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§. Imtroduction. In [4], M. Mendés-France introduced the notion
of a normal set of numbers and showed that the complement of a finife
extension of the rationals is normal. His proof makes use of some funda-
mental properties of the Pisot—Vijayaraghavan nambers. In [5], Y. Meyer
obtained some results which have applications to normal sebs by making
essential use of some non-elementary. harmonic analysis, harmonic sets
and Fourier transforins in particular. The purpose of this paper iz to give
an elementary proof of an extension of Meyer’s result on normal sets

and to obtain some resuifs cn ecountable mormal sets ().

1. Preliminaries. We assume that the reader iz familiar with the
usual definitions and basic properties of the theory of nniform distribution
mod 1 (u.d. mod 1). (See [13 for references.) A set M of real nuwmbers
is said to be normal if there exists a sequence A = (1) of real numbers
such that Az = (4,#) is w.d. mod 1 if and only if zeM. A normal set M
must obviously satisty

(1) O¢M,

(if) meM, neZ{0} = nwdf
(where Z = integers and, if 4 and B are sets then 4NB denotes their
difference). .

Additionally, if we require the sequence A to congist of integers
(in which case we will call M infeger-normal) we munst also have

{(iii) @ N M = (¢ rationals),

(iv) M4+Z = M (where A+B = {a-+b}) and either p(M) =0 or
u{RNM) = 0 (where B =reals and u =— Lebesgue meagure).

(This last property is a consequence of the “zero-owne” law or of
ergodic theory.) However, gimple counting arguments show that the
conditions listed above are not sufficient. There are cases, though, in
which conditions (i) and (ii) are sufficient for normality, as we shall see.

(}) &. Rausy has obtained a éomplete characterization of normal sets hy differ-
ent methods; see Bull. Soe. Math., France 98 (1971), pp. 401-414.
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_ It A is a sequence and I i§ an interval we shall say that 4 iz w.d.
in Iif all the terms of A belong to I and if for every subinberval J ¢ T

1
Iim — (number of lk eJ 1=k |]J||/HIH,

N-—sca

where ||| = length of J. Tf A4 i3 not w.d. mod 1 but does have a distri-
bution function we ghall write “/ is d. mod 17. Finally, if 4 is & mod 1
and fhe limits in guestion exist uniformly (a8 in the definition of a well
distributed sequence)} we shall write “A is d.w. mod 1%.

‘We shall need the following lemmas:

Lmvma 1.0 (1) If U is u.d. modl keZN{0}, then kU = (kuﬂ) 8 w.d.
mod L. If U is well distributed modl (w.d. mod 1) then so is kU,

(i) If a, § are real numbers such that 1, a, f are lineavly mdepe’ndem
over @ then tim sequence (n(a, f)} is w.d. mod 1. , ‘

(iil) Tnder the conditions of (i), if 0 < a < b <1 and (ny) is the in-
creastng sequence of all positive inteq Jms n for which naela, h] modl
then (ngB) is w.d. mod 1.

(iv) If U s a.d. in [0, a] and 1 is a real number then the sequence 1U
has- a distribution funclion mod 1, and rU is w.d. modl + ra<Z~\{0}.
If U ds w.d. in [0, a] then rU is dav. mod 1 unless racZ\{0}. Similarly,
if {U}ds w.d. in [0, a] and if | is an integer, then 1U is w.d. mod 1 if and
only if laeZ~{0}.

Proof. (1) and (ii) are well known. (iif) is an easy consequence of
(i) and the proof of (iv) iy straightforward.

In passing we note that (iv) thows that ZN\{0} is a normal set: If A
is m.d. in [0, 1], then x4 is wd. mod.1 e i~ {0},

Lemma - 2, Let Ap, Ay, ... be disjoint, incréasing sequences of real
numbers omd let A = (A;) be an inereasing sequence such that each A, belongs
io some A, ' ‘

o1 :
limF (number of A in A, 1< k< N)=n; (i=1,9,..)

where n; > 0, 3w, =1, and such that the terms of A belonging to A; con-
sists of segments of A; of lengths tending to co. (Note that ¢f limd, = oo
for each i ihen it is possible to construct such a A.) Then '
(i) If each A, is w.d. mod. 1 then A is u.d. mod. 1.
(i) If some A; s dow. mod 1 and the other A; ave w.d. mod 1 then A
& nol u.d. mod 1.

Prood. The proof will be léf_t to the reader.
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2. TrworeM 1. Let M be @ countable set of reals such that QM +Q = M.
Ther ‘ )

(1) There emists o striclly increasing sequence of integers A swuch thai
zd is wd. mod 1 «>xélf.

(ii) For each e > 0 fhere exvists a sequence A where |y — k| < g, such
that 2 48 w.d. mod 1 « géM,

In particular, if M = BNV, where V is a countable dimensional
vector space over ) which conmms @, then I is inleger- 'mwmal (CE. [B],
Theorenis & and 9.)

Prooi. Tet M be the sef described in the theorem. We may find
a countable set § = {8} « M@ which has the property that for ¢ == j
the three numbers 1, s,,s; are linearly independent over § and such
that - M =@Q8+Q. Let o be some fixed irrational number, 0 < a<C 1,
We may assume that S =&, for the case M =@ is well known (let
A = (n)). For each ¢ let .711- be the sequence of positive integers m», in
increasing order, for which ns;e[0, a](mod 1). Choose subsequences A,
of A; such that the sequences s; and 4; have no elements in common
for 4 # j and such that A, is composed of segments of 4; of lengths tending
to co. Finally, choose A to satisfy the hypotheses of Lemnia 2. We claim
that 4 Is u.d. mod 1 « z¢M.

First, suppose zeM. If @ i3 rational then zA is certainly not u.d.
mod 1 since A ig a sequence of integers. Suppose, then, that z Is irrational
and Az iy n:d. mod 1. Then # = ps;+¢ for some integer 4 and rational
P, 4. Beeause of Lemma 1 (i), (kw)4 is w.d. mod 1 for every keZ\{0},
whence there exists y = Is;, 1eZ2~\{0}, such that y1 is v.d. mod 1. By
Lemma 1 (iii) the sequence yA; is 'w.d. mod 1 for J #1, so that yd; is
w.d. mod1 if § 4. However, s, AL < [0, el (rodl) and, in faect, the
sequence {A 8} 18 w.d. in [0, a] ({#} = fractional part of ). It follows
that the same i3 true for s;4; and thus, by Lemma 1 (iv) the sequence
y, 18 d.ow. It follows from Lemma 2 (ii) that yA is not w.d. mod 1,
a contradiction.

Now, suppose w¢M. Then, for each <, ‘che three numbers 1, @, &
are hne:uly independent over ¢ whence, by Lemma 1 (iif) again, we Hee
that w4, is wid. mod 1. Lemma 2 (i) shows that 24 is u.d. mod 1.

ThlS proves the first part of the theorem. The proof of the second
part is similar bnce we have congtructed the sequences ; as follows:
Let k be a flxed integer > 1/e and let o; = 1 —s,/k. For each ilet A; = (4,)
be the sequence chosen asg follom

n if  nse[0, q;] mad1,
a1k if  mbe(n;, 1) mod 1.

VS



@
160 A, Zame _ Im“

The detaily will be omitted. 7 -
We remark af this point that if we are only interested in norma-
lity the conditions on M. can be weakened.

ProPOSITION 2. Let M < R be a countable non-empty set, with QM = M,
Then RN\ is a normal set.

Proof. We may assume that M == {0} {the seguence (Vnm) is u.d.
mod 1 for all #0). Let § € M be such that M == @8 and any two
distinet eloments of § are linearly independent over . For each 4, let A,
be the sequence {(n(Lfs;)). Then zA; is w.d. mod 1 +» i3 not a rational
multiple of ¢;. If # is & rational multiple of ¢; then x4, is d.w. We can
now finish the proof by forming A4 as in the proof of Theorem 1.

3. Proposition 2 shows that certain large sets are normal. In this
section we shall wse different methods to show that certain small sets
are normal.

Levma 3. Let M = Z be such that
(i) 0¢2, _
(i) nM = M if neZN{0}.

Then theve exists a sequence U = (uz) such that r U is wd. mod 1 — reM.
Purthermore, if v¢M then

]
limsup |— ¥ 7%
D0

> 0.

fi=1

Proof. Let u be Lebesgue measure on [0 1]. Define the continuous
function f on {0 1] by

1 1 2mina
)

ng M
N0

We may also write

1 1
flz) =1+ EZEWCOSZWMS

I .

=0
becanse of the symmetry of M. Thus we see that f> 0 on [0, 1]. Leb »
be the regular Borel probability measure on [0, 1] defined by dv = fdu.
We cobserve that fthe nth Fourier coefficient of »,» " (n), is 0 © neM.
Bince [0,1] is a compact metric space and » it a probability measure
on [0, 1], there exists a sequence V in [0,1] such that ¥V is »-u.d., i.e.,
for every continuous function g on [0,1] we have

: ’ 1 & .
(%) i{rﬂﬁggmﬂ) = g(w)czv(w)-
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If » is an integer we claim that »7V is w.d. mod1l —neM. For aV is w.d.’
mod 1 «> for every poqit:'we integer p

L — E 211:1_@1:;31. —_
N—roo

Baut, by (*), L{p)' =" (—pn) and thls vanishes for all positive p < nelf.
Now, let W = (w;) be a sequence which is w.d. in [0,1]. Let (n;)
be a sequence of infiegers such that

Mg f(Ry e gy = o0,
and let U be the sequence (u,), where
v, H w<n=a+i-1<n,,, rodd,
= Iwn i w,<n = n+j—1<n.,, r even.

Then the sequence U will have the desired properties. In fact, the analogue

of Lemma 1 (iv) for exponential sams shows that the

¥

1 .
- ezmmk
)

2

lim
Ny

>0 for reZ N\

when N; runs through the sequence (n,,) and for reR~\Z when N; runs
through the sequence {1y}

DeFINTrION. Let U,,..., U, De sequences, say U; = (u¥). The
sequence U = U, ®...® Uy is defined as follows: Let f be a bijection
from the positive mtegers to all k-tuples of positive integers such that
the set {f(1),...; f(n*)} consists of all k-tuples of integerg from 1 ton
Let u, be defined by

= uﬂi—}—...—j—w,gf’,:
where f(n) = (my, ..., %), Then U = (u,). (Of courge, there are many

choices for f bub our results will not depend on Whleh one we actnally
ehooge.)

LemMa 4. Let Uy, ..., Uy be sequences, at least one of which is w.d.
mod 1. Then U = U, ®...® Uy is u.d. mod 1. On the other hand, if there

ewists a siriclly increasing sequence of integers (N,) such that

Iim
Terdo

Ny
1 Z ezmusj )
N

" E=1

>0 (=1,..,k

_th'm U 4s not u.d, mod 1.

Proof. Let U = (u,). Since (n+1)%/n* — 1 it is sufficient to evaluate

the means

: 1
L{n) = ;im WZB'M”" (mo=1,2,...).
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=L . p=1 . p=1

so the result follows.

TaeorEM 3. Let §,,..., 8, be subsets of Z\{O} such that ﬂS,; = S;
. e 2’

if neZN{0}. Let ay, ..., o, be non-zevo vegls. Then \J @8, is a normal
: =1 '
sef, '

Proof. For each i select sequences ¥, = (v} and W, = (wl) as
in the proof of Lemma 3 and let (n,) he a r&pldly increasing sequence,
again as in the proof of Lemma 3. Letb 4, ..., te_, be the 2% E-tuples of
0’s and 1’s and let #7 = the 4th coordma.te of t;. Define the sequences
U, (d=21,..,% as fellows ' S '

U; = (%5?)

where if 2, < 0 = m+p <My, ¥ = (Mod 2%), 0 < s € 2% —1, then

1y . i
E(“— ) ’Ug') if t‘(:) = 0, :
uf =0

1 .
i(——) wd if =1,
a; .

We observe that sU, is w.d. modl if weq;8;. Lot U =0, @... ®U;.
The observations made above and the first part of Lemmia 4 show that
aU 18 wd. modl if xe(Ja,8;. Suppose ¢ (Ja,S;. Lot I be the mtegel,
1< 1< 2% so that for every ¢ for which 1<i<k

0 it m=mi, fome neZ,
1 i @ #aq.

t?—)l =

From the choice of I it follows that for each i

E q»)
lim { E mm
o,

ke dr sl
r=l {mod 2K) =

Therefore, by Lemma 4, #¥ is not n.d. mod 1.

‘4. Tn. this seetion we. will prove

TaporemM 4. @>{0} is a normal set. {T'hus, @f o 48 o non-gero Feal, thefn
a@N{0} is a normal sel.)

The proof depends upon -the followmg 1esu1t
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a

Lmymia 5. There ewisis u positive number d such that if @ is ony trra-
tional number then the mequahty

(%) o~k [p] < 1{(p**%
has infinitely many solutions for & an integer, _p= a prime.

Proof. This follows from the theorem on page 177 of [7] upon taking
ro=g = N®, § = N""Fe (Thisin fact shows that we may taked = 1/5—

— g, for any positive &) The result also fo].lows eagily from other results
of Vinogradov (see [6] or [2]).

Proof of Theorem 4. Let d be as in Lemma 5. For each prime p
let &, = [p%*] and let B, be the finite sequence p, 2p, ..., k,p. Let (n,)
he a sequence of infegers so thab

g {(p e A1,y =1
and let § be the sequence
By, By ...y Byy Byy ooy By, oo

where B, occurs 4, times. Let U be any sequence w.d. in [0,1]. Let
V =8® U. We claim that 2V iz u.d. mod 1 « ze@™~{0}.

Suppose that « is irrational. We see that if le —k/p| < 1/{p'*%) then
{nx} < 1/p™ if neB,. From thig it follows that

lim supIZ e e

Nooo Gy

Furthermore, since U is n.d. in [0, 1]

lim m___" § '6211,1‘11,, lf dﬂlzdﬂ
N—>Da

Hence, by Lemma 4, 2V i3 not uw.d. mod 1.

Suppose, now, that @ = 1/%, n & positive integer. The sequence xS
takes on the values 0,1/n,..., (n—1)/n (mod 1) with equal frequency
and the sequence U/ is u.d. in [0, 1/n]. From this it is easy to see that
¥ iy u.d. mod 1, and hence ¢V is n.d. mod 1 if ge@>{0}.
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On the distribution of argL(s, ;) in the half-plane o >3
by '
P.D.T. A. Erriort {Nottingham)

1. Introduction. For each complex number s — o-+#, o= Res,
and non-principal Dirichlet character y (mod D), we consider the L-geries
which is defined fo be the analytic continuation of

=D almn

For each real number ¢ = 2 let M, denote the sum. >'(p —1) taken over
all the odd prime numbers not exceeding Q. We thus count the total
number of non-principal characters to prime moduli not exceeding Q.
It follows from the prime number theorem that

L(s, xp) (o > 1).

& @
Mo = g+ oger)
When L{s,y) #0, } <o<1, let a,rgL{s, %) denote a value of the ar-
gument of L(s, y) defined by continuous displacement from the.point
§ =2 along an arc on which L(s, ) does not vanish, Thus argZ(s, %)
is only defined to within the addition of an integer multiple of 2x. We

@

PSR xFx

i |
Y5 »é;;argl}(s,x) < 2{mod 1)) =

where the double sum counts those pairs (p, ), with 4 & non- prineipal
character (mod p), and. p an odd prime not exceeding @, for which arg L (s, x)
is defined and has the value 2m(n+4a), # an integer, 0 < o < 2.

In order to make the assertion in the following theorem meaningful
we recall a few notions concerning distribution functions (mod 1).

A function G(z) is gaid to be a distribution function (mod 1)'if and
only if it satisfies the following three conchtmns

(i) It increases in the wide sense.

(ii) It iz right continuons, that is Flz+) =

@(z) for all 2.
(@) Gle)=1i ez, and =0 if 2< 0. '
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