dq~_k—l+qRIa,m+1 (k== 0’ 1,2,..., Q-—l): ’
where S
Apr = [0+ AP — 4™ (mod g),
o . ok . g-k—1
. Rk,ﬁz%l ”EZR?'.ML"PE—FI_ d’ Z . Rkﬂ'.mrqt-ipjr"‘
. 7=0 i=1
S A @ [0t A, (g — k—1) @~ ] (mod q)
and -
. & = E(G+~A~)m-}'l_'Aerl"—AmH]/g'
Now ' S
g-1 _ a1 & . ag—1 a—1
2 -Ric,mn(-ldtc EZ deR:l‘.m'r}c-j"}“ Z dk 2 Rj,mTIcm;i
k=0 : k=0 F=0 - f=g  Jwk-g+l
g—-1 - a—=1
_ a(; (I’“_Rk_,m)(Z d’“'rk) =A™ {modg);
b {) Je=0

hence, the lemma follows by induétion.
. LemmA 6. If the oonditions of Lemma 5 are true, then QeZ for
t=1,2,...,q and '

. e : g1

@ = (—1)"¢ (2 *-”fdj)"'*‘(modq) < g,
o jood
Lt . g-—-1
Q =c¢ (2 nm)%l+ 2 7. d (modyg).
[ i=p '

Proof. Th(? first two results follow from Lemma 5, Theorem 1,
and (3.6) by wsing induction on i. The last result follows by using {3.5)
to represent. U, ,.;. ' o
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Levma 7. If q| U, fori =0,1,2,..., q—1, then, for any ne¥N, Ui e
and q|Ugy (4==0,1,2,...,g—1)alse Q;eZ andq|Q; (i =1,2,3,...,¢—1).
Finally Q,cZ and

9 =2 (Usalg)4'(modyg).

Proof. The first resull follows on uging (8.3) and induction on n.
By Theorem 1, Q;eZfori =1,2,3,...,¢. From (3.6), ¢|Q;fori =1,2,...
vo.y g—1 and by (3.5) and (3.3)

Upgn 2 q (modgz) .
We also have

q—1 g—1 g—1
Unan = (X (Uil 0 ¥) =g 3] (U ala)f A imod g¥).
=0 7F==0 =0

‘We use the above lemmas to prove two important theorems. We
first show what conditions must be placed on U, (¢ = 0,1, 2, ..., ¢—1),
and 4 in order that U, (i =0,1,2,...,¢—1), be rational integers for
any nelN. .

TeeoREM 2. The functions U, for i = 0,1,2,...,¢—L will oll be
rational integers for any nedN if and only if one of the following is true:

(i) g£U1,1 (’!‘,=O,l,2,...,gﬁl), ‘

(ii)GQZEAJQIUi,I (i =0,1,2,...,7), .

(ifi) 4 =d%(modg?), U, = ocd**""(modgq), where g ted.

Proof. From the preceding lemmas, it is clear that the theorem
gives sufficient conditions for U;,eZ (i =0,1,2,...,4—1). We need
only prove the necessity of (i), (ii), or (iii). ‘

Case 1: 8¢Z. Let A = d,d3d; ... d271d%, where dy, ds, ..., dyeZ and
dydydy ... d,_, has no square factor in Z. It is evident that this represen-
tation of 4 is unique. Let

7 .
9 = ndgsmils”q ('L =1, 2, U gﬁl)
. a=1

where 1, == si(modg) and 0 < i,< ¢ We now define y, = 6%/(g,d;") for
§=1,2,...,9—1, ¢ =d;d;...d37;, and d =ed,. Let H(y) be the
algebraic number field formed by adjeining y, to Z.

By Theorem 1, @y, @, ..., @yeZ and §y = 1; hence

=)
—

Ugn 8

%

1
oy = —
q

Te=it

is an algebraic integer in K (y,).
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I ¢ t{e?'— @271, by Westlund [13],

q—1
y = mo“f"zmﬂ’w

it
wheyre m;¢Z (i =0,1,2,..., ¢g~1). As a consequence of this, g¢] Uinr0:4,
for 4 =1;2,...,4—1 and ¢|Uy;. If q|T,, (6 =0,1,82,..., ¢—1), we
obtain (i). I gqldg, for some 4> 1, then ¢%|4. Since U;p i3 an
integer for ¢ =0,2,4,...,¢9—1, we have, from (3.3), that gl U, for
4=0,1,2,...,r. This is case (ii).

If g2|(e* ' — @7]), then 4 = d%{modg?) and (Westlund [13])

a—1

Gy = $05+2 B3 ¥y

i=I

: _ =1 .
where @;¢Z (i =0,1,2,...,¢—1} and ge =1+ Y yie? %, Since
i=1 :

- q—l . q_l .
Uu,1+_5_: Us,19:6q ;i 2'930“}“2 (926" o~ g, i,
=1 =

we have

Vo, = @y,
_ Uy sty = g6 " my (mad g),
for i =1,2,...,9—1. It g Uy, then ¢|U,, (5 =0,1,2,...,¢—1) or

¢4 and ¢{U;; (1=0,1,2,...,r). Sinece (e,d, 1) =1, gre, g+d,_,,

and g+g; for i =1,2,...,¢—1 Thus, if ¢+ U,
Uy, = ed""Y(modyg),
where g +od. o

Case 2: §eZ. Let K(w) be the algebraic number field formed by
adjoining o to Z. Then

19
Ugy == W“Z'Ui,ldéwi, where d,eZ,
R .
is an algebraic integer in K (w) and

a2
e Z @0, where u,eZ
i=0 . .

(i =0,1,2,...,¢—2)

. a—1 ,
{see, for exa,mpl_e, Levegue [6]). Since 2w =0, we have

=0 .

U, . d = Vg1 85 (mod q). .
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It ¢ld,, g%| 4 and we have case (ii). If g+d, and ¢|U,_,,, then g|U,,
(¢ =0,1,2,...,¢—1); this is cage (i), Finally, if g+ U, ,d,,

U, =6d™ ™ *(modg) ({1=0,1,2,...,9—1),

A =d%(modg*), and gted.

The conditions on U, , (i =0,1,2,...,¢—1) and 4 which guarantee.
that (Q:, @sy Quy ..., @) = 1 are given in

THEOREM 3. If q|U;, for i =0,1,2,...,0—1, (@1, @, .-, g)=1
if and only if (Uyyy Uiy Uy eees Upn)) = ¢, (4, Uyp) =1, and

g1 ; :
QE{Z U 4° or (Ugyy Upys Ugy oo Ugr)) = 4 (4, Uy1) = q, and
by .

9?10, ;.

If 2|4, q|Usy for i =0,1,2,..
(@1, @, .-, Q) =L if and only if (A, Uy1) = q and (Ugs, Uy -
=1.

If 4 = d"(modg?) and U,y =c¢d* " *(modg), for i =0,1,2,...,9—1
and gted, (§:,Q,, s @) =1 if and only if (4, UO,I) = (Uy.1s UI,I!‘
Ug1s ey Ugenn) = 1L

Proof. Since the proofs of these three results are similar we shall:
prove the first only. : )

Let p (# g} be a prime. If p|(Uyy; Ty -ey Ugya) 08 21(Ugas 4),
by Lemma 1, p|¢"Q; for i =1,2, ..., 4. Thug, if (@, Qs .--, Q) =1, we
have (Uy 1y Upyyeeey Upny) = ¢ and (Ugp, 4) =g It p or v 2, by
Lemma 75 QE(QU Qm e Qq)! hence, if (Ql? Qz: vy Qg) = 1: (Uo,lrIUl,ls .

g-t )
o Uga) = ¢ and (T, )¢ T, fusther, (T, 4) =1, @1 3 Uy A5

or, if (Up1: 4) = 4, Qz’rUu,l- o
Suppose p (@, Qay ---, @) I pld, then p|(Uy,, 4). If prd and
8¢Z, let K[y,] be the ring of algebraic integers in K (y,) and let P = [p]

7, and g1U,, for some k, then
(] Uq—-l,l)‘

~ be the ideal generated in K[y,] by p. Bince p * g, p does not divide the

dizeriminant of K{y,); consequently, P = P, P; ..., where the P, are
distinet prime ideals in K[yl "
Since

q
af = Y (=1 Qa7
=1

we have

g =0(modP;) (i=1,2,...,k).

Thus, ¢, = 0 (modP) or ¢, = pI, where I<K[y,]. It follows that p (U, ,,
Upzy ooy Ugla). I p 14 and deZ, we use a similar argument on a,
in K{w).
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We assume throughout the. remaining portion of this paper thab
the symbol U, , represents an extended Lmeas function of order ¢ and
that nelN.

6. Properties of the extended Lucas fumctions. We shall demonstrate
2 great many properties of the functions U, ,, which are similar to prop-
erties possessed by the ordinary Lucas functions o, and u«,. In fact,
we shall produee analogues of Carmichael’s Theorems I, IT, ITI, VI, VII,
X, XII, XIII, in Thecrems 6, 5, 4, 9, 11, 12, 13, 14 respectively. We deal
~with divisibility of (U, Uwy Uy ooy Ugenye) bY g in

TumoreM 4. Let n be any element of N. If q[0Qy, ¢1Q,, and ¢[(U, 1,
Uiy ooy Uy then ¢[{Uopy Uppy ooy Uy )

If q1Qy, g 1@, and g+ U, , for some i > ¢, then q1{Ug y Uspy ooy Upoyy)
if and only if q|n.

If g.‘rQl a’ﬂ’d ngqJ thﬁ% q‘r(UD,n? .Ul,'nﬂ '7"2 Uq——l,sn)'

If @y and g 1Q,, then QHUO,W Uiny oo Uq—l,'n) if and only if ¢|n,
w?pc;re i is the least positive indeger such that ¢|U,,.

Proof. These results follow easily from: the preceding lemmas, It
should be noted that in. the cage of the last result ¢|g—1.

Lowwis 8. If g1 (Uons Uiy oy Uprg) 07 g1 (T, 4) then ¢ 7@,

Proot. Suppose ¢|(Uyyuy Uspy -y Uyprp) and ¢]Q,. By Theorem d,
¢1Q:; and, by Lemmas 7 and 3, ¢|(@y,Q;, ..., ¢,_,); this iz not pomble

Suppose ¢|(Uy,, 4)
which, under the assumption that q]QQ', is also impossible.

‘_VVe may now prove the important

THEOREM 5. For any #eN,(U,,,

' '.a Ugwlm) | q

Prooi. Let p be any prime. If p|U,, and pld, by (3.3), plU,;;
herice (4, T, n) = ¢".1f» > 1, by Lemmas 3, 4 and 7, ¢|¢,; this ig contrary
to Lemma 8.
. Let p (;é-g) be a prime and suppose p [(Ug,, Uy yy oo Uy ). Then,
_'1f96¢Z al}d P is the ideal generated by p in K[y,], we see that by (3.4),

gy (mod P).

Since p 194, we have p[(Uy,, Uyy, ..y Ugyy), which is impossiblo. I
deZ, we may apply the same sort of argument to «,_, in K[e»]. Hence,
r_(UD,u, Uiy ooy Upy ) = ¢ I v > 1, by (3.2), ¢1Q,; by Lemma 8, this
18 impossible.

Up to this point, we have dealt completely with the possible divisors

£ (Upny Uims -ovy Uy ). We. now concern ourselves with the dwmorb
of the followmg functions. We define, for any nelV,

- (Uo,m try Uq—l,n)

d)g and (Uons Usyns Uy

.

Ln? Uz,m U'Lml,n: Uz-{-l,m

and ¢!Q,. By (3.3), we see that ¢|{U,,, 4),

icm
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where ¢ = 1,2,3, ...
Dﬂ,n = (.Ul,ﬂ? U2,1:.‘; Us,m

, ¢g—1 and

H Uq—_‘i,n)'

In the thecrems that follow we obtain some of the many remarkable
properties of these D functions.

TUEOREM 6. Fori = 0,1,2,...,¢—1, (D;,, @) = L.

PlOOf LEﬁ_'p{(Di w? Qq) BV (3 2)1 I)!AIU;‘!,,E I:E pl CT’LTLJ pHU'HH D'Lﬂ)
and p = ¢g. But, it P = q, p|Q; this is impossible. If p{d, pl(4, Uy,);
hence, p == ¢. This too i impossible.

THEOREM 7. If meZ, LeN and m|D,,, then m|Dyy,.

Proof. The theorem is true for I = 1; suppose it is true for 1 -=s.
From (3.3) '

i g—j-1
QU'.(H-l)n = 2 Ukyns Ujry s+ 4 Z Usitns Ugmis-
It grom, mlU‘(Hl)ﬂfmj =1,2,..,4—1. I’qum, from (3.2), ngUM and,
by Theorem 4, q| Uy g therefow, gmlqlU, for j =1,2,...,4- 1
The theorem follows by inductiom.

We obtain a more general result than Theorem 7 in Theorem 3;
however, we must first prove

LeMMA 9. If meZ and m[DM, then m|D, 4

Proof. By the precedmg theorem, we may agsnIne ¢ # 0 From (3.4),
we get

i (s+Dn

{6.1) gq’l Ui an

(2‘ Teip— J)
— g 7 k=
iZ(iail..‘iq_l)A H U“’ '

.y tg_1} of non-

= j(modg). Let

where the sum 1% taken owver all po“’sﬂ)le gets {zo, 11, fgy -

2 i, =g and _2 ki, =
sy DO ADY such qet and letm = q ', where {m/, g) = 1.

negative integers such that

{Psas Byry Byas -

If j >0, it is U}ifgg, hence m’

s 10T § >0

Ii» >1, “eqeethatmtherq](mm Doﬂ)orql Uy, forl==0,1,2,...,7
and ¢®{ 4. In the first case, we have
q—1
qv(q—h;i)+hﬁ1 ” Uﬁf,’{,
k=0
where hy; << ¢—1, for 4> 0. Sinee v(g—hy)+ by = ¢Hr—1, When v>1
and hﬁ < ¢—1, from (6.1) we have ¢’| U, for j > 0. In the gecond case,
since ¢ == 0, and (4, Uy,)lg,» =1. BY Lemma 3, q|Umn for _5> 0.
Thus, ¢'m !DD - .
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TueoREM 8. Let meZ and keN. If (1) qlm, (2} q+ U, (3) % =0,
1{modg), and wm!D,,, thsfn M| gDy 1y @A M A Dy 4, where § = kj(modg)
and 0 < i< g—1L If (1), (2), (3) are not all true and m | D, ,, then m|D, ..

Proof. Let k= q%—i— », where v << ¢. We ghall prove this theorem by
induetion on ». Let v = 1. From (3.3),

qu,kn 2 Ul qun U?c~l,n+/1 Z UI-I T qum UQ'“Z ne

I=1

Now m|Dy gy and m|D; .; thus, if gtm, m|D;,,. If qlm, ¢]| Uy 4, and
gm | qUy 3, for h == j. The theorem is true for v = 1. Suppose it is true
for v = w-< ¢—1; then

I g—1=h

ZZ Uy Upgnt 4
p

AU, (orrim Uinien Ug—in-

=

By the induaction hypothesis, if (1), (2), (3) are not all true, m |1, ,,,
where ¢ = wj(modg) and 0 < < ¢—1. Suppose gtm. I i4-§<< g, m|Up g,
for b #£itj; i -z q,m| Uy, for b £ilfj—g I ¢|m, we have
qgm[qUs 5 Tor b # 4-+j, when ¢4j< g and gmigUy ;, for b s i+j—g,
when. i+j > ¢. Thus, | Dy, 4y, Where b =i--j = (w-+1)j(modg).

If (1), (2), (3) are all true, then ¢ 4, which implies Lhat( , g)
q

= (w+1)j{modq).

m| Dy g, where h = j, then ¢{U,,,; by Lemma 4, this iy impossible.

By Theorem 7, we see that, in.the sequence Dy, Dy oy .eny Dy py--ns
we have Dy, | Dy ; if k|f. Such a sequence is called a divisibility sequence.
Some propertiss of these sequences are given in Ward [11.]. Other types
of divigibility sequences have been discussed by Lehmelr [4], [5], Pierce [9],
and Ward [12]. Theorem & shows that the behaviour of the sequence

m
Hence,?lﬂh,,m, where 7%

‘D'!:,IJ'D'E,2.7"'?'D‘

Tamd t e

for 7 # 0, iz somewhat more complicated. We shall investigate these
sequences more fully in the following theorems; however, we shall first
introduce a _

DErmurioN. For any fixed meZ let D, .. be the first tepm of the
sequenece I, ., D, ..., D, ,,... in which m occurs asy a factor. If m
does not occur as a factor in the above sequence, we define o, = 0. We
call g == p; the rank of apparition of m.

It is clear that g, is a function of m and may be written as g,(m);
however, where there is no doubt as to what the argument is, it is more
convenient .to omit it.

If ¥ =0,1(modgq) and

icm
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TuroreM . If m|D, ., then o exists and g|n.

Proof, Clearly o exists and o <<

n. Suppose # = #e-+v, where 0 < »
<< p. From (3.3), '

o4 g—1—1
qUi,n = E Uk,u-e Ui—]:,'u“i"A Z Ui+7c,ue Uq—k,v‘
k=0 . k=1 .
By Theorem 6, m|Dy,,; hence, m|U,,U;, for ¢ =1,2,...,¢—1L It
gtmy, m|Dy,. If g|m, ¢i@, and gD, ,, then Q[(Ua,mpozwh it glm, q]¢1,
and ¢ 1Dy 1, qim, ¢|oand g|v and ¢|(Uy ., Dy,y); finally, if ¢m and 7101,
then t|n,tlo and t|lo and ¢|( Uy, Dyp). When g|{Uy,, Dy,), we have
gm | Ty, Uy for & ==1,2,...,¢—1; hence, m|Dy,. I pfn, we can
find a » < p such that m|D,,, this contradicts the definition of .
COROLTARY 9.1. If v = (m,n), where, m,neN, then

Do,v = (DU,mJ -Dn,n)‘

Proof. Tet L = (Dy s Dy,); clearly D, ,[L. Let ¢ be the rank of
apparition of L. We see that gim and ¢|n or that glr; thus, L|D,,,
which, since D,,|L, implies that L = D, ,.

TeroREM 10. Let m|D;.,. Then ¢ exisis and Jm]l)“, zf k = n(mod p).
If m|D,, and miq, then n hk(modg)

" Proof. Clearly o exists if m|D; ,; in fact ¢|gn. Since the theorem
is true for § = 0, we may assume j # 0.
"It k< n and # = k(modp), then » = ou+ k, where w<N. From (3.3),

q—h—1

2 U’oguUh»-1, k+d Z Ui+h,gu Uq—i,k;

d= =1

henee, Uy Unp = O(modm) tor A =35 I q{m, we have, m|D;;. If
g lm, we have three possible cases.

Case 1: ¢]Qq, ¢1Q,, ¢|D,,- In this case ¢| U, for ¢ =0,1,2,...

<.y §—1; thus, gm|T,,, Usy for b £ 7 and consequently miD; ;.

Case 2: ¢1Qy, ¢ Qg q+D,,- Here, g% 4; ¢ +m and ¢|o; hence, by
Lemma 3, gm|U; ,, for 1<i<r and q!U@kfor 0 <ir. We gee once
again that gm| T, ,, Uy, for I 3 j.

Case 3: ¢1Q,. Since ?|n and t|p, t|k and ¢| Uy, for ¢ =0,1,2,..

., g—1. This brings us back o case 1.

Tt &k >a and # =k{modp), we have k = ou--n for gome wuelN.

Algso

q Uh,n

g—h—1

2 U‘b o Uh—— n+ 4 2 UH-I:, ole Ug~1 n*

=0

qUnr =

‘With the same sort of argument used above, we cal easﬂy_r ghow that, if
gim,m|qU,, for b #j and if q!m, gm|qUy, for B .
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Suppose m | D; ., m|.D; 5, myqgand b s w(mod ). Bince g [ gk and g | gn,
we may allow %' = gk/p and n' = gnfo, where &', n'« N, Sinee j 3£ 0,
and mtg, it is clear that A, n’ 2 0(modg). Choose z, {eN such
that »n's = k' (modg) and o =1i(modg), where 0 < i< g—1. Since %'
= n'(modg), we have ¢ = . If g+m, then m|D, ., which implies that
m Dy . This is impossible if m tq. I g|m and q| U ., we also hzwe m|D,

iyen -

Finally, if ¢|m and ¢+ U;,,, we have w|gD; ...
this too is 2 contradiction.

We are now able to prove a generalization of Corollary 9.1 in

TugorEM 11. Let v = (m,n), m' = m/v, #' o= v
= km'(mod g) and m'l =j{modg), where 0 <1< ¢g—1.

Ifg‘(Dl,vi Dk,n? ‘DJ,JNJ or g ’TDI,I’ and q 'r(:DJ,m) -D]c,n) Dl,v =

If Q{Dl,v and QHDi,nn Dic,n): Q—Dl,v = (-Dk,n: -D:r','m-)'

If gDy, and ¢ 1(Dy 4, Dyn)y Diy = ¢(Dy 0y Diy)-

On the other hand, if jn' = Im’(mody), then (D my Din) 18-

, Proof. The theorem is true if j = & = 0, we shall assume that j 5 0.
Let jn' =km'(modg), I = (D, Dj.), 0 be the rank of apparition of L,
and wm*m =1 (modg), where m*¢¥N. Since o [gmw and o|gn, we have p|gy.

If ¢+L, L|Dy . Since m*m = vm'm* =v(modgqr), we see, by
Theorem 10, that L|D,,. If g+D,,, D, |L; it ¢|D,,, D, |qL. Henece,
if g+l and ¢+Dy,, L = Dy, if ¢|D,, and q+L, gL = Dy,.

gL, (L{g) | Dy e and (Ljq) | Dy . T g 4Dy, Dy, | Ly thus, L == gDy,
If ¢|.Dy,, then D, lgl, when ¢?| 4 and D,,|L when ¢*+4. When ¢+4,
LiD,, and L = Dy,. When ¢*| 4, L|gD,,; since ¢*+L and ¢*rD;,, we
have L =D, .

Let jn’ = &m'(modg) and L = (D, ,, D;,). Since ¢ cannot divide
both of 2" and m’ we shall assume ¢ +»'. Let ¢, heZ such that »'4 = k(modg)
and b =m'i(modg), where 0 i, h<g—1 If gtrLoorif ¢|L and ¢?+4,
we have L|D;, and L|D,,,, where h == j; hence, L|g. If ¢|L and ¢?|4,
then, since L|D, ., where § 5= 0, g% +L; thus, L|gDy ,; and L|g.

7. The laws of repetition and apparition. So far we have only defined
the rank of apparition ¢ of an integer me<Z without saying anything
about its existence or what it Is if it showld exist. We shall answer theso
questions in the following theorems.

Trporem 12 (Taw LAWw oF REPETITION). If for v >0, " # ¢, 2 and
P’ i the highest power of a prime p contained in Dy » them the highest power
of p contained in Dy e, where (u, p) =1, 4 p**". If " = ¢, 2 and (u, p)
=1, Dy pupz cOniains the factor p*t' amd p2+D

Prootf. By (3.4),

—1yr. P
O U = D) (io,iliz..

Since ¢2 tm, 7; #*q, 1

Suppose jn’ =

(‘.ka, -Dy',m)'

o, um

(7.1)

o) 4VE g,
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where the sum is taken over all sefs {3y, 4,, 45, ..., 'q_ } whose elements
a—1 —1
are non-negative integers and such that 2 iy =P, 2 ki = j(modg). Let

) ] ” »
{#00 P14 -5 By} be such a set and suppose p = g- Ifi>0,p I(h,-o Tyt o hg’q—l)
unless gy is p for some k and the rest are zero. IMence,

pﬁlU} by ﬁpl &, U} m.(nlod'p” " -‘)

for j =1,2,...,¢~1 and pv=v-+2; le. p”>2. Sinee p+1/,, Wwe
have p"*| D, ., and p***+D, ... By induction, the highest power of p
contained in D.,m.,a is p***. Also, since (u, p) = 1, by Corollary 9.1, p=¥+*
T e I p" =2, it is elear that 4|D,,.; hence, by the first part of
the theorem, 2! [DU e and 41Dy o for odd u.

Suppose p = ¢. If we put p =g in (7 l) We see that if 41 Dy, W
Rigo By '?-7"3'11—1) and g7r3-0+v(q~fajg] divides kI;]; U%]gﬂ, tor
hyo<< g for § >0,

have q|( j=>0. Since

Tt Tyt (g — hyg) > v+ g—1;

thus, ¢"*| D, ,,,. By induction, ¢**"|Dg s If »>1 and ¢*| D 4m, we
have ¢t ag a divisor of the right hand side of (7.1) whenever j > 0.
Since

hyo+v{(g— hye)+1 =
when h, << g—1, we oblain

[ VP O(modg’””)

4+1+,

tor j =1,2,...,9—1. Now ¢*1U,,,; therefore, ¢*+'|D,,,; which is.
a contradiction. Hence, ¢"+° is the highest power of ¢ dividing D, .=, If
g (v >>1) is the highest power of ¢ dividing D, ,,.
COROLLARY 1.1 If m,neN, (Dy mnf Do s Py p)im.
TaeoreM 13 (Tuk Law OF APPARITION). Let p bs a prime such that
P LqQ,; then if p+d,
Dy gy = 0(modp),

when p # L{modyq) end n ds the index to which p belongs (modg);
Dy oy =0 {modp),
when p =1(modg) end AP~V =1(modp);
DMV = ) {modp),

when p = 1(modg), AP == 1(modp), and e = (p*—1}/(p—1)-
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If pld, Dy, m =0{modp), where m s the least positive integer swuech
that p™ > q.

Ia
Proof. From (3.4) and the fact that p | ( ’5,1_1)’ when no i; = p",

‘we have
(7.2) 7, = 49U (modsp),
where ipF =j(modg), 0 < i< q——l,"aﬁd g = (ip*—i)/q.

Case L: p+d,p = 1{modg). Let n be the index to which p belongs
{modgq); then, by (7.2)

U

?‘:73’”’ -

si(modp),

forg =0,1,2,
and p|Dy m - _ ,
Case 2: p+d,p =1(modg), A% M = 1{modp). By (7.2)

UMJ = U:f,l (modp);

L.y g—1. From (3.1) and (3.2), we have U, ,n_; = ¢ (miodyp)

thus U, Eg(modp) and p|Dy, ;-
Case 3: pt4d, =1(modgq), AP = 1(modp).

then 2 f" = 0(modp). By (3.5)
~1 g

qq—11§ U, .8 = ” Z‘ U, i

U, =0, (modp).

Let /®-We
= f(modyp);

and by (7.2)

Let P be the ideal generated by p in K[y,]. Thus, in K[v],

g—1 . gl gl . X
U8 = FH0,,, 8 (mod P)
fe=0 Ie=0 :P =0 ’
Upy 0 Wygn 072Uy, -.o 80,
_ au, U MU,y e BT, (mod P},
5‘1“1[7 1 1. 6([-_2Ug»—2 1 (5

By (3;2),

a—1
T4, —0Q)+¢ D) Uyud’ =0(modP).
f=1 '

This implies that

Uo,a == ng (mOdP) 2:]1(1 :p I-Do,a .
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Case 4: p|d. Let m be the least element of ¥ such that p™ >g.
By (7.2), U, 0 = U, (modp) and p|D, m
We are able now to discuss the rank of apparition of an arbitrary
meNN. '

DrrrNirioN. For the extended Lmeas. functions of order ¢ defined
on U;y (4 =0,1,2,...,¢—1) and 4, we define the function &: ¥ — N+
-+ {0} in the following fashion. If p is & prime,

@ (p) =0 when pqu,

®(p) = p® when PtQy, pid and k is the least integer such that

P>y
D(q) = g—1 when g+Q, and g+4,

G(p) = p*—1 when p +¢Q,4, p % L(modg), and & is the index to
which p belongs {(modg), -

D{p) = -—1 when p r¢@,, p = 1(modg) and A®- = {(modp),

D(p) = 1)f(p—1), when p+1¢Q,4, p ml(modq) and A%
e 1(modp) :

@ (p™) = p™ 1P (p) for any prime p.

If m is composife, m = H p%, where the p, are distinet primes. We

=0
deflne @(m) to be the least common multiple of @(p7), P(pF), ..., P(py).
TuoeoreM 14, Let meN. If wedenote D (m)by D, wehwueD o =0(modm). '
COROLLARY 14.1. If (m, Qq) = 1, the rank of apparition o of m exisls
and o|®.

It ig interesting to note that the D, , funetions do not seem to increase
ag gquickly as the Lucas functions. This means that they are more eagily
factored. For example, if ¢ =3, 4 =9, U, =3, U, =3, Uy, =9
we evaluate D5 = 174453057, Now Dy 19 = 309, Dy 155 =9 and Dy
== 9; hence, 9:103]D 5. To factor Dy 4/(9-103) = 188191, we mnotice
that if p is a prime divisor of 188191, p = 1306k, or p* = 1-- 306k.
This implies that $ = +1, +35(mod306). The only numbers of these
forms less than the square root of 188191 are 271, 305, 307, 341. The
third of these numbers is found to be a divisor of 188191 and we have
Dy aps = 9-103-307-613. :

We cloge with a theorem similar to a fundamental theorem of Lucas
(I7], p- 302), which wasg used by him in the testing of laige integers for
primality. '

THEOREM 15. If MeN,(M,2¢D,,) =1 and the rank of apparition
of M is either MO '—1 or (M*—1){(M—1) or (M?—1)/[q(M—1}], then
M is @ prime.

4 — Acta Arithmetica XX.1
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Proof Suppose M is composite and that M = n vy, where the p,

are distinct primes. Olearly P 1q4Q,; therefore gE@(pm) and @{M)1J,
where

=g [ [pi (@ w)a)-
=1 .
Now

e )
1 i 4
J/Il/‘[q - g” péﬂ“l)(a'ﬁ_]‘) qplq_"l

i=1

<q”p(2“(““~_1) (1+ +5 +...+-i~f)

P P (2

p. — P’L
< Hp( Beg=1) L8

If » =1, we have ;=2 and therefore

J 1 1
TS o1 S
vz 2,
IRV N PR N
Mt T g ip =1/ \py—1 3 2 4
Since M > 2, .
J < M71—1 < (MI—1))(M—~1).

But M | Dy 55 hence, M is prime if the rank of appamltlon of M is M4 —
T (M--1)/(M—1).

If the rank of apparition of M is (M7—

—L)/[(M—-1)g],

Bufi g|J and ¢*+((M°—1)/(M~-1)); thus, M is a prime.

1i(H—1)4], then

J = s(M*? where  $<gq.

References

[11 M. Appell, Sur eeriaines functions afnalogues aux functions circulaires, C. B,
Acad. Sel. (Paris), 84 (187T), pp.. 1378-1380.

[2] R.D. Carmichael, On the numcrical factors of the . arithmetic forms o™= p7,

Ann. of Math. 15 (1913-1014}, pp. 30-70.

(3] J.W.L. Glaisher, On o special form of determinant and on cerlatn functions
of n variables analogous Io the sine and cosine, Quart. Journ. Pure Appl. Math.
16 (1879), pp. 15-33.

icm

(4]
[5]
6]
£7]
[8]
9]

[10]

[11]

[12]

131

[14]

On a generalization of the Lucas funclions bl

D. H. Lehmer, An extended theory of Lucas’ functions, Ann. of Math. 31 {1930),
pp. 419-448,

— Factorization of certain cyclotomic functions, ibid, 34 (1933), pp. 461-479.
W. J. Leveque, Topics in Number Theory, Reading, Mass., 1958, Vol. IT, pp. §7.
Edouard Liuoas, Théorie des fonclions numériques simplement périodiques, Amer.
Journ. Math. 1 (1878), pp. 184-240, 289-321.

G.B. Matthews, On the arilhmelic theory of the form x3+a1,y3+nzz€" 3nxys,
Proc. London Math. Soe. 21 (1891}, pp. 280-287.

T. A. Pierce, The numerical factors of the arithmetic forms H {Ita), Ann. of
Math. 18 (1916), pp. 53—64.

H.C. Pocklington, The direct solution of the quedratio ond cubic binemial
congruences with prime moduli, Proc. Cambridge Phil. Soc. 42 (1917), pp. 57-59.
Morgan Ward, 4 mote on divisibility sequemces, Bull. Amer. Math. Soc. 42
(1936), pp. 943-845.

— Memoir on elliptic divisibility sequences, Amer. Journ. Math. 70 (1948),
pp. 31-74.

Jacob Westlund, On the fundamenml quwmber of the algebraic number field

k(l/fm,) Trans. Amer. Math. Soe. 11 (1910), pp. 388-392.
H. (. Williams, 4 Generalization of the Lucas Functions, unpublished Ph. D.
thesis, Dniversity of Waterloo, Waterloo, Ontario, 1969.

Received on 8. 6. 1970 {93}



