Diagonal forms of prime degree p in a P-adic ring

by

M. BHASKARAN (Kensington, N.S.W.)

We generalize a theorem appearing in [1], in the following way: Theorem. Let A be a P-adic ring where P is a prime ideal lying above the rational prime p. Let J_p denote the ring generated by p-th powers of elements of A. Then every element in J_p can be represented by the form

$$a_1 x_1^p + a_2 x_2^p + \ldots + a_5 x_5^p$$

where the coefficients a_i (i = 1, 2, ..., 5) are arbitrary elements in J_p prime to p.

If A is the rational p-adic ring, then four variables will be sufficient. To prove the theorem, we require the following lemmas.

LEMMA 1. There is a solution for the equation

$$x_1^p + x_2^p + x_4^p = \mu p$$

in A for a suitable element $\mu \in A$ prime to p.

This is proved in [1], p. 218.

LEMMA 2. Let a be a given element in J_p . Then a can be represented in the form (1), if there is a solution for the congruence

(2)
$$\alpha \equiv a_1 x_1^p + \ldots + a_4 x_4^p \mod pP.$$

Proof. Let π generate the ideal P. Suppose (2) is satisfied. Then

$$\alpha = a_1 X_1^p + \ldots + a_4 X_4^p + \lambda p \pi$$

for suitable elements $X_1, ..., X_4$, λ in A. If $\pi \nmid \lambda$, write α in the form

$$a = a_1 X_1^p + \ldots + a_4 (X_4 + \nu \pi)^p - a_4 (\nu \pi)^p - a_4 x_4^{p-1} \nu p \pi + \lambda p \pi \mod p P^2$$

where $v \in A$.

We can choose ν in such a manner that $\lambda - a_4 x_4^{p-1} \nu \equiv 0 \mod P$.

From this and from the fact that $-a_4(v\pi)^p \equiv a_5 X^p(v\pi)^p \mod pP^2$, it follows that there is a solution for the congruence

(3)
$$a = a_1 x_1^p + \ldots + a_5 x_5^p \mod p P^2.$$

If $\pi \mid \lambda$, it is obvious that there is a solution for (3).

As in [1], we can repeat the process to see that α can be represented in the form (1).

Hence the lemma.

Proof of the theorem. If there is a solution for (2), then there is a solution for the equation $a_1x_1^p + \ldots + a_4x_4^p = a$ in the rational *p*-adic ring. In view of this and Lemma 2, our task is reduced to solving the congruence (2).

Let \overline{a}_4 be the inverse of $a_4 \mod pP$. Multiplying (2) by \overline{a}_4 and denoting $a\overline{a}_4$ by a', aa_i by a'_i ($i=1,\ldots,5$), we see that our problem is equivalent to solving the congruence

(4)
$$a_1'x_1^p + a_2'x_2^p + a_3'x_3^p + x_4^p \equiv a' \bmod pP.$$

Now we will prove that there is a solution $x_2 = X_2$, $x_3 = X_3$, $x_4 = X_4$ to the congruence

(5)
$$a_2'x_2^p + a_3'x_3^p + x_4^p \equiv \mu' p \mod p P$$

for some μ' prime to p.

It is known that an element in A is in J_p if and only if it is a pth power mod p. Hence it is easy to see that a_2' and a_3' are of this form. Let

$$a_2' = b_2' p + \mu_2' p$$
 and $a_3' = b_3' p + \mu_3' p$.

If μ_2' and $\mu_3' \equiv 0 \mod P$, then solving (5) is equivalent to solving

(6)
$$(b_2'x_2)^p + (b_3'x_3)^p + x_4^p \equiv \mu p \bmod p P$$

which is possible in view of Lemma 1, since there is always a solution for the linear congruence ax = b in A where a and b are given elements prime to p.

So let us assume that one of the μ'_i 's, say μ'_2 , is prime to π . Then solve the equation

$$(b_2'x_2)^p + x_4^p = 0$$

by putting $b_2'x_2 = 1$ and $x_4 = -1$ when p is odd. If \overline{b}_2' is the inverse of $b_2' \mod pP$, we easily see that $X_2 = \overline{b}_2'$, $X_3 = 0$, $X_4 = -1$ is a solution for (6) when p is odd.

Suppose p=2. Put $b_2'x_2=1$ and $x_4=1$. Then we easily see that $X_2=\overline{b}_2',\ X_3=0,\ X_4=1$ is a solution for (6) when p=2 if $1+\overline{b}_2'^2\mu_2'$ is prime to 2. If $1+\overline{b}_2'^2\mu_2'$ is not prime to 2, and μ_3' is prime to 2, put $b_2'x_2=1$

and $b_3'x_3 = 1$ in (6). If \overline{b}_2' and \overline{b}_3' are the inverses of b_2' and b_3' respectively mod pP, then we see that $X_2 = \overline{b}_2'$, $X_3 = \overline{b}_3'$ and $X_4 = 0$ is a solution for (6). If μ_3' is not prime to 2, then $X_2 = 0$, $X_3 = \overline{b}_3'$ and $X_4 = 1$ is a solution for (6).

Now

$$a' = a_1' Y_1^p + \gamma p$$

for suitable elements Y_1 and γ in A. If $\pi|\gamma$, then by the arguments of Lemma 2, we see that a' can be represented by the form $a'_1x_1^p + a'_2x_2^p$. So let us assume that γ is prime to π . Let

$$\gamma = \mu X^p \mod P$$

for some X in A where μ is the same as in (5). From (5) and (7), we have

$$a' = a'_1 X_1^p + X^p (a'_2 X_2^p + a'_3 X_3^p + X_4^p) \mod pP$$

which is of the form (4). Hence the theorem.

Reference

 M. Bhaskaran, Sums of p-th powers in a P-adic ring, Acta Arith. 15 (1969), pp. 217-219.

UNIVERSITY OF NEW SOUTH WALES Kensington, N.S.W., Australia