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RO ig a seml gimple algebra over R. By Wedderburn’s structure
theorems, RO = @T where each T, is B- 1somorphlc to some Mn sy ( By
B; a finite dlmensmml divigion algebra over R. Choose an RB-basis B for
RO by selecting an R-bagis for each 7. Then for weRO, sy o = @m

w;¢T;, we have x<L(0) if and only if ]“[][mi]]z = +1 where |z i s the
regular norm of 2, in T,.

We claim that if U(0) is finite, then & must be 1. For if & > 1, say
dimp Ty =&, and dim g7, =%, let 2 = 2@ 27""% @ 1 ¢ ... ®1. Then
#, and thus all of its integral powers, are in L(6). But {o°| seZ} iz
unbounded, which is & contridiction. Hence if U/{0) is finite, RO = M, 0

where ¢ is a finite dimensional division algebra over R. We will show
that in this case » must be 1.

Let y: RO — M,,,(C) be an R-isomorphivm and let by,...,b, be
an R-basis for €. Then {egb,i 1<4,7<n; 1< g<s} ordered Iex1co~
graphically is an ordered R-bagis for MWR(U) Here the ew denote the
usnal matrix units. Since p is a R-lsomorphlsm B = {7 (e;b,)} is an
R-basis for BO. Let y(#) = I,+e,. Then §g(w) is of the form

10...61L0...00

01L0:...010..0
¢G. .. ... .. 01
..., 01

Now o}l = 1, i.e. #eL(0), but {#%| g<Z} is unbounded if » > 1. _

Thus we have that it T/(0) is finite, B¢ is a finite dimensional division
algebra over R. Hence, since RO ~ R @D, D must be @-isomorphic
to either @, an imaginary quadratic extension of O or a positive definite
quaternion algebra over Q. This condition iy clearly also sufficient to
asaure that U{®@) ig finite.
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Solvability of a Diophantine inequality in algebraic
number fields
by
8. RAGHAVAN and'K. G. RAMANATHAN (Bombay)

1. Introduetion. Let K De a totally real algebraic number field of
finite degree 4 over the field @ of rational numbers and K = Ko R
the tensor product of K with the field B of real numbers. Any element
a in K is represented as

a® 0
Y .

0 o
where o, ..., a®™ are the ‘conjugates’ of . Pt
(1) llaf} = max |},

. 1<hh
Let m =2 Dbe a rational integer and

(2) Fl@ory - as) = 2 a, "
o p=I
be a polynomial with coefficients a, in £,
elements of K. We say that Sfleg, ..

E1<k<h,

the group of non-singular
@) 18 tota_lly indefinite, if, for every

5
fO 21y ey ) = Y afPa =0
r=1
hag » real solution with all #,, ..., o, %0t equal to zero.
Lot © denote the ring of mtegels of K. The object of this paper
is to prove the following
TEEOREM. Let f(z, ..., #,) be a lotally indefinite polynomisl over E*
given by (2). Let

I #dpley ... m,)
where 1e K™ and ¢(x,, ..., @) 18 0 polynomial with coefficients in K. Let
mh =4 and

(3) $ > max (2™ +2, h2™ N m~1)-- K+ k).
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Then given any & > 0, there ewist integers @, ..., @, in O not all zevo, such

that
. (@ es &)l < e

We make the following remarks.
1, If f = Ap then L. G. Peck [6] has proved that if

§ 3= 8 = 1 -+ Max(4m®®, (2™ - h) mh)

then the equation f(zy, ..., #,) = 0 ig solvable in integers #,, ..., &, in O
not all zero so that we could have stated the theorem without the condition
I # Ap by taking s > s, and satisfying (3).

2. In the cases mh < 4, namely A =1,m = 2,3, the theorem iy
gtill true because of the results of Davenport and Heilbronn [1]; however
it would not follow from our methods given in this paper.

3. It w =2, b =2, then, in view of Hasse's theorem, it follows
from the theorem above that

1F (s, - 5310

- Bl < ey

g
#g) = 3 aa7, a,¢K*. Tt appears that this must be true for
=1
> 5, and in case f 3 Adp even with s = 3. However wo cannot prove
these,

4. In case » = 1, Davenport and Roth [3] have a more precise value
for large m.

The theorem can al,so be proved for fields K not necessarily totally
real. The proof requires only trivial changes and these are pointed out
at the end. An important problem igz whether s can be fonnd independent

_of the degree h of K ag has been shown in a very special ease recently
by us [7].

and f{zy, ...,

2. Notation. K is o fotally real algebraic number field of degree
hoand O is ity ring of integers, wy, ..., oy, is o fixed basis of integers of
K and. g, ..., g5 its complementary basiz so that g5, ..., g, I8 a bagls
of the ideal 477, where & iy the different of K. ¥ = |d| where d ig the
diseriminant of K. If ¢ and § are two elements of X we say that o > 8
if a— B is totally positive, that is o® —
and Na denote the trace and the norm of .

# i3 the subget of aecK Wlth a= Zwkgk,

k=1

and %, is the subset of K of § = Z‘ykmk with Ly, <1, % =1,...,%

I P>0 is a rational mteger, Pﬂi‘o denotes the set of 8 = Zy,cwk with
~Pgy<P, bk=1,...,h .

:.{.’.Uk<], 7‘} :1,...,71'

A% =0 for all k. Yor ack, o(a)

icm

- (4) , Bla) = 8(a, P) =
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For a real number #, [#] is the largest integer nob exceeding @ and
{z) is the distance of z from the nearest integer. If f and g are two numbers
or functions f < g means [f] < ¢|g] for some mnspecified constant ¢ > 0
depending on K and m. We also use the usual 0 and o symbols of Landan.

3. The method. For ae K, define the exponential sum

321'::50(4:;5”1)

md’.ﬁ?on—o

so that @ runs through all integers z = thf\)‘z» in K Wlth —P <
k=1,...,h For f<k&, put

k 3 &)\ 2
) o = | (o]

Whew i# f* = 0 for some %, the eorrespundmc factor is to be replaced
by L. It is easy to see that if y = (™, ..., ™) iy in K and

yk<Ps

(6) {dy} = @y ... dyth}
then
e 0 it o] >1,
(7) et L(y Zma(ﬂy) a
ik = H(l @) i <1
where 6 = (60, ..., ™)< K.

It is clearly enough to prove the theorem with ¢ — 1; for, then
to obtain the theorem we have only to take s~'f(ay, ..., ®,) instead of
J(@yy ..y 2,). In order to prove this we shall assume that for BVEIY #y, .vny g
in O not all zero .

(8) (e, ons gl 21,

and thereby obtain a econtvadiction.
For aek, put

T(a) =f]3(aja).

1
If o = } a0, then
Bt

f_';,' [Tla)L(a)da, ... dey, = |d) f_w [T(a) La)da® ... da®™.

On the other hand, the right hand integral reduces to

Id| ¥ii-| Z ayaf ).
1, wss.Pﬁ?DnD
i]]}wizc =1
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However with the assumption (8) this reduees to [d]. Thus

(9) [ T(a)Lia)day ... dey, = 4.

Since f # Ap, AeK”, lot ns assume, without loss in generality that

a,a;t ig not in K. Pub

(10) ) e, = Max(flar[], lag™ )

We divide the whole space — oo <C a(")<oo, B=1,...,
mutually non-overlapping subsets #,, Hy, B, defined by

By = {acK| o] < 0, P,
(11) B, = {aeKI 0, P8 < g gpdluﬁ},
I, = {ac K| o] > P
where 0 < 4-< 1 to be fixed precisely later. Liet us put
(12) T = [ [T(a)I(a)ay ... Ay, 4 =1,2,3.
B

h, into three

We then show that J, has an estimate from. below involving P (Lemma 3).
For J, and J, we shall obtain upper estimnates involving P which is strictly
of lower order than that of the lower estimate for J; (Lemmas 13 and 4).
Since by (8)

Jitd+ds = |d],

for P tending to infinity this would lead to a contradiction. This would
mean that our assumption (8) is false. Therefore our theorem would be
proved.

4. A lower estimate for J, . For.l_:’ > 0, define ¥ (P)

and for A< X, put
' Bzma(()m”‘) At
10 = f.of e ]

= {we K| [l < F}

" Let ¢ be any number in K. Then (y) P = b-a; ! for two integral ideals
a, and b of K which are coprime. Put a, = O 11: Y= 0 Put

Gly) = Na,* Z gFet™y)
H{mod ay)
p running over a complete system of representatives of residue classes
of © mod a,. We have now the following
Leaea 1 (Siegel [10], p. 128). Let ae K and y K with Na, < P~ and
lle—»ll < e/ Na,. P70 0 <8< 1. Then _

¢l I(a—
1l

(13) B(a) = J+ O (PP

icm

(15) |f fnlm ) D{a)da® ..
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- Moreover

(14) I(a~y) = O(P*¥ (Min(L, P~ ja—y|"#m)).
Levma 2,

da(")i> (NPYy-™,

., =1

Proof. To prove thig inequality,” 113 is clearly enough to show that for
gome g >0 we have

(18) [ [] I(aye) L(a) da® ..

Nflzzcy P EN

. da™ < (NP)—me

and
. ] [= IS ’
(1m [ H I{g;0) Lie)da® ... da® > (NPy—™
It we take (14) with y = 0 we get an uwpper bound for the 'Ieft gide
of (16) a '

. g Lo
@ry [ H N (Min (1, P~y a ") L(a) Ao ..., da
kl”bPl —m—d F=1 .
<@py f  NMinQ, mearsfm))L(a da(l) . da™
!EﬂIIS’PI"m“ﬁ
% . P [ct(k’)i

< (_N_P)s 2 Ia{k)l—sij—sda{k) ( f do -+ f P—sm—s/mdm)h—l

=1l =pr-m-d 8 P

.Whlch gives after simplification

(18) <(NP)8(1-1/’7}) f t—s]m (P—m+.ﬁ1»—slml;)—a)ﬁ_}dth

Pl-—mﬁﬁ
Now

(__15

1+Pm 37.'1 sl'm< 1‘i Pm—-s-f-(l s!m)(l—m—rs)< 1+Pm~s+ (5—m)
<1+P(m—a)(1 d,fh)< 2

since 0 < 6 << 1 and s > . Therefore (18) is

< (_Z\TP)(s—m)(]—I,'h) f" t—sfmdt< (NP)(Q—m)(l—lfh)P(m+d~1}(s-m)jm, — (N_P)s—mug
IJI.“WI*‘5 .
where g = (s —m)(1—8)/hm > 0. Thus (16) is proved.
We now prove (17). In view of (7), the left hand Side of (17) is just

Cr=f whe| Jem) [T

8 1< I<h
il IE agn || SLlmiP lskss
=1 .
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This integral clearly cxceeds the integral ¥, with the same infegrand
but extended over the domain

| 3wt <1,

In the integral F,, we make a cllange of variable (¥ to (5)™ and then

0 <P, L<h<s; 1<I<h,

obtain,
(19) Fz [ Vi H (Nyy= =1 [T an®
0<,fj(d3)<1:m Fel. 1
ke, 1SICh
where
oy = ¥ Z%m i | Y] <1
13 =1 ls f

0 ‘ otherwise.

Obgerve now that in the domain of integration in (19) there exigtg
2 subdomain % of volume > (NP)®-¥" on which Hl @73 < 1/2 and on

which the integrand is 3> (NP)~%", For, we know th&t since f is totally
‘indefinite, there exigts for every j,1 < § < h at leagl one pair gy G such
that a(” > 0 and a(” < 0 For each index j, we fix positive real numbers

G145 -+ €y SUCH (hat la,,ﬂj)c}g = 0 with 0<% 1/2. This is
k=1

possible. If b > 0 is sufficiently small, the é[ommn 4 defmed by

clearly

| Pt <d, by, 1<E<s,
(20) R
| Y| <
k=1

is contained in the domain of integration in (19). Its volume s3> (N.P)E-I%,
Furthermore the integrand iz on this sat>> (NP)‘S(’”“D Therefor

;773)” N')? —(- ]"m)nd'qg)> N_P)” Lme~s(me-3) (N_ZJ)H n

B> f Viny, --
€ =l ki
This proves (L7) and consequently Temma 2. o
Lrmva 3. For sz Max(m®-+1, h6™Y) we hawve |J | > (NP)F"™

Proof. From Lemima 1, we obtain

(21) T(a) = Hg(aja)
J=1
= []temp)- 025 {minfs, oty

, | . o | . 0'((NP)5(1-¢!,’7L)):

icm

where J,
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On the other hand, it is known from Siegel ([9], p. 335) that

{22) fN(mm( l kawk| )) oy oo da, = O(NP)™"

Using (21) and (22) we get, taking v = 0 and s > Max(m?+1, h/4)

| — H I(4;0) L) day... da|

ey Pi—m—8 1

< (N_P)s 5/h

oy Bl —m—3

N{min(1, [P™a|~ ") L(a)da, ... day--

L (WP L{a}da, ... do,.
lalge P10

Since L(8) €1 for f<K and L(y) < (Ny)™? for yeK*, we get, for the
above, the estimate

(23) < (_N_P)sfdlhAm.%“ (NP)s(hdm)-m-i-l—a <& (ATP)s—aaz—a/hz
Lemma 2 now combined with (23) proves Lemma 3.

5. An upper bound for J,. By definition, J, is given by

if s> hld.

Ty = T(e)L(a)day ... da,
e > P71
= §{4h*. We now prove -
LevmA 4. For s 2 2™ and P sufficiently Targe,

Jy = o((NP)™™).
Proof. Using Hélder's inequality, we gef

&
!
L<[[{ [ 18sa)] L@)ia}™;
=1 fa>P% ,
where da = do, ... da;,.
It is therefore enongh to find an upper estimate for
[ 18(a;0)* L(a) da,
) flaf =221
which is the same ag finding an estimate for
[ 18(@)"I(a; "a) da.
a1
From Korner [4], Satz 5, we obtain for s = 2™

(24) | f% S(j akgk)_s do
& frs

L (FPy " (logP)*
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for some ¢; > 0 de;pendiilg only on K and . The domain [la| > Pt can
be covered, without gaps and overlapping, by cubes

F(gyy ooy gn) ={a ﬁz w;0;c K| g < ;< Gipas 1 :.l:_ sy h}
Jiy ey g, being rational integers. Bach cube i3 contained in a box of

type y <o, % where y = (g1, oy gy e K and ¢ i8 o constant independent
of ». Since S(a+2A) = S{a) for e, we have

(25) [ |18 me) t@daxs Swp L(a) [ |8(a)de
P, ,g,,) ¥ : e (3 - sp) pioy R
< Sup  L{e)(NP) "(logP)%.
aeF(gl,...,Q‘h]

For the cubes covering the domain |af| > P%1 we can ensure that af
least one of the nmumbers g,> P’ From the properfies of L{a) we geb

ne ¥ w@ﬁ i

A= [Pdll

(NP s m(].Og.P)% <.P 6;(NP)3 m-+-dyf2k

for large P. Thus if P is large so tha.t
- (26) (logP)s < PO

we have .
Jg < (NP)s—m—d/Bh' ,

Thig proves Lemma 4.

8= 2™,

. 6. Fstimation of J,. Onr object is to first obtain an estimation of

8 (). This is given in Lemma 10. It is dependent on certain lemmag which

are generalizations of lemmas of O. P. Ramanujam, and Davenport. Since

the proofs can be obtained by suitable modifications of those of Ramanu-
jam and Davenport, we state them without proof. ‘
We firat begin by defining ‘major ares’ after Ramanujam [8].

Let ye X and #(y) = ba;' where a, and. b are coprime integral ideals.

The ‘major are’ B eonespondmg to » with Na,, <P iy defined as

- the set of 2 = ZMQA in # such that if y = ) 70, then

Jerm ],
(27) I ’J/H <_N-a—1131 — - r)
Put m = #— U B, where ¥ runs over elements of K -with Na, <P

Denote by my, the seb of @ in m smch that there does not exist 1 550,

AeD N PONITig and a ped™! such that
n

(28) Ja—p = D ey

]&,k] < P~w1+(m—1)ﬂ-|-d
Jo==1 -t ' .

where 0<C 0<C1. We then have

icm
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Levva 8. If 6 = (L—(h+1)4) [2h(m —1), then m, = .

Thig lemma is analogouns fo the statement on p. 701 in [B] and is
proved in a similar way.

By applying Weyls lemma (#m — 1) times, we have from Siegel [10],

TEvMaA 6. For aek,

I8 (e

h
= O((VP)™-m) D [ [Min(p, (m! Ly(a, Ay, -,
gy o 1ePBy =1
h
- zkz oplpla; Auy voiy Aopy) amd Ay, oy Ay are e
=1

Zm—l) >‘:)

where aly ..

tegers n K.
LmmvA 7. Suppose that |8(a)] = (NP)'7° with 0 < o< 1. Let N denote
the number of infeger poinds Ay, ..., Ap_, in PA, such that

<fm'Lk(a Jl,...,lm_l)><P‘l 1K E<h,
then ’

N> (NP 12" (og P) %,

The proof of this is similar to Lemms 1.2 in [8]. It is to be noted
that the proof of Lemmsa 7 uses Lemma 6.
The next lemma is a generalisation of Lemma 7.

Levma 8. Let |S{a)| > (NPY 2 with 0 << o << L and let N,_, denote
the nasmber of imteger pamﬁs Xl, ooy Xy satisfying '

Xl? ceey Xm—le-P V@'D? ’ Xm—l)> < P
for 0 << 0<< 1, Then

Ny (NP0 (log )k

(m‘ Lo, X4y...

Proof. From the definition, we have

Ml Ly (a; Ayy ey dpy) = mba(ad o Ay _j0,).

This equals

Ay Ay «n opong)

®
m! Eﬂiqcr(all_.‘..
g=1
where A = Y, 0,0 Fix Ay, ..., Ay Aipqs--ey Amo;- Then the coefficient
of A, In m! Ly(a; Ay, eony Ay g) 8 mlo(ady oo Ay gy oo Ay 9p0,). This
is also the coefficient of A, in m! L,{a; 4, ..., 4, ;). Therefore fixing
Ay eiiy Apay Mgy ovey Aoy in PE, and regarding the h linear forms
m! Ly(as Ay oy Ayoy) 28 gymmetrie linear forms in A, we can apply Lem-
ma 3.3 of Davenport [2] (see also [1], Lemma 28).
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Tet N, (0 <1< m~1) denote the number of integral points XI,
.y Appq Buch tha,t .
Xyyony X, P By,
(29) . Xi-]-ls Ly X 1eP%y,

<7n1 Lﬁ(a; X“ e Xm—])> <_P'L'0-('!:—]-l)

wherve if § = 0 the first set is empty and if ¢ = m—1 the second met is.
We now assume as induetion hypothesis that for 0,1, 2,...,4,

(30) .Ni > (NP)W"I‘"zm'"lQ'i""—'(ﬂ-l} (10g1))~h.

(learly for ¢ = 0, this iy Lemwma 7 with N, = V.
Choose now, in Davenport’s notation,

H2 ey
g —p e
. ;(9—1) '
(31) Zy =P
‘ 241 10
4=p7 F
Fiz Xy,...,X; in P'®, and X,,,,..., X,,, in P%, Applying Daven-
port’s lemma, we get
Al h
N> N( ) -
2

Combining this with (30), we get
Nips 3> (M) Tetmmi 150 p)=h

This shows that (30) is true for ¢--1 and so for 4 = m ~1. Thig proves |
the lemima.
' We deduce at onee -

LeMMA 9. For aem, and large P, |S(a)| < (NP) 22"
It is proved in. Lemma 5 that for § = (L — (k1) 8)/2h({m~—1), m = m,.
Let vs now chooge _
0 < 8 = 1f{2" H{m—1)--h+1) < 1.

Then 6/2™" = (L—(h+1)8)/2™h(m ~1) = §/2h. On the other hand, from
Lemma 9 we have for aem, and large P, | 8 (a)] < (NPY=""™ " We therefore
obtain ‘

Lanra 10. For aenty and 8 = 1/((h+1) +2" N (m—1)), we have
|8 ()] < (WPY =%,

We now generalize Dirichlet’s approximation theorem to algebraic
number fields ag follows :
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LenvMa 11, Let £ be an element of K but not of K. There exist infinitely
many pairs of integers w; ,v; # 0 in O such that
(i} the g.c.d of p;, v; belongs to a fized finite set of integral ideals in K;
(i) ¥ end |jw] are of the sams order of magnitude;
(i) ||| tends fo infinity with 4

. and

(V) & papfo] < [yl O,

Proof. It iy well-known [6] that if #,, ..., @, ave real numbers of
which one at least is irrational fhere.exist infinitely many A-tuples
@, ., pP and integers g;, 4+ =1,2,... such that

(32) oy —p g < g O, i =1, 2,
Ifé= Em o, (B;eR) is an element of K but not of K, then at least

P g P

one @; is 111at10na1 and so puiting «;, = Ejpmcuj, we geb
i=

(33) CE—afg] € gt

absorbing  sup |w;| in the constant on the right side of (33). Similar
1<i<sh

imequalities exigt for the other conjugates and thus

(34) gl <€ g R

Let o; = 0,0+ ¢;0. Then 0" and g0 are integral ideals which are

coprime. They are not necessarily principal ideals. In each ideal clasg
of & choose ai infegral ideal, say of minimum norm and denote by'F the
totality of these finitely many integral ideals. Multlplymg aart, gart,

. if necesgary, by some ideal in F we get

R

4 %
where w,,r; are in O having at most one of the ideals in F as greatest
common divizor. We can multiply ux; and »;, if necessary, by a unit of
© go that »; and all its conjugates have the same order |Ny,|"™.

In view of the linear independence of w,, ..., oy, it is clear that the
number of h-tuples (p{”/g;, ..., ™ /g;) and so the u;jv; are infinite in
number. That || —+oo follows trivially from above.

In the sequel, we assume that P tends to infinity through a sequence
of natural numbers of the form [ » """ with & = a,a;?.

We shall now prove the following fundamental lemma.

LeMma 12. Let

1) e be in K but not in K,

2) 0< 8 =1f[2m" *(m— 1)+h+1)< 1,
) (10gP)c3 <Pd.'8h
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Then for aeEz, Mm“&'(a1 a)l, | S{a,a)f) < & (NP,

PlOOf Put a;a = Zo(“)g where ¢ are real numbers and § =1, 2.

Let u; = Z’b“)gj where b“} are real numbers such that 0< b <1,
i=1

§=1,..,h; i=1,2 a,nd el —bf are rational integers. Then u, <%

and further :

Siga) = 8lw), +=1,2.

Suppose weK is in a major are B, for some y with ()¢ = by,
(a,,0) =1 and Na, < P'~° Then |jg—y| € No, ' P'~""°. Lemma 1 then
gives . : '
18 ()] <NP‘NCL;1’ 2 agniﬂ(?$m)‘_i_O((Nl))l—ﬁffL).

. :c(moda,,)

The generalized ‘Gauss sum’ has the egtimate (see [10])

2 eZma(ya:m)

z(modua,,

(NC( )—I/m

‘We therefore obtain, if say u, (or ,)eB,, then for i =1 (or 2),

(35) 18(g;0)| KNP (Na,) W™+ O (NP)H),
On the other hand it z, does not lie in any B, with Na, < P*~*% then
. by the definition of m, g,em. By Iiemma 35, for small B, pq et = g, Usmg

Lemma 10 we get, with the § in that lemma

(36) : |S(a1a)] = | 8(uy)| <€ (NP8,

Thus if either x4, or py is in m or in some B, with P"* < Na, P~

(6 as in Lemma 10), then (35) and (36) hold and
(37) Min ([ §(az2)], |8 (aya)]) & (NPy-on,

In these -capes, Lemma 12 is proved.

In order to complete the proof, we have to show that if uy and u,
He in B, and B, respectwely and

Nu ,SP No, <P, =1,9,
then (37) holds What We are going to ghow iz that this cage does not

even arise.
h

Let as before aa = Zchm, F=1,2 and y; =

Z (.01_1 .

sz j@i, 80 tlmt

@i by = b, 91 is in 9%, Let y; = } 9”91 with (y)é = Bjaw;

iom
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(a,, ;b)) = 1. Since a‘a—w‘uj ¥ we see that (u;— a;a—y;)9 has the same
denomlnatm as (y;) 9. If we pub

. y:3
;o= — ety = 29«:,;'9@'
ic1
then
(38) 16— 5| < N\ P .

We write p; = ;%" as in Lemwa 11 with %;, u; integers of K having at
most & cOIMMOn, divisor which is in the finite set F. Then N ) is the
game as |Nu,| except for o positive constant depending on A alone.

In (38), g;; are rational numbers with denominator not exceeding
Na,,. If for a fixed j we have g;; = 0 for every 4, then (38} gives

(39) Gy = gf,:i{l 10 (Pl—m—a))
and th_erefore
(40) a;a = t.iug'—l(l—:—O(_Pl—m'a))

where the constants implied by O depend only on K. (40} is to be understood
as holding for all conjugates of the left and the right sides.

‘T however g; ; = 0 for some 4, then (39) is not trne for that i. However
for a given j, all g, ; cannot be zero since ae¥, and so

loll > P, ¢y = Max(flar{, laz”)-

(40) i3 thus eventually zeen to be true after changing the constant in
the G-term for these ¢ if necessary and by multiplying by ¢, and summing
over ¢ from 1 to h.

From (42), we get
(A

140 @Emh)

ayoyt =
. kg Uy

We now use the fact that a,0; <K and not in K. By Lemma 11, there
exist infinitely many e¢,d;* in K with |Nd,| = O(||d,|*) =oc such that
|yt — oy @y | < QO

Further P i of the same order ag [|dy [, We maintain that the ideals
(0,d7") and (tu, [ty uy) ave distinet, for, if they are the same, then for some
unit e D, ‘

iU
41 @l =2,
(41) én 0 ”tzul
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Then
(Calaty) _ (doty ;)
(€ay o) (€0 do)
since 0, D/(0q, do) and dy D/(c,, do) are coprime, we have
) juD
(42) CATS B
B (€0, o)

where a is some integral ideal. Since aell,,
g ] << P
with ¢ given by Lemuma 10. Furthermore

IN%jl < —N-C[.r,j. {Pmd,ih
and :

(43) ¥ | < |V (aya)[ | Nuy| < PO
‘Taking norms in (42) we see that, using (43)

- (44) I Ntguy| = O (POMen18)

On the other hand since Na > 1, (42) gives on ‘uaking TLOXINS

L (dy)]

¥ (t)| = 5

NS > thfh—kl
since N (¢4, dy) is bounded independently of P and d, and ijts conjugates
are of the order of magnitude of P¥*+'. With § given by Lemma 10, (42),

(44) and (45) lead to a contradiction for mh = 4. Therefore (41) is untenable.
In particular '

_ N dg tatig # 0
‘We therefore get
(45) _ () < ITI << |]d0”""(h+1)f7&_,{_,_P—(m"H—ﬁ) <P-l < |Id‘;‘|—‘(74,~|-1)/71

by our choice of a special sequence for P, when |dq| oo,
{45) is true for all conjugates of v and go

(46) L0 | Na] & |0,
But then v = (eptau;— doty ) [dotyu, and so

| (e uyte —dy 152@)[ L

47 N ' |
(47) N> Fa V4] Tyl = aal T5] Fil)
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From (46) and (47),

1 1 1
”du”h+1> I}doﬂh' pEmTiER
and so
1 1 1
(43) lidoll > PR > e

With 6 ag in Lemma 10, this is impossible for large ||d| since mh = 4. We
thus arrive at a contradiction to p, and p, being in B, and B, as men-
tioned.

Lemma: 12 is thus completely proved.

We now prove :

Lmamva 13. Under the hy potheszs of the' Theorem and with & defined
as in Lemma 10, we have

I, = O{(NP)~m=H),

‘Proof. Using Lemma 12 and the trivial estimate NP for S{a.a),
we get

Ty < (N_P)1—5/zh{ f H

xstala)asmcazu)l

8(a;0)| L (a) e+

WWMMMM}

8
+ Il
{S(aga)l<<|S(aya)|
By an application of Holder’s inequality and by using (24) and by argu-
ments similar to those in Lemma 4, we get

7, < {NP)I--d]thP (NP)S.—Z-—m—;-dIBhS (N_P)ﬁmh

provided P satigfies (26) and s = 2™42. Thus

Jz < (N_P)s—m—*ﬁlsh .

Ag indicated in § 3, Lemmas 3, 4 and 13 prove the theorem.

We make some remarks concerning the extension of the theorem
to fields K which are not necessarily totally real.

Let K =KW, E®, .., K" be the veal conjugates of XK and
KNty — Rlntn Ko o Borin) e the complex conjugates
of K, so that h = r, +2r,. Instead of the kernel in (§), we may now take

o 1 Sinnﬁmz.fﬁrg J1(4ﬁ|ﬁ©i) z.
o wor = (%5 1T (%50, ]

Ferytl
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where J, denotes the Bessel function of order 1 and we have the usual
convention that for g = 0, the corregponding factor is to be taken
as 1. (It i3 to be remarked that what is important is that the faetors in
the kernel be rapidly decreasing functions which are Fourier trangforms
of bounded C* functions on RB* (respectively R?) not vanishing at the
origin. and having support in the unit interval. (regpectively the unit
dise). Observe that for fe kK, ye K"

! 17y
L) <1, L) <TI0 [T w1
i=1 J=ry-F1
o L TR i ‘ .
For ae K, it {da} denotes the volume element []da® [T d(Reo™)d(Tm o),
f=l F=ry+1
then instead of (7), we have '
i e 0, it el >1
. . L(?j) GZniU(Uy) {(ly} . A . -1y . .
mi ofo JIa—109) JT e(e@y, it o<1

1= . I=ri+1

where, for complex z,

4SO L ) —felV1— o2 for O o<1,
ple) = : .
0 otherwige.

The proof of our theorem may be checked to go through in the general
case.

Finally we remark that using the same arguments as in [3], we can
also establish the validity of the inequality |f(@y, ..., s,)+ b < ¢ for
any be K, with integers oy, ..., #, in O not all zero, under the additional
restriction that o > (A1) (1 —2™ " (m —1)+ h-+1)"".
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