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Composition of binary quadratic forms
over integral domains

by
Bir §. Durin (College Station, Tex.) and
H. 8. Burrs® (Baton Rouge, La.)

Introduction. There are two principal (classical) definitions of com-
position of binary quadratic forms over the domain Z of rational inte-
gers — that of Gauss nsing bilinear substitutions (see [14], Al:ts. 235—‘243
and [29], pp. 231-243), and that of Dirichlet—Dedekind using “united
formis” (see [11], [26], pp. 11711175, [9], pp. 134140, [10], pp. 60-79).
Another method of dealing with composition is to associate with each
form a module, and from this point of view composition is really just
multiplication of suitable modules. (This idea seems to ha},ve'been‘due
to Dedekind; a recent paper concerned with this approach is [7 ].)‘

Two papérs have recently appeared which are concerned with t‘he
problem of extending the theory of composition to variouns types of in-
tegral domading — in [22] Kaplansky uses the module a;ppmac]} to (?Xf,end
composition to Bezout domaing (i.e. integral domains in which finitely

‘generated ideals are principal), and in [6] Buttz and Estes defermine

a class of domains in which “united form” composition holds and g?ve
a necessary and sufficient condition for the existence of a Gaussian
compound of two primitive forms of the same’ disgriu}igant._ o

In this paper we are concerned with Gaussian coniposition am.i nnited
form” comipogition .and the relationship between them. Il?l §ect10n 2 we
congider the compound and the direct compound of Gauss, giving ne(?esse‘my
and sufficient conditions for existence in each case, and as an app]%camon
we extend the theory of Gaussian composition to Bezout‘ domaing. In
gection 3 we congider “united form” composition and give DneCessary
and sufficient conditions for ity existence in a (-domain (i.e. an integral
domain of characteristic # 2 in which any two primitive forms o‘f the same
diseriminant have a direct (Gaussian) conmpound). Seeti()l} 4 is devoted
to showing that “united form” composition holds in (and giving examples

* This anthor received partial sappert from a National Seience Foundation
Tesearch grant during the preparation of this paper. :
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of) elementary divisor domains. The two main results in section 5 are
the following: (1) if D ig a domain with characteristic # 2 such that
finitely generated projective D-modules are free and such that «® = @{2
(mod 4) implies # ==y {mod 2) in D, then D iz a G-domain; and (2) if
D ig a PID, then D[] is a G-domain.

1. Some preliminaries. Let D be an integral domain (i.e. a commuta- -

tive ring without proper divisors of zero and with. multiplicative identity)
with quotient field X, and characteristic not 2. If x, y are indeterminates
over I, the polynomial ax® - bay + cy?e D[, y] is called a binary guadralic
Fform over D and will be denoted by [a, b, ¢]; we will nge the conventions
of [9] regarding such forms. Xf f = [a, b, ], then the matriz of f ig the

matrix
a b2
B =
bj2. e

with entries in K, and the discriménant of f is d = b®— 4ae. In this paper
we are concerned only with forms having nonsquare diseriminant, ie. d is
not the square of an element of K (if D is integrally closed, this is equiv-
alent to assuming that d is not the square of amn element of D — e.g. see
[6], pp. 158-159).

If @, ; (¢ =1,2) are four different indeterminates over I} and the
linear transformation

= &L [
W s By = Oy P Gpalay 4yeD
Y1 = On @2+ Gag¥e,

transforms o, o+ bys g, + 6142 into ayad -+ bymays -+ 6013, 18
Gg = @65+ by Gy Gy -+ 01851,

(2) by = 20y 801 0y + Dy (832 Bpp + aa hg) 201 0y @,y
Gy = a’lfﬁz ot by g oy - 01 Bl

then- we say that f, = [ay, by, 6] i3 transformed into f, = [y, by, €]
under the linear transformation 7' = (ay). If d; is the diseriminant of
fi (7, =1,2), then a direct calculation shows that d, = |T;|*d, where
17| is the determinant of T. If ¥, denotes the matrix of f; (¢ =1,2),
then the matrix equation 77, T = F, (T’ = the transpose of T') siraply
gtates that f, is transformed into f, by T, and the relation between dy
and d, follows by the multiplieation theorem for determinants. In cage
17 =1 we say that T is unimoduler and that f, 4s eqmmlant io f2 (in
symbols, f; ~ fa)-

The divisor of a bmmy quadmtm form f = {e, b, ¢] iy the ideal
(a, b, 6) of D generated by the coefficients of f, and’f is sald to be pmm@twe
prowded the divisor of fis D.
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If 4 is a non-square diseriminant of D, then ¥ (d) will denote the set
of all binary quadratic forms over P with discriminant & and P (d) the
set of primitive forms of diseriminant d. Tt is elear that the relation ~ de-
fined above is an equivalence relation of F'(d) and on P (d), (it follows easily
from (2) that if f, ~f, then the divisor of f, = the divisor of f,); the
eqmvalence class of a form f under ~ will be denoted by F.

2. Gaussian composition. Gauss ([14], Arts. 235-243) based his concept
of composition on the notion of transforming a form into a product of
two forms by a bilinear transformation (also, see [6]).

In general we denote the transpose of a matrix M by M, and by
a bilinear transformation we mean & transformation 7 defined by o matrix
equation of the form

(23 73] = (@) [2:9, B1¥s Ya%a YoVl

where (a;) Is a 2 X 4 matrix with entries in D and 2, ¥; (i =1,2) are
four different indeterminates over D. If no confusion results, we frequentliy
also denote by I the matrix (a;) of the transformation. We emphasize
that the order of the w;, y; in the column matrix in the above equation
is important, that is, T' is linear in (z,, y,) and in (@, Ys).

Let f; = [a; by, ¢, ]<F(d) for 4 = 1,2, 3. We say that f, is transfor-
mable into f.f, provided there exists a bilinear transformation.

(3) T Ly = PoB1 Ty T Patr Yo+ Po¥18s -+ Doty sy
Yo = Qo1 By~ Q112+ Go¥f1 ¥+ Q¥1Ys

such that
a5+ batays 45 = (agaf+ by 3y + Y1) (tta 3+ ba kY2 + 02 173)

in the polynomial domain D2y, ¥y, #s, ¥,]. It is clear that if f, is trang-
formable info fif., then f, is transformable into f,f,. Furthermore, if

A; is the divisor of f; (i =1, 2,3) and f, is transformable into f.f,, it

i3 easy to check that 4,4, < 4.

T (o) is & 2 x4 matriz with entries in D, then the d1v1501 of {a;)
is the ideal of D generated by the six minor determinants of order 2 in
(a;) and (ay) will be called primitive if its divisor is D. By the divisor
of a bilinear transformation 7' we mean the divisor of the associated 2k 4
coefficient matrix of 7', and 7 will be called primitive if its matrix is
primitive. The six minor determinants of order 2 in the matrix of the
transformation in (3) play an important role in the Ganssian developiment .
and we denote them by

(4) Dy =pq—ap; (0<i<j<3).
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Sinee the transformation 7 in (3) is linear in {#y, ;) and in (x,, ¥,),
it can be considered as @ linear fransformation

(5) {wa = (Prnml"s'fpz?h)wz‘{*(P1931+Pa?!1)@/2:

Yy = (Qoy -+ q2¥1) @y + (1% + G¥1) Ve

with coefficients in Dfs,, v,], and also ag a linear transformation

@y = Doy P1¥2) Bt (Da T2 +2—":;?Jz)?117

(6) T,: ‘ .
Yo = (Qo%s+ @1 ¥2) @1+ (§2%a+ GaYa) Y1

with coefficients in Dz, 4,]. In general, if T is a bilinear transformation,
we will denote by T, (¢ = 1, 2) the agsociated linear transformations in
(8) and (6). It is clear that applying either linear transformation T, to
fa is equivalent to applying T to fy. The following proposition is eagy
to establish.

ProPOSITION 2.1. If T is a bilinear transformation and S 8@ 2X2
matric with entries in D, then 8T is the matriz of a bilineor tmnsfarmamon
and 8T, = (8T), for + = 1,2,

The following proposition was proved by Gauss for the case D Z
(the ring of integers), but we sketch a proof for the sake of completeness.

TEROREM 2.2. Let f; be a form with discriminest d; ond coefficients
in D (i =1,2,3). If f; is transformable into ff, under T (using the no-
tation of (3)—(6)), then there emist vy, ¥,eK such that the following holds:

(a) d; = dg#} for i =1,2, '

(b) ‘Dol = 7y, Dog—Dig = b1ta; Doy = 6173,

Dy = tta¥y, Doyt Dy = byry, Dy = Ga71y
(e IﬂfaTJ.f"z = 1§02 — Gol3, C3"1%2 = DP1Pa—PoPa:
by¥1Ty = Pofat GoPa—P1Gs— G1P2-
Conversely, if . and f, are given and there emist p,, geD (i = 0,1,2,3),
el (i =1, 2) ond O, Dy, Gee D such. that (b) and (c), then [ag, by, eu] 15
transformable into f.f, under the bilinear fransformation determined by lhe
Pyy 4 (@8 in (3)) and (2) holds.”

Proof. Since f; = f,if; under the b111ne&1 tra,nsfmma,tmns T, of (5)
and (6), it follows that : -
(7) &1, " =fid,  and a s| 1ot = fady
Where"l.’l’ L is the determinant of T, I‘rom (5) and (6) it is clear that
(8) ITy] = Dy o} 4+ (Dea— Dlz)ml?h'l‘Dzs?!u

(9) o szl_-_- Dostiy + (Dot Do} #2872+ D1a¥i -
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Now (a) and {(b) follow directly by uging (8) and (9) and equating coefficients
in (7). To establish {¢), we consider the linear transformation

(10 _ 8: @ =rfo, y) = rifatn
and note that

(11 Fulwn, 9 = rifofifs 5 R
go that f, is trangformable into #fsf, by the bilinear transformation. with
matrix
[ E s —DP2 “‘Pa]
—& 10 Po P

and we can apply (a) and (b). There exist B,, R, such that d, = d, R? and
rid, — d, B;, and since d; = dy7; (1 = 1,2) it follows that B, = £+ 7, and
Applying (b) and (12) and comparing the coefficients of
ot in f, = flfa , we find that B, = —r,/r; and (c} follows. -‘The converse
follows by applying the indicated transformation to [as, by, 6] and using
(b} and (e).

Remark. If f; and f; are both transformed into ff, under the same -

bilinear transformation 7, then f, = f; since the transformation 7, in
(8) has an inverse in K{zy,y,) (it follows from (8) that [T;| = 0). This
also holds in case f;, f; have coefficients in K.

PrROPOSITION 2.3. Let f; be a binery quadratic form with coefficients
in D (i =1,2,3) and suppose that f; is transformable into fif, wnder T,
If f2 is taken into f; and f, is taken into f; (3 = 1., 2) by linear transformations
L, with coefficients in D (i = 1, 2, 3), then fy is transformable info f1f; wnder
the transformation

{81l us L 8;
M =LT . where L, = S
: L, vl By Ty

Proof, Let F,, P} denote the matrices of f;, fi respectively (4 =1,
2,3). Since L,F3L, = F,, it follows that (L,Ty) F5(L,Ty) = T F,T,
= f,F, (using the notation of (5}, (8), and Proposition 2.1). Since L, Ty
= (L, TV, fy is transformable into f,f, under the bilinear transformation
I,T.

- Similarly, T, F,T, = fi F, implies that
(Tle)’Fa(Tle) :"fLL;Fsz :le:'

Since T, L, = §; where

L, ¥ 00
8 =1 , ¥=} |,
¥ L 00



228 B. J. Dulin and H. 5. Butts

f, is transformable into f,fs under 8. It follows in fhe same manner that
f, is transformable into fyf, under the bilinear transformation

[slI ulf} Il 0]
RE=1T , I == .
. t.I w1 01

The proof is easily completed by combining the above fhree cages.

Remark. Since f; iy trtansformable into fyf, under I in Proposition
2.3, there exist ry, roe K such that (a), (b), {¢) of Theorem 2.2 hold. What
is the effect on »; of the applieation of the linear transformations I in
Proposition 2.3% Let d;, di .denote respectively the diseriminant of f;,f;
for 1 =1,2,3 and denote the aix minor determinants of order 2 in M
by D} (0 <4< j<3). Applying Theorem 2.2, there exist 77, 7; X such
that (a), (1), (¢) hold. Heunce d; = d,#; and d} = di(+{)* for + =1,2,
Bet k; = |L;| for ¢ =1, 2 3. Since d, = d; ki and d; = d;k}, we have
;P = (r; K T,)? tor 13 =1, 2. Computing Dy, Dy, and using (b) of Theorem
2.2, we find that 77 =, ic ky fori=1,2.

ProposrrioN 2.4, If T s a 2 x 4 matriz over D, then there exists a 4 x 2

matrtw 8 over D such that TS =['-(L) g

Proof. Let 7 = (a;) where i = 1,2 and j = 1,2, 3,4. Tf the ideal
generated by the Dy = o, — amau- (1< i< j< 4)is D, then there exist

weD (1=1,%,3,4) such that Eu ay =1 and byeD (1<<i<j<4)
i=1
such that Y by D, = 2’ g gy »
- =1

] if and O%l'y if T is primitive.

Seb gy = 1)+ 815015+ b1aag+ b1y rgy Bag = Uy — bratlyy +hontsy + by 6y,
wBl = Uy big 031 — bﬂs Oyn = Bag Gy Byy = Wy — Byaly — g @yp — byy 0093 Then

2 @y Oy = l and Za*ﬂa,m = 0 Slmllally, there exist 2,eD (6 =1,...,4)
such that meam —] and meah = 0. Tt follows that

1 0
(045) () = [0 1] .

Conversely, suppose that there is a matrix § over D such that

10|
T8 = ]
01
Let W = (y) where wy; = a,; and wy; = 4% for j =1, ..
W'T == (y,) where ge/,h_ =0,y; = Dw for j =1, and yy; = Dﬁ for § < 1.

Since (WIS = W', it foilows that the ideal generated by the six n111101
determma.nts of order 2in Tis D and T is primitive.

, &, Then

icm
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The relationship bebween binary quadratic formg over D and certain
D-modules in a quadratic extension of the quotient field K of D has been
developed as a useful technique in investigating properties of forms and
D-modules (e.g. see [221; [6], pp. 173180 and [7] for recent applications
and other references). If d = #*—4n i3 » nonsquare diseriminant in &
then f(#) = #2—tr+mn is an irreducible polynomial in the polynomial
ving D{s]; and the roots of f(#) are (-+Vd)/2 and (:—Vd)/2 where V4 is
a fixed root of &% — d over K. For a, feK( l/d) [a, B1D = {am-+ fy| =, yeD}
will denote the D-module generated by ¢ and g If o = cH—b]/EeK (}/E),
then @ = a—bVd is the conjugate of ¢ and ¥ (a) = an i the norm of a.
Given & D-module ¥ < K (l/_cf) the set of conjugates of elements of M is
also a D-module, denoted by M. We agsociate with a form f = [a, b, e]< F(d)
the D-modules M, = [a, (B+Va)/21D and M, = {a, (b —Vd)j2]1D, and
note that I, = M, if and only if & = ag with geD. Furthermore, with
a D-module M = [a, f]1D we associate a form. f = am+ﬁy)(am—rﬁy)
eK [z, y], called the norm form of M.

THBEOREM 2.5. Let f, = [a;, by, ¢ be a form over D with. discriminant
d,;' (1 =1,2;3), and suppose that f, is transformable into f,f. by a pﬁimitifae
bilinear transformation T {(and hence there ewist ry, roe K such that d7: = d Tl

by Theorem 2.2). If rVdy = rVd, then the following hold.

(13) There is a unigue ovdered pair (o, ay) of independeni elements in
EYad)=K (]/dz) such that the matrin 6qUaTTOn (@, Gy, @ Wy, fe 2y, W Ws)

= (aq, a)T holds, where w; = (b;+Vdy)2 for i =1,2. ,
(14) My M, = [ar, 2,]D.
{15) The norm form [ay, ag] I 48 G 0,f5-

If rVd, — —rVay then (13)~(
@y replaced by w,).
Set

) hold with wy replaced by w, (vr, wilh

o D1 Ds Pa]’
o 1 9 ’

and :c'on'si'(ler the matrix equation U == (g, a,)T. Since a,a4, = P, +octs
and g w, = p,a,+ ¢ oy, it follows from Theorem 2.2 that

dy = (Gafy— Qy,)fry  and o = (—“219;1‘5“190502)/"“2-

Furthermore it is easy to <wheck that e, a, satisfy U = (a1, a)T. We
will establish later that the D-module [ay, a;]D is two dimensional,

Since U/ = (al, ap) T, we have M; M, < [ay, a,]D. From. Proposition -
2.4 there exists & 42 matrlx V such that UV = (ay, ag)_’[’V (ot 2a)y

‘ -
U = (a,6y, 0003, 30y, 0y0,), T = [



230 ' B. J. Dulin and H. 8. Butts

and consequently [a;, a,].D = My M, . We note that a,a,, a;w,e[ay, a,1D,
which implies that «,, o, are linearly independent over K.
Now, consider (15). Let @;, y; be indeterminates over D for i =1,2
and set
&1 Dy

. He
T and TW = [ a].
Y- | - Ya

Y1'Ya

(18) | W =

Since U = (a4, a5)T, we have

- ) mﬁ .
(17 ' UW = (a1, ap)
Ys
and
(18) (B2 + @, Y1) (G2 2054 Fuzyz) = a3+ G,
(19) {6:0,+ o, yy) (@0 Wpy) = @1+ @yl

multiplying (18) by (19} we obtain
(20) a:f1*aofy = f3r  where M = [ay, a,]D.

It is clear from (16)-(20) that the form (L/a,@,)fs = & g transformed
into fif, by the bilinear transformation determined by 7, i.e. the trans-
formation (16),. Since h has coefficients in K, b = fa by the remark after
Theorem 2.2 and (15) follows. If wll/d: = —r,Vd,, then (13)~(15) follow
with , replaced by @, by the same argument we just completed. We
note that in thig second case the module M obtained in (14) is the conjugate
of that obtained in the first case, and thus the norm form f,, is the same
in both cages. If r,Vd, = wmf_d_l, then (13)~(15) hold with o, replaced
by ®,, and the generators a,, a, of the module in (14) are the same as
those in the proof given above of the first case.

The following Lemma is easy to establlsh and we gtate it WJLhout
“proof.

LEMMA 2.6. Lot ay, a, be elements of a guad’.ﬂ atic ewtemim K (I/E ) of K,
- and let (a;) be a 2 X2 motriz with entries in D. Define o, o by the matriz
equation (o, a) () = (o, @), ond set M = [ay, a,]D, M* = [af, a}]D.
Then the norm fo':m Far @8 transformed into the norm form i by the linear
- transformation determined by (@)

THROREM 2.7. Let f; be & form over D of discriminant difori=1,2,8
- and suppose that fy s tmnsformable anto fife by two primitive bilinear trans-

_formations T, T". Let v, v} be the clements of K associated by Theorem
2.2 with T, T respeatwely such that d, = d 75 = dy(r})? and hence vy = L7}

Composition of binary quadrafic forms over infegral domains 231

for i = 1,9, If riv, = v{7}, then there ewisis an avtomorph W of f, such
that |W| = 41 and T* = WT (|W| = &1 according as [T7| = +|T,],
using the notation of Proposition 2.1).

Conversely, given T as above and W an automorph of fa, them T* = WT
is @ 131 @mztwe bilinear tramsformation tranmsforming f, tnto fify and
¥y = 111

Proof. By Theorem 2.5 we can assoeiate unique ordered pairs (a,, as),
{afy a3) of linearly mdependent elements with 7, 7" respeetlvely such
that [ag, a3]D = My M, = [al, a,,:[D or [ay, o]0 = M Mf = {a), o |D.
In either case [a;, 0p]D =[], a5 1D and there exists a 2 % 2 unimodular
matrix W with entries in D such that the matrix equation (af, «f) W
= (@, @) holds. Furthermore, from Theorem 2.5 we have the matrix
equation (af, uz)L™ = (a;, )7, and therefore (of, a)T* = (o, «f) WT,
which implies that T° = WT since of, of are linearly independent over K.
Again from Theorem 2.5, the norm form of [a,, a,]D and the norm form -
of [df, ¢;]D are both equal to @ a.f,, and since (c¥, al) W = (a;, ay)
it is clear from Temma 2.6 that W is an automorph of f, (i.e. W takes
f3 into itself). Since T* = WT we have from Proposltmn 1 that T = WT,,
and (b), (8), (9) of Theorem 2.2 imply that |[W] = 11/1 (i =1, 2). Conse-
quently |W| = +1 according as |TV| = &+ |T,[.

Conversely, let T be given ag in the Theorem and let W be an auto-
morph. of’ fa. Since |W{ = -1 and T iz primitive, it follows from Pro-
position 2.4 that T% = WT is primitive. Noting that TF = W7, and
denoting the matrices of f,, f; by F,, F, respectively, we have (Th) F, T
= (WT,) P,WT, = T, F,T, =fF, so that f, iz transformable into f,f,
by T*. Moreover, (b), (8), (9) of Theorem 2 imply that |W| = ¢} /r; for
i=1,2 and r ¥, =#9;. -

Remark. We first became aware of the posgibility that Theorem
2.7 was valid due to a recent result of Professor Gordon Pall — he proved
Theorem 2.7 for the cage in which D = Z (the ring of integers), f; and
fo primitive forms of the same discriminant, and 7,,7; positive (i = 1,2)
uging methods completely different from. those tused above. If D =Z in
Theorem 2.7 and 7, = 0 (i =1, 2), then f; is called a Gaussian compound

B {or, direct compound) of f,f, (see [14] and [6], p. 155) and T is sometimes

called a Gaussian gubstitution. As Professor Pall rernarks, it is strange
that this resnlt — which asserts the essential uniqueness of the Craussian
gubstitution under which f, = fifs — appears nowhere in the literature,
with one pogsible exception. The exception is that F. Arndt states without
proof a result in a different form apparvently equivalent to that proved
by Profesgor Pall (see Dickson’s History), and his statement is not men-
tioned by G. B. Mathews in his exposmon of Arndt’s work in ]:us book
“Theory of Numbers”.
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DrFiNirion. Following Gauss we call f, o compound of Tifs provided
fs 18 tranformable into f,f. by a primitive bilinear transformation. It D
were an ordered domain, we could define a Gaussian compound in accor-
dence with the original definition of Gauss as indicated in the above
Remark; however, over a general domain we define the Gaussian com-
pound only in the case that f, and f, have the same discriminant (see
[5] and [6], p. 155 for remarks in this connection). It Sy and f, are forms
over B of the same discriminant, then f; is a Gaussian compound (or,
a direct compound) provided f, is transformable into f,f, by a primitive
‘bilinear transformation 7' such that the », (1 = 1, 2) associated with
T by Theorem 2.2 are both equal te 1 (i.e. [T;] = fifor 4 =1,2 in the
notation of Proposition 2.1). ‘

TumoreM 2.8, Let f; = [ay, by, ¢;] be a form over D of discriminant
d for i =1,2 such that by, = by (mod 2y in D. If M = Mflez 8 a free
2-dimensional D-module, then (Ljaya,) fa 48 a form over D transformable
wto fifs by a primitive bilinear transformation T such that 1Ty |f = [T,|f,
(¢.e. the r; associated with T by Theovem 2.2 are equal): The same slatement
i‘wlds if M is replaced by N = My My, emcept that |Ty[fy = —|Ty|fy;
1.8, T = —7T,,

Proot. Let M = [a;, a,]0 where a,,a, are linearly independent
elements of X (Vd), and let U denote the matrix (0 @ay by w1y, By,
w;wy) where ; == (b;4Vd)/2 for i = 1,2, There exists a 2 x 4 matrix
T over D such that U = {a,, ¢,)T and a 4x 2 matrix V over D such
that TV = (g, a,) since M = [ay, a,]D. Since q,, a, are linearly inde-
pendent and (ayya5) = UV = {a,, a,))TV, it follows that T is primitive
by Proposition 2.4. As in (16—(20) of Theorem 2.5, the form kb = (3 /e a0) 21
is transformed into f,f, under the primitive bilinear transformation (16),

agsociated with T. If is clear that A has coefficients in & and we will show .

that the coefficients of & are in D. Now, a,a,h —= fy; has coefficients in
MM =M, M, M, M, , and since M, M, = a,[a;, b;, ¢;, 0D < a;[1,0,1D,
it follows that A has coefiicients in A = [1, w;, @y, 00,10, Howoever,
it is easy to show that 4 N K = D, so that h has coefficients in D
and % is a compound of f,f, under T. By Theorem 2.2 we have Ty Pee K
such-that dr} = dr;, and hence r, = --r,. Using U = {ay, as) T together
with the notation of Theorem 2.2, we have

S {21 "’_'ial = G fa— oWy . Pty = dgffy — g,
(22) _ 102 = = GPrt Py Tale = Py Po0;.
If ry = —r,y, then adding (21), and (21), we got ¢y = 6, and similarly

2o = 0 from (22), 80 that a; = 0 — a contradiction since d is not n square.
The second case of the theorem follows in a similar manner. '
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We can prove Theorem 2.8 for forms of different diseriminants if
we assume that D is integrally closed ([31], p. 256). If f; = [ay, b,, ¢ is
a form of diseriminant d;, e; = (3, +Vd)/2 (@ =1,2) and M = M, M, i
a free 2-dimensional D-module in K (I/EI, Vdy), then K (Vi Vi) = K (l/cfi)
for ¢ = 1, 2. The proof of the next theorem proceeds as that of Theorem
2.8 except for the method used in showing that 4 N K = D; since the
elements of 4 are infegral over D, then 4 N K = D when D is an in-
tegrally closed domain, Thus we have the following theorem.

THEOREM 2.9. If f; is a form over lhe integrally closed domain D of
diseriminant d; (i = 1,2) and M = Mfleg is & free 2-dimensional D-mo-
dule, then (1 [ayaxfy) 48 a form over D iransformable ino fif, by a primitive
bilinear transformation T such that .V EQ = rVd, (where r,,r, are the
elements of K associaied with T by Theorem 2.2). The same statement holds
if M is replaced by N = M, M, except that ri/dy = —r¥dy.

Combining Theorems 2.5, 2.8, and 2.9 we obtain the following result.
- TueorEM 2.10. If fy, [, are forms over an integrally closed domain D,
then there exists a compound of fif; if and only if either M. 1My, or Mﬁﬂ_{f 7, 18
a free 2-dimensional D-module. The same statement holds over amy domain
D (characteristic + 2) provided fy, fu have the same discriminant and their
middle coefficients are congruent mod 2 in D.

In the next thecrem we obtain a mild extension of Theorem 5.3 of
[6], p. 175. Recall that the divisor of a form is the ideal generated by
its coefficients in D. ' . o

THEOREM 2.11. If f; = [&;, by, ¢;] is & form over D of divisor A, and
diseriminant 4 for i =1, 2, then the following are equivalent.

(a) There exists a Gaussian compound of fif. over D.

by M 1My, is generated by two elements as a D-module, by = b, (mod 2),
and A+ 4, = D, '

(e) ll/Iflﬂ/Ifz ¢ a free D-module, by = by (mod 2), and 4.+ 4, = D.

(t:!.)'lif}fl_ﬂfff2 i8 & free 2-dimensional D-module, b, = by (nod 2), and
A4, =D, '

Proof. (a) = (b). The first two parts of (b) follow directly from
Theorem 2.5 and (b) of Theorem 2.2 since ry =7, =1l and d, = d; = d. _
Let P be a prime ideal of D such that P > A;--4,. Since a;, a,<P, from
part (b} of Theorem 2.2 we have pyg, = ¢op: (mod P), pogs = 4o (mod F)
and therefore ‘

(23)  Po@iPe == PoQsPy (Mmod P} and  §P14> = GofaPs (0d P).
Furthermore Dy — Dy, = bieP 50 tha,f.
(24) o Puga_QOPa = py s — 1P, (mod P).
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If po, o ¢ P then Dy,, DyeP from (24); if one of py, ¢oeP, then D, P
from (23) and hence DgeP. Consequently Lyl for 0<4<j <3 and
P = D since the transformation agsociated with the compound is prim-
itive.

(D) = (¢). This is clear since M, 8, contains a,a, and a(
which are linearly independent over K. :

(¢) = (d). Since M, 3, contains two linearly independent elements
over K and is contained in the two dimensional vector space K (Vd)
over K, M, M, must have a free basis of two elements.

(d) = (a). By Theorem 2.8 there exists a componnd fz = [ay, by, 6]
which ig transformable into f,f, by a primitive bilinear transformation
T sueh that |[Ty|f, = |T|f1, i-e. the r; associated with T by Theorem 2.2
are equal — say », =7, = #. Parts (b), (¢) of Theorem 2.2 implies that
7f; is & form with coefficients in I} for 7 = 1, 2 and fwthermore »2f; is
a Gaussfan compound of #f;-rf, under 7. By the proof of (a) = (b) the
sum of the divisors of #f, and rf; is equal to D and there exist eD
(# =1,...,6) such that

by V) (2

(25) Ty 0y 1D g 7O By T By - 7Dy e, = 1.

Sinee A, 4, = D, there exist y,eD (4 = 1, 6) such that

(26) l- m191+b1y2+31Q3+“2y4+ batyst 638 = 1.

Multiplying {(26) by » we see that reD, and (25) implies that r is a unit
of D. Denote by T* the transformation obtained from T by replacing
the ¢; in the 2nd row of T by ¢/fr, and. let fi = [ag, by, r2¢,]. Then f is
a Gaussian compound of f; f, under the primitive bilinear trangformation 77,

A Bezout domain is an integral domain with identity in which every
{initely generated ideal is prineipal (see [4], [17] for a treatment of Bezout
 domaing). Composition of forms over a Bezout domain has Been investi-

gated recently in [22], where composition ig interpreted as mmultiplication *

of suitable medules, and in [5], using the classical approach of Gaugs.

Limyma 2.12. The following statements hold in o Berout domain D.

(a) D i dintegrally closed. ‘

{b) Finitely generated torsion-free D-modules are free.

(c) m? = g2 (mod 4) in D implies # =y (mod 2) n D.

Proof. Bee [4] or [17] for & proot of (a), and we obtain (¢) from (a) as
follows. If »* = ¢* (mod 4) and characteristic D # 2, then a2 —y2 —4k = 0
for keD; herice (v—y)/2 satisfies the equation X*+yX —%k = 0 .and

(#—y)/2eD since D is integrally closed. If D is of characteristic 2 (not

considered in this paper) then it is clear that # =y (mod 2). Now,
consider (b). An integral domain D is semi-hereditary if and only if every
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finitely generated nonzero ideal of D is invertible ([8}, p. 133), and
therefore a Bezout domain is semi-hereditary. If D is a domain, then
every finitely generated torsion-free D-module admits a monomorphism
into a free module with a finife base ([8], p. 131). If D is gemi-hereditary
then each finitely generated submodule of a free D-module is the direct
sum of a finite number of modules each of which iy isomorphic with
a finitely generated ideal of D ([8], p. 14). Sinee D and a nonzerp principal
ideal of ) are isomorphic as D-modules, it follows that if D is a Bozout
domain then each finitely generated torsion-free D-module is isomorphic
to a direct sum of a finlte number of copies of I and hence is a free module.

CoROLLARY 2.13. If f; 95 a form of (non-square) diseriminant d; (1 =1, 2)
over o Bezowt domain D, then there existe a compound of fifs ever D if and
only if theve ewists seK such that d; = d,s

Proof. If d; = dy8% then KE(V/d,) = E(Vd,) and M = I, 3, is con-
tained in a 2 dlmemtonal vector space over K, However, M is a flee D-
module by Lemma 2.12 and M eontains the elements a, 2, and a, (b, —H/d2 /2
which are linearly independent over K. Consequently M is a free 2-dimen-
sional D-module and there exists a compound for f,f, over D by Theorem
2.10. The converse follows from Theorem 2.2.

CoroLLAvy 2.14. If f, is a form of divisor A; (i = 1,2) and {(non-
square) diseriminant d over a Bezout domain D, then there exists o Gaussian
compound of fif, over D if and only if A+ A, = D.

Proof. If 4,4+ 4, = D, then a Gaunssian compound of f,f; exists by

" Theorem 2.11 since My M, is a free 3-dimensional D-module (as in the
- proof of Corollary 2.13) and b, = b, (mod 2) by Lemma 2.12. The con-

verse follows from Theorem 2.11.
The proof given by Gauss in [14], Art. 234 for D = Z (the ring of
integers) establishes the following result. over a general domain.

Leva 2,15, Lel (ay) and (ay) be two 2 X 4 matrices with entries from

a domain D and se _D = 3y — s Gygy Dy = a8y — Bggay; for 1 <4

<j< 4, If {ay) has dzmsm‘" (&) and Dy = kDy for 1<i<j<4, then

there ewists ¢ 2 X2 wmatric H with entries in _D sych that (ay) = H (@)
and |H| = k.

We observe in Lemumia 215 that in the presence of Dy = kD:-f, (&)

is of divisor (%) if and only if (a;) is primitive. In the following Proposition

I is any domain (Char. £ 2) and 4 is not a square in K.

PrOPOSITION 2.16. Suppose f;, fi e F(A)(E =1, 2, 3), fi'is ¢ Gaussion
compound of fifs under a bilinear tramsformation T, fy is o Gaussian com-
pound of FHY under T*, and that f; ~f; for i = 1,2. Then fo ~f5; ond
if f is transformed into fy by o wnimodular linear iramsformation L, then
f is a Gaussian compound of fif, under LT.
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Furthermove, if f; is transformed inte fi by the wwimodular Linear
tramsformation Ly (i =1,2,3), then fi is a Goussian compound of i
under the bilinear transformation

[# Ly w L row,
8= pipy RO where Ly ={ = |
$1.Ly vy Ly SRR

consequently S = WI* where W is a wnimoduler awtomorph of fF.

Proof. Suppose f; ~f* under f; 3 fi fov i =1, 2. By Proposition
2.3 f; is transformable into f7f; by the bilinear transformation

: L, u,L .U
B =T it tatn where L, = L
8, L, v L, 8 %

It By, Dy (0<i<<j<<3) denote the 2x2 subdeterminants of B, 7
respectively, then it follows from the remark after Proposition 2.3 and
- from part (b) of Theorem 2.2 that 8; = Djj (0 << 7<3), and B is
primitive since I™ is primitive. In view of Lemma 2.15 there exists a 2 x 3
« matrix H with entries in D guch that B = HT* and |H| = 1. Denoting
the matrix of fy, fi by Fy, Fy and recalling that fs, fF is transformable
into fif; by B, T* respectively, we have by Proposition 1.1
(T7) P, T = BIFyB, = (17) H' T, HI}

and therefore ¥y = H'F H — i.e. f, ~ f under H.

Now, f; is transformed into f;f, under LT by Proposition 2.3, LT
iy primitive and f is a Gaussian compound of f,f, under LT by the remark
after Proposition 2.3 and by (b) of Theorem, 2.2. Similarly, fy is a Gaussian
compéund of f7fy under § and Theorem 2.7 implies that § = WT* where
W is & unimodular automorph of f7.

DerrNirioN. If fieF(d) (2 =1, 2, 3) and f, is a Gaussian compound

 Of fifs then we- define the compound of the dasses fi, f, to be fy = Lf;
(and we say that f; is determined by composition from f, and f,. We denote

by G; the collection of equivalence clagses determined by fhe equivalence -

relation ~ on P(d), and we say that .D is a G-domain (or, has property &)
provided any two primitive forms over D with equal disecriminants have
a direct compound. It js clear that a Bezout domain is a G-domain. It
follows from Proposition 2.16 that composition of classes of forms of the
same diseriminant & is well defined,. and it iy clear that this operation
is commutative; moreover, the operation of composition is aggociative
(see [14], Avrt. 240). In addition if 4 =b?—dae = b —4a,0,, then
[y bya0] =1, by, 8.0,] and [a,b,¢] is a Gaussian compound of
[a, b, ¢]-[1, b, ac] under the transformation :

100 -":-G
0 1 a b
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Hence the classes of diseriminant 4 determined by ~on F(d) form an =
~Abelian semi-group with identity when the compound exists, as in the

case of forms with coprime divisors in a Bezout domain. Furthermore,
it is easy to show that &, is an Abelian group pravided the compound
exists, again as in the case of a Bezout domain. We remark that an example
is given in [6], p. 177, of a Noetherian, 2-dimensional, unigue factorization
domain D which is not a @-domain; in fact, there is a primitive form
f over D such that no Gaugsian compound exists for ff.

3. United forms. Composition of binary quadratic forms in the tradition
of Dirichlet and Dedekind is called composition by “united forms™., Two
forms are called wnited if they have coprime divisors and the following
conlignration:

f=1[a,b, ac], a,a,b,eceD,
It is easily checked that # = [aa’, b, o] is a direct compound of the united
forms f =f{a,b,a’c] and ¢ = (@, b, ac] under the primitive bilinear
transformation _

10 0 ~e
(27) _ T:[ ]
0 o o b

g =1ia,b,ac]

As in the case of Gaussian composition, the elass % is called the compound
of the clagses f and § (or, % is said to be obtained from f, 7 by composition).
I & is a Gaussian compound of the united forme g where f'ef and
g’ e, then it is clear that & = 2’ by Proposition 2.16. Henee the compound
% ig independent of the united forms chosen as representatives from f and
g; furthermore the compound % obtained by united forms is the same
ag that obtained by the Gauss method.

DEFIxNITION. A domain D is called a I-domain {or, is said to have
property D) provided the following holds: if €, and ©, are any two clagses
of primitive forms over D of the same diseriminant, then there exist
united forms f, ¢ such that fe(,, gels. '

TueorEeM 3.1. If D is a domain in which every monzero element is
contained in a finite number of maximal udeals and such that »? = y* (mod 4)

‘implies x = y (mod 2) in D, then D is o D-domain.

Proof. See [6], p. 162.

- COROLLARY 3.2. A Dedekind domain is o D-domain. (In particular,
the ring of integers is a D-domain.) _

PROPOSITION 8.3. If D is a D-domain, there D is a G-domain.

Proof. It f, geP(d), then there exist united forms 'y ¢" such that
['ef: ¢ <j. There exists a direct compound %’ of f'g’ (see the comment
following the definition of united forms), and it follows by Proposition
2.16 that k' is a direct eompound of fy. '
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Remark. We do vot know if the converse to the above theorem ig
true or not.

Remuark. The origin of the concept of united forms is usually atiri-
. buted to either Dedekind or Divichlet ([6], p. 1563 [7], p. 24; [22]; [.10]’
p. 66; [26]). In freating composition in [9] Dickson uged the “united
from” approach, and this seems to have been the acceptgd procedure
gince the time of Dedekind for quadratic forms over the infegers. The
reason for the rather general aceceptance of the united form method of
composition seems to be the following: for forms with iptegra,l coeﬁicienﬁs,
a fairly easy method can be derived for producing umted_ forms in given
classes (see [9] and [26]), and with united forms the direct eompound
is obtained immediately. Two comments seem to be in order: first, a rather
caveful reading of [14], Arts. 168, 228, 242-244, indicates that Gauss
must have been essentially aware of the technique of united forms and
used it in working with examples; and second, the Gauss algorithm as
used by Gauss in [14], Arts. 242-244, seems to be a3 easy to use as the
method of computing united forms.

The following two lemmas are proved in [9], p. 134.

LeMMas 3.4, Lot meld and b, gD for i =1,...,n If (m,1,...

t,) =D and t.q,—qt.emD (r,s =1,..,n), then there exisis BeD
unigue modulo (m) such that 1,B = g, (mod m) for 4+ =1,...,n.

Lgnma 3.5.
(mod 2), and {4y, @ay (byB,)/2) = D. Then there ewists Bel umique
mod 2a,a, such that B = b, (mod 2a;) for i = 1,2 and B* = d (mod 4a;4,).
Furthermore, (aq, ttgy B) == D.

The next Lemma follows by a direct ealculation.

Levwa 3.6. Let V, U = (uy), W = (wy) be 2 X 2 matrices and T = ()
a 2x 4 matriz with entries in D. Then the malriz equation :

bty i [ Gy Oy
V wﬂ LI, 1 _}_w%z 21 2 )V — [ % L:l
by Ty [T Wiy Oy
holds for ¢ = 1,2 if and only if

WT ['Mllv . 'um V} — I:all fl'/_l-.g 6&13 : &14] ;

Ugs V. g V 23] aoz fhay  (hog

note that U’ is displayed in the Tast equatw%
THEOREM 3.7. The following stalements are equivalent in a G-domain D.
(a) D is a D-domain.
(b} If g;eP(d), then there ewists ft
Jor i =1,2 cmd (1, gy (By -+ by) /2)

[a,l, by, c;1eP(d) such that f; ~g;

Suppose @, a,, b, eD, b} = d (mod de;) (i =1,2),b, = by
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{0) If fieP(d) (2 = 1, 2), then there ewist g, such that g, ~fifori =1,3
and gy 5 o Gaussian compouwnd of g,g, under a tr ansformation T of the

form
7 1 0 0 »
0 7 s |

d) If fieP(d) fm t=1,2,3 and f; is o Gaussian compound of fifa
under T, then there exist 2 xX 2 unimodular mairices T = {uy), V., W over
D and v, 8, u,veD such thai

Uy Vo Uy ¥ 1 0 0 »
(28) wT = -1
Up Vo w7 0 » & wu

e} If fieP(d) for ¢ =1,2,3 and f; is a Gaussion compound of fifs
under T = (t;), then there exist o, b,eD (i =1,8), 2x2 unimodular
matrices U, V over D, such that (@;,b;) = D, ayby, b, = 0 and

t. 1 e 1, @ 0
(29) U(al{n ”] +b1[“ “"EDV - [ ® }
Ty ty ey Iy ¢ b

Proof. (a) = (b). Since D is a D-domain, there exist united forms
[@1, 0, @] ~g1, [Gs, b, a6] ~g, and (ag, @s, &) = D gince the forms
mvolved are primitive.

(b) = (c). Since D i3 a F-domain it' follows from Theorem 2.2 that
fwo primitive forms of the same diseriminant have middle coefficients
congruent mod 2. Suppose f; = {a;, b, ¢;]eP(d) (i =1,2) and (al, s,
(b1 +52)/2) = D. By Lemma 3.5 there exist b,c,h, keD such that
b*—d = ta,a,6,b = by +-2a,h, b = by+ 2a,%. Therefore f, ~ Ta, by, a, A%
Fohte] = [a, b, a0¢] = gy, f; ~ [43, b, ar¢] = ¢z, and [a18,,0,¢] is
& direct compuund of g1¢, under a tlansformatlon as in {27).

(e) = (d). Ymmediate from Ploposmon 2.18.

{(d) = (e). We have 2x2 unimodular matrices T, ¥V, W over D and

"7y 8, %, veD guch that (28) bolds, so that (28} follows from Lemma 3.6

with a, = 1, b, = 9, @, = wy,, and b; = wy,. Since W.is mnimedunlar, we
have (a,,b;) = D. Applying W' to f, and the linear transformations
_U', V to fi, f: respectively, we obtain equivalent forms f; ~f; for ¢ == 1,

, 3. It is clear from Proposition 2.16 that f+ is a direct compound of
fl _}“ under the transformation in (28), and from part (b) of Theorem 2.2
we have v ;é 0 since the discriminant Is not a square.

(e) = (a). Tt fyeP(d) (i =1,2) then there exists eP(d) such that
fulsa Gaussmn compound of fifs under a bilinear transformation I' = (i),
and we have a;, b;eD (1 = 1,2) and 2 X 2 unimodular matrices U, V over
D and a,{b, 5= 0. We have v, seD
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such that a7 —bys = 1, and we define g;e D for i == 0, ..., 3 by the matrix
equation

TR tyy tnD i!lo ‘11}
U 7 V= .
(30) (8 Lla 514] * Lw b, FE

Applying Lemma 3.6, we obtain the bilinear transformation § from (29)
and {(30)

¢ T ¥V un V] {6&2 00 b2}
(31) h ’HIIQV 'H'QQV QO QJ qﬂ gﬂ

where U = (uy), U’ is. displayed in (31), and W has (@1, ba) and (s, 7)

- ag fivst and second rows respectively. Since ' is primitive and U, V, W

are ummodular, it follows from Theorem 2.2 and the re?namk 'after Pro-

position 2.3 that 8 is primitive; consequently a, is a unit in D gince a,b,.
Define T* by :

1 0llet 0 [1 0 0 bt }
T* = § .
— gy 1J10 @ 0 621 @Gy 20— b2,

Ag in the proof of (d) = (e), there exigt f; such that fj ~ fi (i =1,2,3)
and. fy iz 2 Gangsian componnd of f7 fy under T*: furthermore,

f1 = [Baga, @285 — b2y, — gy bqa5'], f; = [0y, "’293_"%%} — @y, bya7 ]

and f7, f; are united forms. .
' ¥ 0 = {D}oey is & collection of sets, then we say that O iz a net
provided any two members of ¢ are confained in a third member of €.
The following result iz ensy to establish and we state it without proof.

PropoRTIoN 3.8, If D, (acd, on index sef) end D = Li_Da are

domains such that {D J..q 95 @ mt. and each D, is a G-domain (D-domain),
then D 48 a G-domgin (D-domain).

4. Elementary divisor and Bezont domains. In this section we cxamine
some conditions under which a Bezout domain is o D-domain. We have
been nnable to show that every Bezout domain is a D-domain. Tvery.
example of a Bezout domain of which we are aware is not only a D-domain,
but is in fact an elementary divisor ring. _

" Dpprmrerow. A ring B with the property that every matrix can,
by multiplication with matrices of unit determinant, be reduced to
a diagonal matrix (i.e., one having only ¢ off the main diagonal) such
that each element of the main diagonal divides the one to its lower right

" is called an elementary divisor ring.

In [21], pp. 471-472, it is shown that in a commutative ring, if all

1x2,2x1, and 2 X 2 matrices can be diagonalized as in the above defini-
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tion, then the ring is an elementary divisor ring. It is easy to see that
all 12 and 2 x1 matrices over a Bezout domain ean be diagonalized
by mwltiplying by unimodualar matrices, but ib is not clear that this applies
to 2X 2 matrices. However it follows easily that if a 2% 2 matfrix can
be diagonalized hy multiplying by unit-modular matrices, then the
diagonalization can be realized by multiplying by unimodular matrices.
Kaplansky [217], p. 472, shows that if all of the divisors of zero of Ting
K arein the radical of R then R is an elementary divisor ring if and only if

(32) (2) each finitely generated ideal of R is prineipal, and

(b) (a,b,¢) = E implies that there exist P, <R such that (pa,
- pb+ge) = R

. An elementary divisor domain then iz a Bezout domain in which (b} of

{32) holds.

TEEOREM 4.1. If D is an elementary divisor domain, then 1) is a D-do-
Mmai.

Proof. It fieP(d} for 1 = 1, 2, then Corollary 2.14 yields a direct
compound of f, of f;f, under a bilinear transformation T — (t;;). There

£
exist unimodular matrices U, V over D and % , ke} guch that

ty 1 Bo
(33) (7 Bl I , Rk
ta ta 0k

Sinee —hk = ty58,3 —1,,%;; is the third coefficient of Js by Theorem 2.2
and 4 i8 not a square, then % = 0. We note that (33) is & special cage
of (29), with ¢, =1 and b, = 0 and the conclusion follows from (e) of
Theorem 3.7. '

PROPOSITION 4.2, A Bezout domain D is a D-domain if and only if
Jor any two forms f, geP(d) there ewist fief and f,eg such that f1 and f,
have ihe same middle coefficients. :

Proof. Suppose fief, foef with f, = [a, b, ¢] and f, = [a, b, ¢']. We
now appeal to the algorithm of Gauss as developed in 141, Art. 236, for
forms with integral coefficients and extended in [5], Theorem 8, to Bezout
domains. Takingr, =», =1, d; =d, = 4, §, = 1, and Oo=8Qs=10, =0
in Theorem 8 of [5] and setting (a, ¢’} = (¢), we find that the form

(34) fo = [ae'[2, —b{ke' +ha)lo, hEkD® + 620’ ju]
is a Gaussian compound of f,f, under the bilinear transformation
kb —e —ea'fe  —hb
T —
afle .0 0 —c'fe -

where %, k are elements of D such that ha— ke’ = ¢; in fact, it is easy
to check that f; is a Gaussian compound of fif, by using Theorem 2.2.
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In order to simplify notation, denote the form foin (34) BY fa = [aa, by, 5]
Now fy ~fr = [0, —bs, @] and fa is a Gaugsian compound of Ffifs under

Cafe 0 0 fc/el

3il.—.—--
T —_—fcb ¢ éa'fa- hb

Since

1 1 [ afe 0 ][}’a a’/e]=[1 0 }
[kc’/e 1—;«(7«3’/&)] 0 —efellh ale 0 —ad'jer |’

it follows from (e) of Theorem 3.7 (with ¢, =1, bl = 0) that D is a D-do-
main, The converse is obvious.

COROLLARY 4.3. A Bezout domain is o D-domain if and only if for any
o forms fr,freP(d) there ewists fy = [a;, by 6] ~ fi for 4 =1,2 such
that b, = — b, _

Proof. Use Proposition 4.2 and [ay, by, 02] ~ [62y — D2 %]

COROLTARY 4.4. If D is o Bezoul domain, then united form composition
holds for any primitive class with itself. _

Proof, If fsP(d), then the proof of Proposition 4.2 together with
that of (e) = (a) in Theorem 3.7 thows how to find united forms fj, fye 7

We say that f = [a, b, ¢]eP(d) represents neD primitively provided
there exist r, 8D such th&t art+bre-+os? = n and (v, §) = D. TE f rep-
resents » primitively, then it is easy to see that f is equivalent to a form
with first coefficient # (e.g. see (9]}, and also to a form with last coefficient n.

PROPOSITION 4.5. A Bezout domain is a D-domain if and only if for
ey two forms f, geP(d) one represents primitively an element of D which
divides an element of D that is represented primitively by the other.

Proof. We can agsume f = [at, b, ¢] and g = [a, b, ¢']. We apply .
the algorithm of Gauss as in Proposition 4.2 (with @, = —1,¢; =0
for 4 = 1,2, 3) and find that the form

fs = [ta?fe?, b, —2aetk e, hoe - c'k®— el (b —b") [2]

iy a direet compound of f,f, under _ _
¢ ke —h(b—b)2 ke —he l
"o atje ale  (b4+1")/2¢ |

where (g, (b+1")[2) = (¢). and ha+%(b+b')/2 =¢; of course this may be
checked directly by Theovem 2.2. Setting B = (b b')/2¢ and noling that

¢ 1 ([0 afelfn —B]_[i o-]
[_,1 katle} [a/e B][Fc afe 1o —ta? /e

e complete the procf as in the case of Proposition 4.2.
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Prorosrrron 4.6. If D is o domain and f; = [a;, by, ¢]] (1 = 1, 2) are
elements of P(d) such that {a, a;) = D, then there evist fiefi(i = 1,2)
such that f; and fi are united.

Proof. See [6], p. 162, for proof.

We now give several nontrivial examples (i.é. not PID’s) of Bezout
domaing that are elementary diviser domaing (denoted EDDs). We bave
been unable to find a Bezout domain that is not an EDD. Examples
of rings that arve not domains, that are not elementary divigor rings, and
that are rings with. the property that finitely generated ideals are principal
have been given in [16], p. 378. These examples modulo & prime ideal,
however, are EDDs.

If D iz 2 Begout domain with quotient field X and J is a domain
such that D = J < H, then it is easy to show that J is also a Bezout
domain. Furthermore, if P is a prime ideal in a Bezout domain, then
D/P is a Bezout domain. If {D.},., is a net of Bezout domains D, then

D =) D, is a Bezout domain, However, the polynomial ring D[] is
aed

a Prifer domain if and only if D is & field, as the following easy argument
shows (D is a Pritfer domain provided every finitely generated ideal is
invertible; hence a Bezout domain iy Prifer [17], p. 253-386). Suppose
D[«} is a Priifer domain and let 0 = del). Then (d, z) is invertible and
(d, @) > (@) implies that (4, 2)@ = (&) for some ideal Q@ of D[x]. Since

(z) is prime, then @ = (@), (4, #) = D[z}, and & iz & unit of .

I D is an EDD with quotient field X and J iz a domain such that
D =dJ < K, then J is an EDD; we see this as follows. Let a = a/beJ
with @,bel). Then (a,b) =(d), ¢ =a,d, b = b,d, a,a+by =1 (all
elements in D). Hence {¢,2/b,)+¥ = 1/b,eJ; thus, if aed, then a = ay/b,
with a;, by D and b, o nnit in J. 75 now follows readily that 2 % 2 matrices
over J can be diagonalized. Furthermore, it is clear that if P is a prime
ideal in an BDD J, then J [P is an EDD; and the union of a family of
EDDs forming a net (as for Bezout domains above) is an EDD.

ExAMPLE 1. The ring D of algebraic integers is an EDD. If (a, b, ¢) =D,
then there exist ay, by, ;D such. that aa,--bb,+ce, = 1, Hence there
exists a domain D' = D such that a,a,, b,b;, 0,0, and D’ is the
integral closure of the integers in a finite algebraic extension field of the
rationals. Furthermore, D’ is a Dedekind domain {see [31], Chapter 5, or
[24] for details).

Therefore, by the proof of Proposition 2.1 in [6], p. 156, there exists.
kel such that (a, b-I-ke) — D'. Since (a, b+ ke) = D when the ideal
is extended to D and since D is Bezout (see [24], pp. 89—86) it follows
that D ig an EDD.

Exaypre 2. The ring of entire functions is an EDD (see [21], p. 473
(18], and [19]).
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DerNTTION. We shall say that n is in the stable range of £ it B is
a ring such that for (@, ..., oy, e} = K with s 2= n, there exist by, ..,

by B such that (a,+ D81, Gt Dabyyy ooy G+ byt ) = B (see [13],
»Dp. 344-34B).

Exawpre 3. If D i8 a Bezout domain and has 1 in its stable range,
then D is an EDD. In [13], p. 348, it ig shown that if a, beD, then {a, b)
= (a4 kb) for some %keD. In addition if I is Bezout with 1 in its stable
range and quotient field X and J is a domain such that D = J < K,
then J hag the same property [13], p. 350.

DEFINITION. A Kronecker function ring is defined as follows (ses [13],
p- 347 or [171, pp- 356-377): Suppose I is an integrally closed domain
with quotient field X and suppose {E,} is the set of all valuation rings
of K containing D and suppoese o” iz the trivial extension of v to H(w)
where  is an indeterminate over K, i.e., ¢’ (@,a"+ ...+ a,) = inf {v (@),

.y B{a)}. If R, is the valuation ring of ¢ and if D' = "R, then IV
i called the Kronecker function ring of D.

- Exawrrn 4. Kronecker function rings are EDD ([13], p. 347 or [17],
. 367).

DrrmviTIoN. A domain D hes property F if each nonzero element
of D is contained in at most a finite number of maximal ideals.

If Uiz an F-domain, then (@, b, ¢) = D Implies (@, b+ ke) = D for
some kel ([6], p. 166). Hence a Bezout domain which is an #F-domain
must be an BDD; in particular a PID is an EDI.

Examrre 5. A valuation ring is a domain in which the idealy ave
totally ordered under inclusion {see [32], [17], [3], and [25] for examples
and properties of valuation rings). It is easy fo see that a valuation ring
is an EDD. In addition, if ¥y, ..., ¥, are valuation rings with quotient

field K, then it can be shown that D = (M) V,is an #-domain and a Bezout
=1
domain (gee [17], p. 262 and [25], p. 38) and consequently D is an BEDD.
Exavmerz 6. The domains formed by Jaffard’s “pullback theorem”
(T20], [17]) are IDD. In fact, these domaing have 1 in their stable
range.
Suppose % is 4 fleld and ¢ i3 a Iattice ordered group. Let D' be the

domain conmstmg of all formal sums {20} o a;ek, g;eG}. Let K

the quotient field of 7. Detine p: D — G by o{ Ya,0) = inf ({o})imy, n-
Extend ¢ to K by pla/b) = @(a)—@(d) for a/beK. Then D = (X K]
p(X}e@ .} is"a domain.

Suppose X, ¥YeD, X ?EO Y £0. We can assune X = Z'a (0%,

signify

Y = Yol since X a.nfi ¥ differ from these by a unit. Suppose p{X} = A '

| and ¢ (Y} = u. Since p(0*/X) = (X /&) = 0, we have YX and X/[w* are
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units of D. Bince {#*/X)-X =" and (X/j2*) -2
(#*) = (X). Likewise, {z*) = (¥).

£ 1 = p, then (2%, o) = (") = (#¥). If 1 # u, then (&, o) — (2" + ")
since #*/(&* + &) and #*j(z* +o") e D T (&, ") = (" +2), then u, X = o7,
us ¥ =2 for w;, u, units of D which implies (X, Y) = (4, X, 4, Y)

=X, i{ follows that

= (U X +u, ¥) = (—X“f‘ (uafu) Y) ({ul/u“ X+ 1*) If (o, @) = (a%)= (a*),
then (X, ¥) = (4, X, 4, ¥) = (4, F) = (2, X). Either way 1is in the stable
range.

Exampie 7. T B is a Begout domain with quotient field K and M
is the maximal ideal of the formal power series ring K [[«]], then B4+ = [
is a Bezout domain. Furthermore, if B has the property that (a, b, ¢} .= B
implies (ap, bp +ey) = B for some p, geB, then D has the same property.

If Bis Bezout and if M < 4 =« Dfor A anidealof D, then 4 =A' -+ M
where A’ is an ideal of B and furthermore any set of generators of 4’
in Bis a set of generators of A iz D([17], pp. 560-561). If 4 is an ideal
of D and A < A and if {&,, a,) = 4, then the following argument will
show A is principal.

Suppose a; = @, 2"+ a;,, 8"+, and a, = bF'+ b, A4 with
ap 70,5, %0, and 1> k= 1. Since a, = aza™uy, ay = bg'u, with w,, u,
units in D, then (o, a)) = (02", ha'). I k<1, then (ag, ;) == (a).

HMuppose k =1. We can assume a;, = ap/m and b, = b, — by/m with

Oy by, meB. Since B is Begout, (ay, by = ().
(ay, @5) = (ex®fm) and D is Bezout.

Suppose {a, §, y) =D with a = ay+a,a+...
y = 6y-Fe;w+... Ib is known that & = ky-+%o-L... Is a unit of P if
and only #f %, is o unit of B. ([25], p. 50 can be used to show this.) Hence
(@g: b5 6g) = D, so there exist p,, gpeB = I such that {aypg, boPo+ Codo)
= B. 1t follows easily that (ap,, fp,+ 74,) = D. Hence Disan EDD if B is.

This example shows that an EDD of any finite dimension can be
constructed, e.g., for an initial B take any PID (such ag flie integers).

A similar argument; ean be used to show that I has 1 in its stable
range if 5 does. Furfhermore, if {D_}._, is a net of Bezout domaing with

1 in the stable range, then I¥ = | J D, is a Bezout domain with 1 in
aed
the stable rangs as the following argument shows. In [13], p. 349, it is

shown that a domain D is Bezont and has 1 in its stable range if and
only if for any a,, g,eD and be(a,, a.), thers exist ¢, del) such that
b = ¢{a,--da,). Suppose @y, 8.« and be(a,, @,). Then b = a;m 1 a,n.
There exists fed such that b,.ay, a,, m, ned); and hence be(a,, a,) in D;.
Therefore, there exist e, deD; = I’ such that b = cl{a;+da,) in Dy and
henee In D).

Exaivein 8. Let K be an a-lgebmieally closed field of characteristic
not 2, Let z; = X be an indeterminate over K.and suppoge w,_, i defined.

It follows easily that

s B =by+ bz, and
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then @, is defined by x,_, = o5, The set of K{z,, 1/,] forms a net and
\J K [#,, 1/z,] iy an EDD. This example is given in [4], p. 86. It is easily
Te=1

seen that K [#,] is 2 Bueclidean domain and hence an KD for # any natural
number. 8ince K|z,] « Ki=,, 1/z,] = K(z,), then K [a,, 1/2,] is an BDD
by the remarks before Bxample 1 and {J K [s,, 1/z,] is an EDD,

5. Some additional results on Gaussian comzposition. In this section
we consider the question of Gaussian composition for domains that may
not be Bezout. The main result is Theorem 5.2 which gives a sufficient
condition for the existence of a Gaussian compound of two forms with
coprime divisory and the same diseriminant. In addition we show that
Dla]is 2 G-domain when D is a PID (we wish to thank Professor Dennis R.
Hgtes for suggestions in this connection), and we give a condition under
which information concerning composition locally (i.e. in the quotient
rings D, for P a prime ideal of D) yields global information (i.e. in D
tuelf). : . :

We recall that D is an F-domain provided every nonzero element
of D is in at most finitely many maximal ideals of D. The following result
is contained in Theorem 3.3 in [6], p. 162,

TErROREM 8.1, If fi = [y, by, ¢;] 45 a form of discriminant d and divisor

4; (¢ =1, 2) over an F-domain D such that 4,+ A, = D and by —,e2D,

then there ewist united forms f; such that Ji ~fi for i =1,2.

THEOREM 5.2, Let D be a domuin such that finitely generated projective
D-modules are free (see [8] for defindtions), and let f = [a, b, ¢], ¢ = [a',
b’y ¢' 1« F(q) have divisors A, A" vespeciively. If b—b'e2D and 4+ 4' = D,
then there ewists a Gaussian compound of fg over D.

Proof. Let M be a maximal ideal of I and consider the quotient
ring Dy ([31], p. 219). Since A+ 4" = D, we have AD -+ A’ Dy —= Dy, and
f> ¢ have coprime divisors when considered as forms over D e Reecalling
the notation of Theorems 2.5 and 2,11, we associate withf, ¢ the D-modules
My, M, respectively. It follows that M,D,,, M, D, are the D,-modules
associated with f, ¢ respectively when considered ag forms over Dy
Furthermore, M; M D,y = M Dy M, Dy, Noting that D, is an F-do-
main, we see that there exists a direct compound of fy over D,; by Theorem
5.1, and as a consequence of Theorem 2.11, M, Dy M, Dy, is a free 2-di-
mensional Dy-module. We conclude that M, M, Dy, is a free 2-dimensional
Dy-module for all maximal ideals M of D, which implies that MM, is
a finite_ly generated projective D-module ([1], p. 141), hence afree D-module,
and there exists a direct compound of fg by Theorem 2.11.

CoBOLLARY 5.3. If D is a domain such thet Fimitely generated projective
D-modules are free and such that o = y* (mod 4) implies v = ¥ (mod?2)
wn D, then D is o G-domain. ' '
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COROLLARY 5.4, If D is a domain such that finitely generated projective
D-modules are free and such that Dy is a G-domain for each maximal ideal
M of D, then D is a G-domain,

Proof. The corollary follows directly from Theorem 5.2 since (z-—y)/2
€ Dy Tor each maximal ideal M of D implies that (o —y)/2eD ([25], p. 28).

COROLLARY Bb.5. If D is g PID, then the polynomial domain D [x]
s a G-domain.

Proof. Applying Seshadri’s theorem. {[28], pp. 456—457), we have
that finitely generated projective D[xlmodules are free when D is
a PID. Furthermore, ¥ is a PID implies that D [#] is & unique factorization
domain, and consequently D[x] is integrally closed ([31], p. 261). By
(61, p. 158, D[x] has the property that a«? = b2 (mod 4) implies that
¢ == b (mod 2), and the proof is completed by applying Theorem 5.2.

Remark. As we vremarked earlier, an example ig given in [6], p. 177,
of a Noetherian, 2-dimensional {i.e. Krull dimension), unique fackorization
domain D which is not a #-domain. We note that D i integrally cloged
and therefore Dj, is integrally cloged for each maximal ideal M ([31)],
p. 261), so that Dy, is a D-domain (and, therefore a ¢-domain) by Theorem
5.1. Thus it appears that we must have rather strong conditions holding
in & domain in order to conclude that it is a G-domain (D-domain) due
fo the fact that it is Iocally a ¢-domain (D-domain).

Remark. We have shown that every D-domain is a &-domain, but
the converse has not been setled. Cut candidate for a counterexample
{(if one exists) is Z[#], buf we have been unahle to show whether or not
Zi#] is a D-domain, _

Dermnrrion. Let D be & local domain of dimension 1 with maximal
ideal m. Let D be the integral closure of D in K, the quotient field of D,
and let @ be the Jacobson radical of D. Then D is said to be a weak
(diserete) valuation ring if we have m =7 in the set-theoretical
sense. ,

DeriNrioN. A Noetherian domain I is said fo be a weakly normal
ring provided ’

(&) For any prime ideal P of height 1 in D, Dy is a weak valuation
ring,

(b} Any prineipal ideal { == 0) has the property that its prime divisors
have height 1 in D. .

The above definitions are from [12], p. 341, and [25] gives ferms
not defined above, .

PROPOSITION 5.6. If I is a semi-local, weakly normal ring of dimension
1, then D[w, y], where z and y are indeterminantes over D, has the property

that findtely generated projective modules are free. (In particular, if Dy y...; Dy
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are rank 1, diserete valuotion M’ngs with & common quatient field, then
k1
= () D,, satisfies the above hypothesis.)
i=1

Prooi. See [12], pp. 351-353. ‘

CorOLLARY 3.7. If I is a semi-local, weakly normal ring of dimension 1,
then Diw, yl, where & and y are indeterminales over D, has the. property
that a direct compound oxists for any fwo forms ewith the seme diseriminant
and coprime divisors whese middle coefficienis are congruent mod (2).

Proof. Basy, using Proposition 5.6 and Theorem 5,2,

COROLLARY 5.8, If I is the intersection of a finite number of rank 1,
diserele valuation vings having o common guotient fidld, then D[z, y] de
a G-domain where & dnd y awe indeter mma'.ﬁes (I porticular, if vy, ..., v, are

primes in Z and if Zy = ﬂ D )(S Z U (p:)} then Ziglw, y] is a G-do-

main. ) . _
Proof. Immediate from Corollary 5.7 since D is a PID.

THEOREM 5.9. If D is a domain, thew o necessary amd sufficient eon-
dition for D to be an F-domain is that Dg be an F-domain for every mulm-
plicative system S of D containing o monunit.

Proof. It follows easily from the elementary properties of quotient
rings that Dg 18 an F-domain when D is. ([31], pp. 218-233, provides
a treatment of quotient rings.)

Suppose that Dy is an F-domain for each quotient ring Dy such that
Dg > D. For each nonzero # in D denote by F, the family of maximal
ideals in D containing » and by I, the family of maximal ideals of D
which do not contain #, and denote the Jacobson radical of D by J (D).

If every nonunit of D is in J(D), then J{D) is the unigue maximal
ideal of D apd D is an F-domain. ‘ ’

Let # be a nonunit of D such that @ ¢J (D). Then there is o maximal
ideal M such that ¢ M, and hence there is an me M such that (2, m) = D.
I8 ={m"n=012,..} then Dg>D and M Dy % Dy for M eF,.
Hence F, is finite. Congsequently, if J(D) = (0), then D is an F-domain.
Buppose yed (D) with y 3:&0 and let 8 ={a"| n =0,1,2,...}. Now
Dy > D, M" Dy + Dg for M" e, ye M for M"¢F., so thmt Fm is finite.
Thus i J(D) # (0), there are ouly a finite number of mamimal idesls
in D, and D ig an F-domair.

Remark. In the proof of the converse of Theorem 5.9, we
ouly need to know that Dg iz an F-domain for multiplicative systems
8 of the form 8 = {#"| # =0,1,...} where @ = 0 is a nonunit of D.

The following are some examples of F-domains: PID’s, Dedekind

domaing, valuation rings, the intersection of a finite number of valuation -
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rings with a common quotient field, K [#,y1/(y>—/f*(@)g(»)) where K
is a field (2 # 0) with f and g nonconstant polynomials in K[#] = K[z, y]
with g square free, any quasi-semi-local domain ({25]), any Noetherian
domain that is one dimensional, any quotient overring of an F-domain
(see above), Nagata’s example of a Noetherian domain whose height
is infinite ([23], p. 203), and the power series ring D{[%]] where D is local
or semi-loeal.

Derrnrrion. If A is an ideal of a ring R, then let J(4) denote the
infersection of the maximal ideals containing A4 and let J = {ideals A
of B| J(4) =4}, A ring R is J-Noetherian provided the ideals of J
satisfy the ascending ehain condition (denoted acc). A prime ideal P in
J which containgan ideal 4 of R is called a J-component of 4 if P iy minimal
among the primes of J containing 4.

If B is J-Noetherian, then every ideal of R has only finitely many
J-components. (See {137, p. 344, for details and references.)

ProrosirioN 5.10. If D is a one-dimensional domain, then a necessory
and sufficient condition for D o be J-Noetherian is that every nonzero ideal
of I be coninined in ai most a finite number of marimal ideals.

Proof. Suppose D is.J-Noetherian. Then a nonzero ideal 4 is eon-
fained in only finitely many J-components and since D is 1-dimensional,
the J-components of 4. are the maximal ideals containing A.

Suppose each nonzero ideal of D is contained in only a finite number
of maximal ideals. Then AeJ if and only if 4 = (0) or 4 is a fmlte in-
tersection of maximal ideals. Hence D is J-Noetherian.

COROLLARY B.11. If D is o 1-dimensional domain, then D ig J-Noetherian
if and only if D is an F-domain.

Proof. If AeJ and A £ (0), then there exigts 0 £ acd and a is
contained in at most a flmte number of maximal ideals and hence g0
is A. The converse iz clear from Proposition 5.10.

Remark. The example in [67, p. 177, is 2-dimensional and J-Noethe-
rian, but is not an ¥-domain.

In [9], p. 134-140, and [6], p. 160-167, one of the basic results ussd
in creating united forms is that a primitive form represents primitively
an element relatively prime to a given element. We state this result
explicitly helow and show the result is false for the domain Z[z].

Exawrre. The domain Z[z] does not have the following property.
If f = [o, b, 6] isa form over D, ¥ an ideal of D, (a, b, 6} == (0}, B (0],
and (a, b, ¢)+FE = D, then there exists », se¢D such that (er*+ brs-- cs?)
+ B =D. (Bee [6], p. 157.} ‘ :

Let b = [7, 2z, 10{(#*+1)] be a form over D. The discriminant of
h is 4(—6922—70). The form % is primitive since —7-7+4(—25z)2a -
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+5(10(22-1)) = 40— 500*+3042-50 == 1. The polynomial f(y)
= % — (2¢)¥ -+ 70 (22 +1) in {Z[5]) [y] is irreducible by Eisenstein’s eriterian
gince 241, 2[2x, 2|70 (22-+1), 4+70{&*1) ([30], p. 250). There do not
emﬂcﬂhZM]mmhﬂmtﬁﬁ+2m&+m@ﬂ%nmﬂﬂm=nZM]bytm
following argument. Suppose there exist ¢, d, ¢, fe [#] such that f[Te2--
+Zwed 10 (p2+1)d?]+ex = 1 where ¢ = ¢yt +... ¢, fu"ﬂ & = d,-
T +dﬂdm 2, aic. Then fo(Te-+1042) =1 and hence fﬂ =1 and
Tei+10d; = 1 since 7ej+10d; > 0. We need only show that Tm?4-10n2
=1 for m, neZ, but that i clear.
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