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L Introducfién. In [8] canonical forms were found for a certain

class of 2nx2n matrices {Al B
- 1.6, Dy

the equivalence relation of premultiplication by symplectic nnimodolar

matrices. Tt wag found that each such matrix could be reduced to the

] with rational integer entries twmder

form [‘ég .§2] where A,Df = ml and A, is in Hermife's normal form
h 2

(described below) with positive determinant. B, satisfies conditions which
need not be repeated here. In order to find the number of such canonical
forms it iy therefore necessary to investigate matrix divisors of mI. This
leads to an interesting result about the index of a certain subgroup of
the unimodular group.

2. Preliminaries, Throughout this paper £, will denote the semigroup -
of all #xn (n2=2) matrices with rational integer entries and 1" is the
group of all matrices in 2, with determinant nnity (the unimodular
group). As usual, if A = [a;] and B = [b;]e2,, write 4 = B (mod g¢)

+ if and only if ay; = by, (mod ¢) for 1 <4, j < n.

. I}, is the subgroup of I' defined by
I, ={UI: U =1 (mod ¢)}.

It is well known ([2]) that I, is a normal subgroup of I' with finite index

el =] {fi (1‘—1""')}-

plg =2

-

The following results have been known for some time and will be used
extensively throughout. If 40, bas positive determinant, then there
is @ Uel'such that U4 = B = [b,] is an upper triangular matrix (Her-
mite’s. normal form of 4), the entries of whieh satisfy by =0 (1§
<EEN), by >0 I<i<n) and 0< by < by (L <i<j<< n). This form
is unique. The reduction can be taken a stage further, for there exist
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V, Wel such that VAW = diag{d,, dy, ..., d,} where d;_, [d; (1 < i< n)
and &; > 0 (1< j < n) (Smith’s normal form of A). Here again the normal
form is unique, but ¥ and W are not. A more detailed discussion of these
results may be found in [4]. '

3. The matrix equation AR = wml. In this section I discuss the
solutions of

(1) | AR —mI

where 4, Be£2,, A is in Hermite’s normal form with positive determinant,
. I ig the identity o X% matrix, and m is a positive integer. The main re-
sult is that N(m), the number of matrices A satistying (1) and the asgo-
ciated conditions, iy multiplicative. This is proved by looking at a certain,
subset of the solutions of (1). Let N (m; &) (& > 0). be the number of so-
lutions A of (1) with detd = d. It will be proved that if (d,, d,) = 1,
then _

(2) N(m; dydy) = N-(m; dy) N (m; do)

and from this it will be deduced that N(m) is multiplicative. Clearly,
ginee any solution of (1) must have det.d|w", it may be assumed that
both d, and d, divide m™ (for d,1m™ implies that d,d,7m™ and (2) is ob-
viously satisfied). As a firgt step in the proof of (2) it is shown that
N(m; d.dy) = N(m; d)N(m; dy). To do this the following lemma ig
required. . :

Lmvmas 1. Suppose that
(3) A By = A,B, =ml
where A, A,, By, Bye2,, Ay, A, are in Hermite’s normal form, and
det A, = dy, detd, = dy, (dy, d3) = 1, then B; B, = 0 (mod m).

Proof. The proof is by induction on the order of the matrices. The
hypothesis is made that the result is true for all (n—1} X (n--1) matrices

satisfying the conditions of the lemma. Suppose therefore that A, 4,
By, B, are partitioned in the form '

o X, D, ¥y _ o x, D X,
Al"“[o a]? Bl"'[o m/a! A2_ 0 ﬁ b 'BB'_' ) m/ﬁ!
where 0, Gy, I, Dye 2, , and ajm, flm. From the conditions of the
lemma it is clear that

) Ol’Dl = GQDE = mI
with ¢, and O, in Hermite’s normal form and (detC,, detCy) =1. Tt

follows therefore from the induetion hypothesis that DD, = 0 (mnod m).
From (d,, d,) = 1it is deduced that (z, f) = 1 and consequently m[m?/of.
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Thus
_ DDy Dy Yo+ (mff) Y,
BBy = [ o m2jaf = 0 {mod m)
if and only if . '
{4) D, Y,4-(m{f) X; = 0 (mod m).

To see that (4) is satisfied obgerve fhat

B (DI ¥o-F{(m]f) YI) = D(BY,)+mY,

= —DyD X, +mY¥,;, from ByA; = ml,
= 0 {mod m),

by the induection hypothesis. Thus .

)] D, Yo+ (m]B) Y = 0 (mod m/§).

Also
Ou[Dy Yo+ (m[B) Xo) = m¥a+(m/B) 01 ¥,
= mY,+ (m[p)(— (m]a) X,),
= 0 (mod m),

from 4, B, = ml,

whence

. _ m
6 D, Y = S S—
(6) Tot () Ty O(mod i Gﬂ)
Combine (b} and (6) to obtain

m }
m,detC) [}
where the curly brackets denote the least common multiple of m/f and
mf(m, detd,). Call this ¢ and -write d == (m, det;) =0 that (4, g} = 1.

Since both 4 and g divide m it follows that d|m/f. Thus {(m/8, m/d)
= (m[fa)(d, f) = m|pa and so

, _mipyemia)
(mif, mjd)
Consequently B, B, = 0 (mod m) and the resull is true for all nxn

matrices satisfying the conditions of the lemma. This establishes the
lemma, since the result clearly holds for # = 1.

Lenma 2.

™ Dy o+ (m]f) 7, = 0 [mod {5, -

N (m; dydy) = N (m; d) N (m; ds).

Proof. From Lemma 1, A, A4, and m B B,<2,. Further, there
exists Uel” such that UA,4, is in Hermite’s normal form. Then if
A =UAd,A, and B =m BB, U, AB = mlI where detd = d;d,.
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The lemma will be proved if it can be shown that the matrix 4 = U4, 4,
can arise only from the given 4,,4,. To this end, suppose that
Ay, Ay, AT, A7 Q, are in Hermite’s normal form, that

AB = 4,B, = AT BF = 43 B} = ml,
debd, = deb AT = d;, debd, = detdr =d,, (d,d) =1,
and thzut there exists Vel such that | -
(8) V4,4, = Al ‘£ AY,
It 4, 4., A}, 47 are partitioned as previously,

A4, = [02 Xa}[ol Xl] _ [Gﬁal Gaxl_fkaxg]’_ R

05 O « 0 " ab
G*O* G*X:z: ‘__a';acxas. .
et
From (8) it is seen that ¥ mwizt have the form - .
. V. Vil
=l

where Ve, ; is unimodular, so that V;0,0, = 0507, Algo, it is clear
that ab = a*b*, and since (a, b™) = (¢*,8) =1, @ =a* and b ="
from which it follows that det(, = detO] and det(, = det(]. '

It is now possible to adopt an induction hypothesis that if Py, Py,
PI,PieQ, , are in Hermite’s normal form, and if

-PlQl-:PzQz =~PTQT :-P:QZ'. = ﬂ’LI,
detP, = detPy, detP, =detPy, (detP,, detP,) =

(@,9:,07,07¢2,_)), and if UP,P, = PyP} for some unimodular I,
then U =1I and Py =P, P; = P,, Using this hypothesis it is clear
that V,.=1 and 0] = 0;, Cf = C, and so from (8)

C, X +aX,+V,ab = 0, X{ +aX;.
This implies that Oy(X, —X]) == 0 (mod a) which in turn yields
) X — X} =0 (mod af(a, detC,)).

But - {a, det G,) ~1 and X, —X¥ = 0 (mod a) nnphes that X, WX*

since 4,, A} are in Hermite’s normal form. Since the induction hypoth-

esis is clearly valid for matrices of order 1 It is immediate that
Nim; d) N (m; do) < N(my dydy).

Before the opposite ineguality to this can he proved a definition. is
required. Let P,Qef,. Oall the pair (P, @) coprime if the matrix prod-
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ucts GP and GQe02, if and only if ¢s2,. It is easily shown ([5]) that
this definition of a coprime pair is equivalent to the existence of
X, ¥Yef2, such that PX+QY =I. This result will be used in the next
lemma. : .

ILEMMA 3. Given A<, in Hermite's normal form with detd = d,4d,,
{(dy, ds) = 1, and which salisfies

AB =mI, (Bef2,),

there is o procedure which gives wuniguely matrices Ay, Ay in Hermiie's
normal form such thai _
Ay By = A, B, = ml,

det A, = d,, detds, = dy; and A = UA A, for some Uel. .
Proof. If 4 = [a;], then a;au ... a6, = dd,. Let o = {(ay, dy),
B = ayflay, 4)) I<i<n) so that aaq. vty Bifls - B = dd,. How-
ever, (d,, d,) = 1 and this gives aeay ... a, = dy, f18s ... fn = &y
Congider the parfitions of 4 and B

¢ X DY '
A = [0 a ] BZ[O bm] (G}DE‘QM—I)J

.

-sothat d,d, = a,, det (. Then det C = {d,/a,)(ds/B,) and (d/uy, @B, = 1.

Clearly 0D == mI and ¢ is in Hermife’s normal form. It is thervefore pos-
sible to-apply the induction hypothesis that there exist Oy, €z, Dy, Dye 2,
such that ¢ = 0,0, with 0, in Hermite’s normal form, 0; D, = 0, D, = ml
and detC, = d,/a,, detC, = d,/f,. Then
' ¢,0, X
A — ivz j!
[ o,

¢, Y§c, 2,
0 [y 0 ﬁn
if and only if

(9) X = Gzzﬁ*ﬁnyl

Now the matrices (C,, 8,1, ;) form & coprime pair, for (det ¢, §,) =1
and go therve exist integers % and » such that uwdetC;+¢f, =1, and
congequently (G0, £,6) both integral implies fhat (GFdetd, §,G) arve
hoth integral which in turn yields wdetC &+ 08,6 = G is integral. As
a result there exist P, Q¢ 2, , such that C,P-+£,¢ =1, ;. Thus 0, (PX)+
+8.0X) =X and if Z, and ¥, are chosen so that Z, = PX 4,7,
Y, =QX-- Glz for any {n—1}x1 veetor Z, then (9) is satisfied, and_

hence
01 Yi Un Zl E3 ES
= = B _A_ A
4 [O Uy :II:O ﬁn] R

which can he writien as
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say, where deb A} = d,, det.A} = d,. Choose the vector Z so that every
entry of Z, = {2, 2, ..., 2,...} satisfies 0 << << f, A <i<<n—1) and 4;
will then be in Hermite’s normal form (denote this by 4,). Also, there
exists Uel guch that 4, = U~'A4} is in Hermite's normal form, so that
A =TUAd d;and 4,(4,BUY = mi,ie 4,8, = ml where B, = A, BT
Moreover, A,B, = mlI where B, = BUA;. Since the induction hypoth-
egig iz trivially true for matrices of order 1, the procedure defined above
is clearly valid for all matrices of order > 1 satistying the eonditions.

Moreover, the 4,, 4, obtained from 4 are wnique, by an argument -

similar to the one given in Lemma 2.
Thus N{m; didy) = N (m; d))N(m; &) it (4, d,) = 1.
Levyma 4. Let m = mymy where (my, my} = 1. Then 4f d|m?,
N{m; d) = N(my; d).
Proof. For _
AB =ml ' with det4 =d < dB = mymyadjd
<> B, = (my/d)adjd 2,
< AB, = m, I,

(since (d, mﬂ) = 1)

which proves the lemma.
TomorEM 1. N (m) is mulliplicative.
Proof. Suppose (m, my) = 1. Then

N(mymy) = N (mymy; d)

dj(mymg)?

= 2 2 N(mymy; dyd,)

dllm dzlm ) B

= M Nimi;dy) D N(my;dy), by Lemma 4,
4 [m} dglmyy '

= N (my) N (m,).

4. Evaluation of ¥ (m). Before utilizing fully the fact that N(m)
Is multiplicative, an alternative formulation is given for il in terms of
the indices of certain gubgroups of I' in I

Suppose that, as in (1), 4B = mI. Then a reduction of A4 to Smith’s

normal form shows that there exist posﬂ;we integers d,, d,, .
U, VeI such that UAV = diag{d,, d, .
It follows that (UAVY(VIBU™Y) = mI
VrBU e, d;{m (1<i< n).
The COTVerse to this is obwously Lrue I

{10) D = diag{d;, dy, ..., d,}

., d, and
u} with d-z—-lld (_1 < i -~<_, ’)’l;)
and - consequently, since
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withd;_,|d; (1< i< n)andd,|m,then 4 = U, DV, and B = V{'mD ' U7!
satisfy (1), for any U,, VieI'. Since all solutions of (1} are obtained from
& matrix of the form (10) it is natural to ask the following question.
Given D defined by (10), how many of U, DV, Uy, V,ei', have different
Hermite's normal form ? Now U, DV, and U, DV, have the same Hermite’s
normal form i and only if

DN UT)UD =V, Vi
< V, V7 eD'ID A T

for some Uel’,

Sinee D™'PD NI is a subgroup of I, this last condition iz equivalent to
requiring that V,; and ¥V, belong to the same right coset of D' DI
in I". Tt follows that the number of matrices of the form U,DV, with
U., VieI' which have different Hermite’s normal form is [I"': D™D J11.
Denote this number by ¥, (d:, d,, ..., d,). Then, by the above discussion

D) ol dyy oy ).

dy—1ldgim

Nim) =

For each prime p dividing m let n(p) = max {k: p {m}, so that, since
N (m) is multiplicative,

Fem)=]]1

im s Koy <m(p)

N"(pcﬁ’pug’ "‘3.’pan)}‘

Thus to evaluate N (m) it is sufficient to consider
N, 9%, -0y 5)

where p iz a prime divisor of m and <o < ay <. .. < g, < M(P).
Let D be the » xn matrix diag{p™, p,...,p"}and let H = H{n;, oy, ...
.., a,) denote the subgroup D 'I'DNI. Then

No (2™, 9, ...y p™)

a, and write g = p°. Then

= [I: H].
Imnova 5. Suppose f =
(I:H]=[I:TH: T

Proof. It is trivial to verify that I, = H and the result follows.

Since, as was mentioned earlier, [[':I,] is known, evaluation of
[I": H] has been reduced to the evaluation of [H 1 I,]. 'This can be done
in a way similar to the derivation of [I':I,] in [2]

Let U = [uyleH; then U = D'VD for some V = [oy]el’, and
5 litile manipulation shows that wy = o,;p% "% (1<4,f<<n). Thus
U = [uy]eH if and only if detT =1 and w; = 0 (mod p%™ %) (L < i <j -
<n) (since 0 oy << oy, < gy B
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Lemvs 6. [H:1,] is the number of matrices U =
are incongruent modulo g, where uy; = 0 (mod p%™%) (1=
det U7 == 1 (mod g).

Proof. Let U, Vell. Then U = V {mod ¢) if and only if TV~
(nod ¢}, i.e. if and only if ¥ and ¥ belong to the same right coset of P
in H The lemma will therefore he proved if it ean be shown that, given

= [yl 2, with ay =0 {mod p%™%) (1< i<jxn) and detU =1
(mod q), there exists WeH such that W = U (mod ¢). This is done in

Imamma 7. If A4 =leyjef, ds such that a; =0 (mod p%~ %)
(lgi<ji<<n) and debd = a (mod g) whme (a, q) = 1, then there ewisls
B = [bylef, such that detB =a, by =10 (modp UTEY ISi<<issn
and B = A (mod g).

Proof. First obeserve that if there exists B = 4 (mod ¢) then neces-
sarily b, = 0 (mod p¥™™) (1 <i<<j<n). For

E%]GQn which
i< § < n) and

by == ay (mod g) = by == ay; (nod p%™%)

= fmod(p% ) (li<ign)

smceﬁ aﬂ/a—u,, I<i<<jis ).

- It ig therefore sufficient fo congider the lemma without the hypo-
thesig that ay; == 0 (mod p%™%) (1 £ 4 < j. < n). Make the induction hypo-
thesis that the result i3 true for all (n-—1)x (% —1) mafrices with integer
entries and all a such that (¢,q) = 1.

Let diag{a;, @y, ..., &,} be Smith’s normal form of 4 (n>1) so
that there exist U,, Vyel' such that
(11} U, AV, = diag{a,, a,,

ey Gty ARd mag ... oy = 0 (mod g

where a;_,|a; (1< i< <) Pogtmultiply U, 47V, by the unimodular

matrix
1060 ...0
110...0
Vo101 ...0
100 ...1
to obtain .
a0 0 ... 0 a;y - 0 0 ... 0
@ a4, 0 ... 0 g Gy 0 0
UyAV Vy=1a, 0 ay ... 0 {=1a, 0 az...0 [(modg)
4, 0 0 t,, a, ¢ 0 an_J

Call this latber matrix D. Then since a,|a, and (aq, ¢) = 1 from (LL),
it is seen that g.c.d:(ay, ay--q, as,

oy @) =1, Premultiplying D by -
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a suitable unimodular matrix makes the (1, 1) entry 1 and then by sub-
tracting suitable multiples of the first column from every other column,
and then suitable multiples of the first row from every other row, the
existence is establishéd of U, VeI such thab

UAV = [(} A](mod q),

where A, is an (—1) X (n—1) matrix with infeger entries and detd,
= g (mod g). Therefore, by the induction hypothesls there exists (n—1) X
X (n—1) matrix B, such that 4, = B, (mod ¢) and detB, = a. It follows
thai

A=0" [3 ?41] V-1 (mod ¢),

10
0 B
the result is clearly valid for n = 1.

Before proving the mam theorem the fo]lowmg two lemmas are
required. : .

Lemwma 8. If , (1,19; is the nwumber of r-tuples {(a, s, :.., ) of
Ptegers ai, @y, ..., @, 90 @ complete sysiem of residues (mod 9% (£ 1) such
that (@, Gy, .., a;,.,p‘) =1, then ‘

and i B is taken to be U“l-[ J V' the lemuma is proved, since

(12) ' (1, pY) = p" (L —p7").

Proof. J,(1,9%) is Jordan’s generalization of Euler’s g-function.
The proof of (12} is well known and can be found in [1].

Levma 9.If ay, 6y, ..., a, aver indegers such that (e, dyy ..., 0, m) = 1
{m > 1}, then there ewist i,, Ay, ..., A, Wwith (i, m) =1 such that

At Qg+ Aa, =1 (mod m).

Proof. Thiz is proved in [2]. _

Let U, (8;a,0,...,q,) denote the set of matrices U = [u,lef2,
satisfying 4y = 0 {mod p*™ ™) (1<i<jf<<n), 0<Suy;<g (1<i,j<n)
and det U = 1 (mod q), so that [H:I,] = [U,(8; ar) ey ..., o) - Also,
at this stage make the assnmption that

2 258
ey P, L, ),

a o a [+ y O
(B, 2%y ey ™) = (@7, 5 P 9% . 9%
] fnctms g Tactors ry, Tactors
Whereal=a;l<.a2<.._<a,ﬂ:an',¢1+¢*2+,..+frk=n,1 1(1 < k)

and » 2= 2. Suppose, further, that %= 2 since the case k =1 is Lrlvm,l.
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TeEOREM 2. If »2 2,

(n+ 1- 2])a i

k
PR 1 {1 R e

i=1 gj=1

JUn(tgﬁ alj Ogy -«

Prool. Let U = [uy;]e U, (A5 @y @y .- vy 0). Then (v,
and by Lemma 9 there exist 4,4, ...
Ay, - Aty oo Aty =1 (mod g).

: Yins ‘Q.') =1
, Ay With (13, g) =1 sych that
Postmultiply U by the mafbrix

2,00 ...0
10 ... 0
V=i 01 ...0
2 @0 .0 A7

where i7' is the integer » such that 0 <z < ¢ and »i =1 (mod g),
to get a matrix W with entries reduced (mod ¢), W = [w;] = UV (mod g),
g0 that _

wy =1, Wy =g tuad .. g d; (mod g)
wy =uy A<j<n) and w,=Ai

Postmﬁltiply W by

(1=>1),
Mgy (mod ) (1< 45 0).

11—y — Wy Win
W, = 0 1 0 0
0 0 0 1

to get a matrix A with entries reduced (mod ¢)

1 0 0 ...0
A =% % Gy oor Oon

----------

Ay Gy Apg s _a’rm

where a; =W, (1<i<n) and ay; = w;—wywy (mod g)- (1 <4, j< n).

Bince wl, == 0 (mod p%~"), it follows that
=0 (mod p%~%)  (1<i<j),

and consequently

(13) ay =0 {mod p™™) (I<i<j<n)

Thus A e U, (f; @1y tgy ey ). Lot B = [by] be the (n—1) X (n—1) matrix
defined by by = @4 (L <4, J < n). So that '

det A =1 (mod g) = det B =1 (mod g).
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This, in conjunction with (13), implies that BeU, {f; ay, a5, -..) @)

} P n
Thug the number of matrices in T, (B3 @15 day ..., a,) of the same form
ag A is '

qﬂ‘“1|Un_1(ﬂ; Clgy gy vrey )l

(since there are ¢"** choices for the first column of 4).

It will now be shown that for a given matrix A of the above form
and a given first row of U, the other rows of U are uniguely determined
(mod ¢). For if i > 2

@ = wy (mod g),

Wy, — Wiy Wy (mod g),
Ay = Wiy~ Wiy Wy (mod ¢},

i.e. }

gy == Ug Ay g Ay oo U A, (m0d @),

ia == Uiy~ Gy Uy (O g),

fan—1 = ui,n—l_ ‘ilul,nﬂl (II].Od g.')f

— -1 -1
g = AT Uiy — A1 Gty (04 g)

and the determinant of fhis fransformation is

h Ay At An
— Uk 1=, — U hny — Uy Ay
— a1k Wy,m-14 1= padn-y  —Uppd
-1 -1 -1
— U — A Ay e Ul Ao A (L —tiad)

which is easily transformed into the following determinant by adding
suitable multiples of the firgt row to every other row,

1 2 An—l T
.00

0 ...1 0O
L0t

Since this determinant is congrnent to 1 (mod ¢), it follows that, if for
all 2322 (G, @iy v ony By) QDG (Uggy gy oy Uyy) aTE given, then (14, i, .
vey Ui (122 2) is uniquely defermined.
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The next step iy to determine the number of possible choices of
(119 Uags wees Wyp) 28 the first row of UeU,(f; 0, ayy.vny @),
ig necegsary that

(14) (Bh11s 1ay - s Miny §) = 1.

3 Yoy s Ypy 415 oo e
Bubt uy; =0 (mod p) for j > », and 80 condition (14) is equivalent fo
(15) (s Ungg evnsy ey @) =1,  OCuy<g (L<f< ).

Using  Lemma 8, the number of (wiy, thy; ..., %)
(bearing in mind the fact that w, = 0 (mod p%~™1)) is

satisfying (15)

I (B-ay o)
ﬂrl(l P—rl) J>ry .

This may be rewritten a8

K
Z(ay—ay)
St T (LT
Consequently

2 (og— rxj)

(16) |U [ Uy (85 gy

alBs ary ayy ooy}l = @7 (11— p7m)pt vy )]
It is now a simple exercise to use (16) to prove the theorem by

induction:

CororTARY 1.

) (2_1 n—1)ay n a ___ij)
Fop™y ooy ) = [T H] = o
‘ M- p"')}

Proof, The regult follows immediately from Theorem 1 and Lemmm b.
Using this corollary N (m) may be caleulated in a finite mmlber
of steps from the formula
¥m) =JT{ N0, 5%, ..., 5™,
Bl <ay<. Sapsm(py -

The contents of the above pa‘pel.formed part of a Ph. D. thesis
presented to the University of Glasgow in 1968; the author gratefully ac-

knowledges the debt he owes to his superwsor Professor R. A. Rankin for
hig advice and encouragement. : S

Clearly. it.
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