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On the distribution of argL(s, ;) in the half-plane o >3
by '
P.D.T. A. Erriort {Nottingham)

1. Introduction. For each complex number s — o-+#, o= Res,
and non-principal Dirichlet character y (mod D), we consider the L-geries
which is defined fo be the analytic continuation of

=D almn

For each real number ¢ = 2 let M, denote the sum. >'(p —1) taken over
all the odd prime numbers not exceeding Q. We thus count the total
number of non-principal characters to prime moduli not exceeding Q.
It follows from the prime number theorem that

L(s, xp) (o > 1).

& @
Mo = g+ oger)
When L{s,y) #0, } <o<1, let a,rgL{s, %) denote a value of the ar-
gument of L(s, y) defined by continuous displacement from the.point
§ =2 along an arc on which L(s, ) does not vanish, Thus argZ(s, %)
is only defined to within the addition of an integer multiple of 2x. We

@

PSR xFx

i |
Y5 »é;;argl}(s,x) < 2{mod 1)) =

where the double sum counts those pairs (p, ), with 4 & non- prineipal
character (mod p), and. p an odd prime not exceeding @, for which arg L (s, x)
is defined and has the value 2m(n+4a), # an integer, 0 < o < 2.

In order to make the assertion in the following theorem meaningful
we recall a few notions concerning distribution functions (mod 1).

A function G(z) is gaid to be a distribution function (mod 1)'if and
only if it satisfies the following three conchtmns

(i) It increases in the wide sense.

(ii) It iz right continuons, that is Flz+) =

@(z) for all 2.
(@) Gle)=1i ez, and =0 if 2< 0. '

4 == Acta Arithmetiea XX,2
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A gequence F,(z) (n =1,2,...) of distribution functions of this
type will be said to have a weak limiting distréibulion (mod 1) if there
exists a further distribution F{z){mod.1) so that at all points «,f,
0 < a< f<< 1 which are points of continuity of Fi(z),

FB)~Tpla) = (F(B)—T(a)) (0 = o).
' ~ Thus in the range 0 <2< 1, F(z) is determined only up to an adlditive
congtant. If, however,

Io(z) -+ F(z) (n—> o),

holds at every continuity point 2z of F(2), we say that the F,(2) converge
strongly or just converge, to the limiting distribution #(z) (mod 1). In
this case F(z) is uniquely determined, and with a natural extension if
#<C 0, or z>1, thig definition coincides with fthe usual definition of
convergence of distribution functions which are defined on the whole
real line. _ ‘

We can now state our main resulh.

THEOREM. Al each point ¢ in the half-plane o > % the frequencies

1
"o,

converge to a continuous lmiling distribution (mod 1). Its char acteristic
function (= Fourier i amsform) assumes the form

el S

where (i kf2 ) denote binomial coefficients. If } << o <1 the limiting distri-

arg L(s, 1) < z{mod.l)) (Q:Q,S,..._.)

bution -can be analytically continwued ﬁfdm the line segment 0<\z<<1 o
be am integral function en the whole complen Z-plane.
Remarks, We note that the form of the limit law depends only
upon ¢ = Re &, and zo is the same on every line o = congbant.
- In fact we ghall prove somewhat more than this. Tet 8 be a (small)
positive constant. Then we shall prove that for each mon zero integer %

0

-1 '
' . 1 '
f it dTJQ (E;; &l‘gL(S; X) =8 (]’nOd 1))

*ch(n e_p(m)m 2"+O((10g10g10g@)“”2)

N=1

holds wnifermly at all points in the rectangle
bo<o<2, i < (logloglogQ)”.
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It follows easily from this that there exist Umit laws F(o,2) 8o thab
1 : '
vQ(-o—'—argL(s, <z{modl}| - Flc,z) (= o0,
amw

holds mniformly for all 2, 0 < # << 1, and for all points ¢ lying in the above
region. At the cost of some complication these estimates can be made
uniform for % < %,(Q), where k(@) is & function of ¢ that is unbounded
with @, so that one can measure the rate of convergences of the fre-
quencies in the thecrem. Moresver, -the beight of the rectangle [
< (logloglog@)* in the region of s uniformity could be counsiderably
increased. A number of the lemmas proved during the proof of the theorem
are stated in & form suitable for such applications.

‘We shall confine our attention to the-most interestin'g cases, and
congider points in the semi-infinite strip % < 2. The extensmn of
the argnments to the cases o > 2 is stmlghtfmwmd

2. Qutline of the proof. We shall consider the characteristic functions

1

fem’""'de(;%— arg L(s, y) < 2 (mod 1)) = _ME’Z Z gitareLis. )

0 <@ wFzg
for B =0, +1, &2, .., ¥lere, and without further ado in the similar
following double sums which involve arg L (s, y) explicitly, we understand
that we count only those pairs (p, y) for which ars L(s s %) 18 well defined.
These will turn out to be essentially all pairs. We prove that the above
double sum converges for each integer %, and so by a genéralization of
a criterion of H. Weyl there will be a limit law. Its characteristic function
turng oub to be easily computable, and so we can ]ustlfy our assertions
concerning the nature of the lmit law.

For a fixed particular pair (p, ¥), and complex number s, Wlth‘
L{s, x) non-zero, let 6 = argL(s, x) One way to approach 6 iz by means
of the relation

# o = L(s, )){Lls, 2)) " = Ifs, ) (LG, 0) -
In order to put this into practice we need a representation for L(s, x)™'.

We effect such a representation by first proving that in :Exequency (= 1in
probability)

L(s, z) = H(l—x(q)q o i),
<
where [ = loglogQ ‘We next show that in probmbﬂmy the product which

.oceurs in this estimate exceeds exp(—(logl)™) in absolute value, so

that for sui_ﬁcienﬂy large @, L(s, ) does not vanish, and in fact.
Lis, ) = (1+ou Y ] [ SP 10T

<l
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Olearly, at the same fime

Lis, 0 = {1+ 00 9% [Ti-Z@ g™
<l
These agsertions amount to saying that the L-geries L(s, y) have an
Euler product in probability.
Thus, in probability

vesed = (o) [T ~z@a " [ -iwa
gt a<il
provided that we can satisfactorily define the operation of taking the
square roots.

We wish, in p&rtlcular, to estimate the mean of the left hand side of
this relation taken over pairs {p, ) with y non-principal (mod p), and
p < @, along with the wsual proviso. In the above form. it is not too clear
that one can estimate sums of the form

> o= r@gpe
P orFErg a<i

in & gimple manner. For each integer & £ 0 we define a multlphea,twe
fanetion ¢, (n) by

1+ D o(@ @™ g™ = (1—x(g)g ™)

For odd integers & we shall onece again need fo exercise care in the choice
of a square roof. It is easy to see that such a function ¢,(n) grows slowhr
with n, and one can prove that in probability

[ 0= x@a) % = Y amygtn)yn=+o(1).
a<sli nsl
Our problem then reduces to the estimation of Sums of the form

w3 Y N omzomm Y e_ymzinn.

PO gFny msl n<l

ThlS is an easy matter, and we can quickly complete the proof of the

theorem. _
The main difficulty in this argument is the satisfactory definition of
(D, ) LGS, )7 = efomrten,
when }<<e<C1. In this context it is desirable that L(s, y}** can be

analy‘tma]ly continved into a convenient part of the semi-infinite strip
%+ < o< 1. To this end we shall prove that most L-gerieg to moduli p < @
do not vanish in a reetangle 3+ < o<1, [t < (logh*®. This. result
in fact follows from a theorem of Bombieri [1]. The proof of this theorem

iom
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is, however, quite complicated, and a result weaker than his, but suf-
ficient for our present purposes, can be readily obtained during our proof
if we ensure that cerfain of our estimates are suitably uniform with respect
to s.

3. We begin with the following simple lemma which we shall apply
many times,

Levma 1. Let N be a positive indeger, and let a,, ...,

numbers, then
N
—)) ? [
log ¥ )
NN

3 3] S aetof = e o[ &
PQ xFxp n<N OgQ
Proof. This estimate can be justified by expanding the sum over =,
and inverting the order of summation. A detailed proof can be found
in [3], Theorem 1.
‘We fix a (small) real number § once and for all to satisty 0 < 26<1,
and denote by A == A(, J) the rectangle in the complex s-plane given by

I+6<o<3, | < (loght,

oy be N complew

LeMMA 2. (Trunecation lemma).

(max!L(s,x Zx(fn, .

8 n<l

> 1) <17 (logl).

Remark, This lemwms is a model for several others which follow it.
The truncation in this lemma is very severe, so as to simplify the following
arguments. In order to obtain a better measure of the rate of conver-
gence of the frequencies in the theorem one would nse a parameter some-
what larger than ! = loglog@®.

Proof. Consider first the sum
D) xlmyne
Tnsi g}
Integration by parts shows that it can be expressed as:
. .
s[y=" 3 gn)dy
1 l<n<<y

Then by the inequality of Cauchy—Schwarz

max| 3 ymn~'|' < maxls f y ™y f gt Y amfay

20 e l<n<y

< o, (logl) lfﬂrt;fqy-ﬁ-l{ ) x(n)rdy.
J .

l<nsy
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Hence -

jl[Q Z ymax‘ 2, xmn®

IEQ i L 1<n=Q

2

< e, (loghyl™ fJ“’ 1.21[512 l Z ¥ () l dy

PR g I<nsy

which by Lemma 1 is at most

Q
azr uoga) f ¥ 1(1+Q 'y +Mg'y" (logy)” )dy@-ﬁ(.logz)-

Moreover, f01 each g in A, by the Polym—“V’mogradov inequality, if yis
a non-prineipal chamcter (mod p), » < @:

D amn = f ¥~ 0 (p**logp) dy
> Q Q -
— 0(0*"10gQ (log?* Q> =

Altogether, therefore

Z Z max‘a almyn=® ?

PEQ 171y ¥¥ >l

01 {logl)).

< 1™*(logl),

and by a standard argnment of Tehebycheff Lemma 2 is proved.

LEMMA 3. Let N-be a positive integer not exceeding @, andlet by, by, ..., by
be a sot of N complex numbers. Let further there be constants A, I} > O
© so that each’' b, satisfies o .

Ibﬂl AT(‘”’) ((H’ :’T”_l’;:--yN)

where t(n) denotes the number. of divisors of the integer . Then for eoch
real number w, L<Lw< N,
vQ(maxI E b,x(n)n*
5e wen N .
with B = 4F, _
Proof. Thig result is obtained in a manner precisely shimilar to that

nsed in the first part of the proof of Lemma 2. We note only that in the
application. of Le'mma 1 we obtain the upper bound :

> 3| 3 sl <re o e ) 3w

PR 1F Ay w<ﬂ<v L WY

s z) {é‘z w™ P {logmax (w, 1))",
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To estimate the sum involving the |b,i° we note that by a well known

estimate
STb <A 3 ) < oy (logy)

Y LY

where F = 2°F, Everything now goes through as for Lemma 1 with the
additional factor of a power of logy.
‘We now apply Lemma 3 to show that in probability

Doamn [Ti—x@e™

n<l o<l

are approximately equal for every.value of s in .
Levua 4. We have

mQ(ma,x_iZ%(ob)%“s' H[l (g
se2 ATy .
Proof. We begin by defining numbers b,, for I < n<@, so that

ZX(“)’*’ [T =2@a ) = D bug)n™, o> 0.

gl n>1

§7 >0 ) <17 (log).

It is clear that b, is zero unless 9 is made up of plmles q not exceedlng A
and that for every integer n > 1, |b,| < 1. . :
By Lemma 3 with B =0, w =1, 2 = 172, we see tha.t

Vo (ma,x Z box(n)n~s > l“‘”z) <1 logl).

o ipn

We shall now show that uniforinly for all s in %, the sum

|2 b,;x(%) w8 2 by e

n>Q - g

is small. _

Congider first those integers = for which w (n), the number of distinet
prime divisors of n, has the value k. Clearly their eontribution to the
above sum iy ab most

i —~ (1]24-8)r 1/2—8\k
EI(ZQ )gkz(%l )y
=

For a suitable positive constant ¢,, by an application of Stirling’s formula

D T e D 2T ’~<exp — g, T4y,

af)=egliz=8 ‘ E >r.411"° —d
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Any remaining integer n ab whmh b, I8 non-zero has the properties
(1) wn) < g M0, '
(i) gln =g <1,
(iii) # > Q.
We denote swmination over integers n which satisty conditions (i)
and (ii) by . Let ¢, be the maximum power to which any prime divisor
g of n occurs. Then .

Q < (” g)“‘;g exp(aozlog Q) < exPp 0y 66!)

ain aln

80 that :
= o' 17 0gQ = ay,

say. We can therefdré deduce that

2 b, |n-1/v P 51 Z‘ib !n—ljz 8

q<l a®Lin
=6}
1t
<Z q—ul(l,'2+5 Z [b ],n—I/ﬂ -8 < Zq—u1/2 2 [b —1]2 «5
gl n>l <l n>l

where :
Zq-ﬂﬂz 2““1'”’4.}' R dy < e, 2,
g<i

Altogether, therefore,

1" T a _ - 1 2
D) Malnte=t oo [ Jea g gty <eXP("“a1 3 +aszlf2f5)

n>Q g

< exp (—Viogg),

“and so

m&x‘ Z b, x(fn

gedl >

(g, 0128,

The agsertion of Lemma 4 now follows easily.

We have now shown that for all but a frequency of at most O (i"’ (logl))
we have

Lis, ) = 1_[ (l _ () q—s]—l 10 (ll—aia)

. _ q<l _

uniformly for 3+8< o< 2, 1t] < (logl)*™.

 Our next step is to- prove that in probability L(s, y) is also non-
zero in this same region.

Ligprva 5.
(maxizx(g -

3¢ =l

> (logl)‘”‘“ < (logl) R,

iom
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Proof. We apply Lemma 3 with b, == 0 unless = is a prime g < I,
when we set b, — 1. Thus we can take E =0, w =1, z = (logl)‘""" ‘
and obtain the present result. .

It follows from the previous lemunas that in probability
\Z(s, 7] |H -1

holds uniformly for s in % We ean thus summarize our results so far
a8: in probability '

k—o 17 = gpexp (— (logh)'™®) > 0

Ls, ) = (L+0@ ™[ [ (12007
o]
Lis, )™ = L+00 )] 1—xlea)

ast
both hold uniformly in the rectangle $ - o2, [f| € }/logt Moreover,
the frequency of those which are exeepmonal in the gense that this fails

to be -true is at most O((logl)™).
We now consider the characteristic functions of the frequencies

1 : .
Vg E;EbrgL(S,x)-{:z(mOdl)) (Q =273,...).

Let k& be & rational integer, We shall assume it to be non-zero in what
follows, since the case k& — 0 will be trivial: Congider the characteristic
funection _ '
Mal 2 Z Bika-rgL(s,Z)_.
PRE xF X

For convenience of notation we temporarily set 6 = 0(p, ) = argL(s, x)-
Then, as stated in the infroduction, we shall use the representation

Ls, x)*® _ ( ;{(Qf))-‘."’2 ( ' %(ﬂl))"’2
1400 1— , 1-—-L20
= (1+0( ))l I e I l g

L (— )MZ g=<i gl

(11) 61'):()

If 7 is even this representation is clear. If % iz odd, however, we have
to gpecify the value of the sgquare roots.

Consider first thoge pairs (p, ) which are not luled out by any of
the Lemmas 2, 4 and 5. For these L{s, ) does not vanish in the rectangle
9, and we can define

Lis, 5™ == GYP( lﬂgL(S,x))

where the value of the logarithm is obtained continuously from the prin-
cipal value on the real axis. Whatever this value is

Lis, YL, 7)



164 . D.T. A Elliott

can be interpreted as exp\k(logL(s, x)) where the principal value of the
argument is chosen, so that the first equality in (i) has a meaning.
Set
Lis, 1) = g0 [ [ (L= xloa)™
g0 that _ ‘ gt
gs) = L+ 0(17%.
Then if we take the principal value (of the nunderstood logarithm) in each
factor

: (L—glgyg)~""
we ghall have

Lis, " [ [t — @) g = g(s)
g1

for some value of the right hand side. But, once again, whatever this value

g(s) g (517 = (g()gls) )™
where on the right hand side we take the principal value. Here g(s)g(s)”
=14+0("%) so that

gs) g () = 1+ 007%").
Thus, we can understand (ii} to '1101(1 with every (implied) logarithm
having its principal valune.

Let us call the set of pairs (p, y) for which we have (i), If;. We
now prove that for most pairs (p, y) in J7, we can replace the products
over the primes ¢ by & finite sum.

For each prime p, and character y, we have

if) {1 —zx(@)g™)"" _1+Z( ri@ma Zm o™ 2 (g™ ™,

m=1 =1
— k2
Cade = () =01,
is the function defined in the introduction. For we notice that thiy is
certainly true (with the principal value on the left hand side of (iif)),
it Res is sufficiently large, and if o= %, |x(g)¢ ““[-&;1/1/2, go that it
holds in the half-plane ¢ > % by analytic continnation.-

where

Clearly
ot 1L (1B %) Ly I
|Gk{ﬂ e 3 ( +1) (2. —1)m, N L] ( + :‘3;)
LS <l [ o
<m+1*  (m=1,2,..),

icm
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holds for a suitable constant I > 0 depending upon % only. It follows
that if # = [[¢ is the canonical factorization of an integer #,

lex(m) < [ [ (me+ 1)F = v ().

i

We can now apply Lemma 3 with b, = ¢, (n), w =L, Il < n< @, s =17

to deduce that if ~ denotes summation over integers n made up only
of prime factors g <1

w1 2@ ) -
g=i

By an argument exactly similar to that used in the proof of Lemma 4
we see that

~ l—-ﬁiz) <

Z ep(n)y(myn—* 1~ (logh¥

l<ns

va| 3 oulon) zlmyn=] > 1) <1-*(logh)".

[=14

In a like manner we have that

wl[]6-ror

=1

> z-‘f”ﬂ) <1~ (logh)” .

- 2 o y(mzmn~
>

~ We now denote by 17, the set of all pairs (p, y) in I7; which are not excep-

tional in the above senses. Then taking into account the ecardinality
of all sets of pairs so far deemed excepticnal we have

—1 2 2 gtk are L(5:%)

R £ %

= Mg’ 2 Z(ZGk(m)x{ﬂ'b)m""+0(1*“‘”2))><

psQ  xFx msl

(8,230
(Yo smimn #2401

n<sl

= Mgt 2 2 Zok(m x(fm)m‘SZc g (m)n nE L

P<Q x#yg msl nsl

(Z“'S"E.ZL'{ 2 Z(IZ o, (m) y (i) m

P gxy msd

(J}IQ 2 [Zc, m) x () m™

ps@ ,c#xﬂ mel
{wmyedly

= X+ 2y + 2+ 0((logh) ™ -‘),

)+ 0 {(logh "

)+

e

] 2 e-atmzmn

2 e (n)y(n) %’"E
nsil

84y,
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We can give an upper bound for the sums oecuring in X, by applying
first the inequality of Cauehy—Sehwmz and then Lemma 1. In this we
obtain, for example

2 3 elm) g mym 2lem*'n> < M,
DKL x# gy Mt =1
and consequently X, = O (1=, . :
Arn upper bound for X, can also be obtained by applying the Canchy-
Schwarz inequality twice, and then Lemma 1. Thug we have

< (logh ™" Mg" 3 Y| Y extm) zlom)m~*

PEQ x# 2y m<I

+ (logZy™ "2 M5! 22|20 W)y n—

P=Q xEyy nsl

4

-+

Setting ) .
(Zek(m)x(m =D aatr @>0),

msil =3

and so defining the numbers d,, where

4 =| Yot ‘“( e > s <

dln aln

and noting that

oo

Z v (1) E Y < oo,

=1

we can apply Lemma 1 to deduce that

A ﬁO(((logl 23 SN e

PEQ atyy <L )

((logl 1’“(2]d 2y _25)11'4) ‘, O((logl) 1/3)'

r<2l

Tinally, we can invert the order of summation in X, to cobbain

Iy Yomm™ 3o mpn=igt 3 Ny (m)z(n).
el n=l p<Q x#xo
IEIEm=mn the inner double-snim has the value My—>'(p—1), the sum
being taken over the prime divisors p of w». The such contribution of
such pairs to X, is thus

i

X cubmey(min~to (L4 0 (B )] — 2 ey (m)n 0 0).

n=l
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For the remaining pairs this inner double sum is

> (=1) = 0(Q(log@)™),

P<Q, plmn
g0 that their contribution to X, does not exeeed

0(7( 3 latmm=if) = 0{@=24( 3 entmiim]'*) = 0(g~2).
msl

mscl
Putting these results together we see that

1
. 1
(iv) f egmrczdm (_5;; argL(s, y) < 2 (mod 1))
a

= Moo s mn '+ 0((og?) ™),

holds uniformly at all points in the rectangle

1+0<o<2, )< Viogl.

‘We can now appeal to the fact that a sequence of distribution fune-
tions F,(2), n =1,2,... possesses a limifing distribution (mod 1) if
and only if for each integer &

1
(v) lim [ ¢ dF, ()
‘R:—PDGD
exists. Assuming it 0 exist, let us call this limiting distribation #F(z).
Then F(z) is continuous if and only if (see for example Edwards [2],
PP 129-130) the Fourier coefficients p(2wk) of F(z) satisty

¥ Y lp@ek) >0 (N - co).
= ‘
Since we have a quantitative estimate of the rate of convergence of the
relevant frequencies we can appeal to the following quantitative form
of (3), which is analogous to the classical theorem of Hsseen concerning
digtribution functions defined on the whole real line.

Limvwia 6. Let F(z), G(2) be two distributions (mod 1), and let F(2)
be continuous at the points z = 0, 1. Suppose further that F {2) is differen-
tiable, and that there emists a positive constant A so that [F'(z)| < A4,
0<<2< 1, is satisfied. Let their respective Fourier transforms be q:(z-m:)

and y(27nv), Then there is o positive constant R, dependmg upon A, 80
that

HORCE)

0<kl<m

% p(2rk) — (2nh)| + Bm™!

halds uniformly for all real numbers s, and m > 1.
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Proof. A proof of this, and in fact of an equivalent result, but under
weaker restrictions, ean be found in [4], Theorem 2.

In our case we define #{c, #) to be the continuous disfribution whose
characteristic function is given by

ks p2nk) = Y opm)ep(m)n™>  (k=0, £1, 42,...).

=l

Then letting _
6(6) = vopoorglis, 1 < (od 1) (@ =2,3,..)

and appealing to the estimates (iv) we deduce that

1
*e ZTcafb

holds uniformly for s in the region L+ 6 < o h&] Vlogl With a little
extra attention the rate of convergence here csm be estimated in terms
of @, §. This justifies- the main assertion of the theorem.

To complete the proof of the theorem we remark that smce the
6.(n) are mulbiplicative functions of =,

@ (2mk) = H (1 -+ Z.OT G]c(in o_ (5™ p —-2ma)

Here each factor of the product is a eha;ractemstw funetion, and so sat-
isfies

(s, ) <2 (mod l)) = (L+o(1)F (o, 2)

1.

Il + S: o (™) ey (Pm)ip_zm
w1

This can be readily seen since a typical ‘fact()r ‘has the value

im g 3 ch(q’“ )x (g )q""“’Zc Ha 2™

@0 DEQ gy M1 ==l
=tm Mg 3 M-yl (LT g
Qo0 PG xrxg
=limMg* > Y a"fmg(l-ﬂm““”
o Qe PR xFug .

Next, we note that for each prime power p™,

Tt =|(7F7) (7))

e
' T ¥ ATTREE

(i 1 ) o= 0y k005
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go that if p° = 16 (k- 1),

2 4 2
Zic @™o ;.(pm)lp-ﬂ’"“<2“k'“) <2 <o

m=2 p 8}9
Hence
= o 7 7
0<1 m i1 —Zmﬂ' 1___0_ _____=1_____—'
= +;Gk(p (_P ) 4]9“5 + sza- 81925
and .
: yo 2 i
2nk) < 1——r =< -
peski< [] ( sza) <exp( ) pm)
pC16(ikI+1) 2Y=16(1%1+1)

Sexp(—olk*) (b =0, £1,42,..).

Finally we note that ¥#{z) has a Fourier representation

g~ ikz + const,

Fiz) =
Iri
Moo

valid in the interval 0 L2z 1. In view of the above estimate for the
Fourier coefficients this series will clearly give an analyfie continuation
of F(z) to the complex z-plane, which is an integral function. This con-
tinuation is, of course, at odds with the {completely arbitrary) extension
in (iii), in the introduction, of the definition of F(#) to the whole real

line. ‘

This ecompletes the proof of the theorem.
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