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On relations between units of normal algebraic
number fields and their subfields

by

JosEpH Liswnc* (Tampsa, Fla)

Let K De a normal algebraic number field with Galois group G(K/Q),
where @ i3 the rational number field and {K,,..., K} iz o class of sub-
fields of K. How much information about the arithmetic unit group U
of K can one draw from the knowledge of the arithmetic nnit groups
U; of K;, for ¢ =1, ..., u? Before we give answers to this question, let ug
malke the following investigation. We shall assume first of all the following
groups are known:

;¢ the automorphlsm groups of K over K, which are subgroups
of G.

E;: subgroups of U, formed by the roots of unity.

E: gubgroup of U formed by the roots of unity.

k: element of @& that maps any element of K onto its complex
conjugate.

Since A is normal over ¢, we have the following two cases:

Oase 1. k& =1, in this case K is totally real. '

Case 1. & 5£ 1, k* == 1, in this case XK ig tota]ly complex.

Let n be the ovder of the group ¢ and ¢ = U%G be the left coset

decomposition of & over &, with », = [K, : @], f01 1 t. The number
§; of conjugate subgroups oyG;cy;' containing % is equa,l to the number
of isomorphisms of K; into #, the real number field. Consequently,
ny = 824, 0 <fe Z. Let U = U/[/R be the factor group of U mod E.
Then by Dirichlet unit theorem ([1]), U is free abelian of rank s+¢—1,
where ¢ == » in case 1 and s = 0 in cage 2 and the non-negative integer %

* The auther wishes to express his thanks to Professor Zassenhaus for his help
and to California Institute of Technology for granting him a post-doetoral fellowship
during 1969-70.
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is defined by t = §(n—s). Furthermore, the factor group is free abelian
of rank 8,4, —1 (1< i< u). We would Like to know some answors to
the following two guestions:

A. What can we say about the rank of the free abelian group V whero
V is defined ag

= (E U,) RIR?

B. If we detine the pure embedding group V*of Vin U as
V* = {e] ¢ U and vither & =1 o O 1}

what can we say in regard to the index of Vin V*? (Onn one establish
some bound for it?

We discover soon that the cage that {I,, ..., K,} is a class of conjugate
subfields of K is most interesting from the practical point of view. In the
following, we shall have all groups U, U,;, ¥V, V" written additively. Then
each of the groups concerned has a finite Z-basis. For each oe @, s/Re U,
define o(e/R) = o(e)/R. Aceording to this definition, the module U can
be congidered as a proper G-module and hence QU is a Proper reproegen-
tation space of & of finite degree over ¢. In what follows, we shall discuss
the first case, and the gecond ease will be bLriefly discussed in the end.

Let 4,6 be the angmentation ideal of the group algebra @G] of &
over ¢} zmd hence 4,¢ iy defined ag

AnG ={cu| a =Zﬁ(g)g and. for every
geF

g (ge G implies A(g)e @) and

Dalg) =0}.

fretd
It follows that 4,6 = Z Qg —1g).

: []sr
RE ]

In this case, QU is operator isomorphic fio .G and there is 4
G-isomorphism 0 of Tinto the augmentation ideal 4,6 = {a|lae/ (,G‘ NZ[GT}
of the integral group ring Z[¢] of & over Z. In other word %, 00 is o lofh
ideal of Z [¢] contained in 4,6 Any other G- -igomorphism 6 of U in QG ]is
obtained by setting 0'V = (0V)A when A iy a unit of 4,G such that

A =1 (mod do@). Hence 6T is unique up o G-equivalence from the
right. Tt follows from integral representation theory that there arc only
tinitely many non-equivalent left ideals of Z (&) of rank %—1 contained
in 4,6 Some information on it may be obtained by studying the action
G on the group U, Xt {K,,..., K,} is normal (i. 6. invariant under @),
then ¥ is a two-sided ideal of Z[G]. Moreover, V* iz the intersection
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of a two-sided ideal 4 of Q[&] with 6T. If X,, X,, ..., X, are the irreduc-
ible characters of & with X, as the principal character, then 4 consists
of the eloments o of Q[¢] for which X;(ag) = 0 (g¢ @) and either 1 =1
or L<i<<v and > X,(¢) =0, § =4,...,u Hence, we have the follow-
e ’
ing: ™
TueoreEM 1. Bank 4 = Y X;(1)% where the sum is taken over all char-
acters X; for which § > 1 and 2_, X (g} > 0 for some h satisfying the

Hfh

ineguality 1 < h < u().

The followiﬂg is true:

TrmoreEM 2. If K is normal (lotally real) algebraic number ficld of
degrée n over §, with the Galois group G (K[Q) = 8, or A,, for m > 3, then
there ewists a proper subficld K, of K such that if {K,, ..., Ku(K v 8 a class
of conjugate subfields of K, 5 | then [U V] is finite, 1. e., V already contains
w — 1 independent units of U where U V are defined as previously.

We need the following lemma to prove Theorem. 2:

LEMMA 1. Let I be o representation of G which affords the characier X.
Leb H be the kernel of X and 1, the identity element of G. Then

L X (k) = X(1g) if ond only if he H;

2, If | X (k)| = X(1g) then h{H is in the center of G|H ([3]

Now, proceed to show Theorem 2

Let X, ..., X, be the set of all meduclble characters of & It follows
that vis egqual to the number of conjugate clagses of & We know that ([2])

(1} )+ X1 + .. + Xi(1,) =[G :1]

where 1, denotes the identity of &. Let K, be the subfield of K which
corresponds to the subgroup of & generated by the elemeént of order 2,
say (12) (34) (since our hypothesis says m =4, so (12) (34)e&). Let
{K,,..., K,} be the class of conjugate subfields of K. Asgext V contains
independent units of U. By Theorem 1, rank V = Y X3(i,) where the
sum is taken over all characters X for which §>1 aud 5’ A >0

for some &, From identity {1), we see that X;(15) + ... -+ X2 (10 & —

and thig already gives us the correct number of mdependent wnits. So
if we can show that X;(a)-- X;(1g) = 0 for every j and for any element &
in the conjugate class of (12) (34) then we are done. This is equivalent
to show that for all j and for any @ in that conjugate class, X;(a) =
—X,;(1y). By Lemma 1, | X;{a)| = X,(15) if and only if a/H iz in the center

(1) It suffices to verify this equation for only one of each olass of conjugate
subgroups of ' among the normai set {Gy, Gy, ..., Gy}
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of G/H, where H is the kernel of X;. If m > 4, H can only be &, 4, or 1.
If H =¢@ then X;{o) =1 and if H = 4,, then Xy(a) =1, since ac A4,
But if H = {1} and X,;(a) = ~X,(1,), then we have ae Z(F), the center
of & If we let & = (12) (34), b = (123)e & then ba # ab, a contradiction.
Therefore, X;(a) # —X;(1g). If m =4, H can be G, 4, V, or 1. The
same argument can be applied to &, 4,, or 1. Now, let H = V,, then
X;(a) =1, since ge V,. This proves Theorem 2.

Let K be a normal real algebraic number field over @ with the Galois
group GIL[Q) = 8, and let K, K,, K, be the conjugate subfields of X
of degree 3 over @ corresponding to the subgroups &, = {(1),(12}}, &,
= {{1), (23)}, @, = {(1),(13)} reapectively.

For the character table for 8, we have ([2])

0 0 G
X1 1 1
X1 -1 1
X2 o0 -1

0, ={)},

0, = {(12), (23), (13}},

Oy = {(123, (132)}.

Rank of ¥ = 2 Xi(1), where j>1 and X X;(g) > 0. Since X,(C))+

ety

+ X,(0,) = 0, therefore the only choice of § is 3 und hence rank of
T = X31) =2° = 4.

However, K should have 5 independent units, where can we find
the fifth independent unit ¥ X assert it can be found in the guadratic
field K, which corresponds to the normal mbgloup A;. A verifieation
of this can be found on page 340.

In case V has full rank, then there exists a natural number m such
that for every ue U, we have %™« V. A hound for m can be found by the
following four lemmnas.

LEnma 2. Let H be a subgroup of G and {H,, ..., H} a dass of conjugate
subgroups of G where H = H,. Let v, be the principal character of H and
E
X, the character of G induced from .. If ¢ = U g, H és the left eoset decom-
_ fuel
position of G over H, then

le (J I —Z,J'mlqg
UEG i=1
L]

Proof. By definition, X, (9) = 3 (¢ 99:), where 4, (g) =1 if
i1
ge H and v, (g) = 0 othsrwise. Thus

8

Xy (g = D o999

i=1
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It follows that
8 2

2 Xl = 3 Y inlgggdg = 3 X inlg 9g0g
e ge@ =1 i=1 ged

But (g5 'gg;) =1 i and only if g;'gg,e H, this implies geg.Hg "

Therefore,
8 3
2 X 99 =2 Y ahg’ = X by’
i=1

gelF i=1 heH
Remark. From Lemma 2, it follows that if we let f =
where N (H) is the nermalizer of I in ¢, then

g = fEH
UECT

Lenmra 3. Let H be as before and let {X,, ...,
characters of @, then

Xy =X +6

[Nq(H): H],

X.} be the set of trreducible

Ko oo 0. X, where ¢; =

(L/LH 1) D) Xy(h)
held
are non-negative inlegers.

Proof. By Frobenius reciprocity theorem, we have
= (L/[H :1]) D) (B (h7Y).

heH
Thus

6 = (LJ[H :1]) D) X, (%)
hel
sinee
() =1
Levya 4. Let H, ?7, ?, ¢ be defined as before. If rank U = rank 17,
then ¢; =0 for i =1,...,7 '
Proof. By Lemma 3, ¢, = (1/[H : 1]) Z X,(k) and by Theorem 1,

for every he H.

V iy full rank if and only if for every 1, 2’ X (%) > 0. Thus, f01 every 4,

Riell
¢ # 0. .
LemmA 5. Assume rank U = rank V and let Q1G] be the group algebra
of & over Q and By, ..., B, be the primitive central idempolent elements of
Q67 such that 1 =B, + ... + B.. Then

RIS MOTE RN
=

ge&
where a;e Q and for every i, o, = 0.
Proof. We know that .

= (/16 1] 2 T;(0) (),

1
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where #; 18 the degree of the representation I'; which affords the character
X;, 0, is the sum of the elements of the ith conjugate class of & and
¢; are defined previously. Let X, = ¢ X; + ... + ¢, X,. It follows from
Lemma 4 that ¢; # 0 and e,¢ Z. We then have

Xw](g)g = lel(g)g "'F— mes [_ (’.z"X—r(g)g?
and for every %, ¢; % 0. The’refore,

DX, g = D aXily + > 6 X.(g)g

peld et gs(}
= ([6: 11jm) 0,y -+ ... (16 : 11f3,)0, T,
=g A .4 a 2‘ a1,

desl
where a; = ([6: 1]/z,)¢;, for every 4,a 0, since for every i, ¢ 0.
This proves Lemmsa b.
Now, we are ready to give a hound for the exponent m, where m is

such- that for every we U, u™c V. Combining Lemmsa 2 and Lemima b

}
we obtain

(2) fE}I'i = Ea’iEi
11 i=1
where f = [Ng(H): H] and a; = ([G: 1]/2)¢.

Recall that ¢; = (1/[H :1]) )} X,(h). Multiplying both sides of (2)

hell

by F;, we obtain
i
fEJ'ZH’l == ajE‘,

. T=1
Therefore

[6: N (H)YJ{H : 1111 VH = [G: Ny H|H : 1].“«,
this implies &

(FG : N H[6 : 1]) /zf_}j X, (B By 216 ;.
hetl
Let m =Llem. ([6: NoH][G 1] f5 3 X, (h).
held

Since 1L =, -+ ...
T = BB

+ By 50 mo=mB ...+ mH,. I fmewﬁ, then

We would like to make the following remark: In case V itelf does
not have full rank but V == —17*& . - X does, where each 7!7, ,X
corresponds to a class of conjugate subfields, then for each of them
we find a bound for the exponent, say respectively m(V ) ...,.m(A).

Let m = Lom. (m(V),..., m(X)). Then ope can see that m should be

icm
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a bound for V. In certain special cases, owr result ean be sharpened as
in the following theorem:

TurporeM 3. Let G{H[Q) = 8, or A, 7 =4 and let K, be the subfield
of K which is corresponding to the subgroup of G gemerated by (12) (34),

then the exponent m defined above is bounded by 2 Z’

Proof. Let Oy be the class consisting of all elements of the
form (12) (34) in G Then ¢ = [Cpyuyl == (n—1){n—2){n—238)/2°.
Since ¢ is divisible by 3, so we can separate the class Cpuypg inbo ¢f3
disjoint sets, each of which containing three such elements and together
with 1 they form a subgroup &, of order 4. Let E,, ..., H,; be the subficlds
of I corresponding to these subgroups then [¥,:Q] = |F[/4{. Since each
group containg elements of the form (12) (34), so the £’ are contained
in our K's. By suitable numbering, we have for any arbitrary unit
we U, w'tiithatdse [ ol 70t0 e Ko\ .., where gy, f., g G, 0, g5, 9°
€y, ... This implies ! tortlatarlitistagr.. F Bpp g Horitnt. 7

henee u° " = uz(*)e 7. This proves our Theorem.

In the following, L shall give & purely constructive method to deter-
mine the rank of ¥ and a bound for the index of ¥ in its pure embedding.
In case ¥ is of full rank, a bound for the index of ¥ in I can be computed.
Also, ¥ does not necessarily correspond to one class of conjugate sub-
fields, it may be the sum of modules corresponding to several eclagses.
A computer program has been wriiten for this purpose and the cor-
regponding results for the simple group A, are obtained from our program
and will be appended.

By Galois theory, we know that we can find & unit «, in X such that
u, and all its conjugatey generate & subgroup M of finite index m in U.
Let uy, Uy -.-, ¥,y De a bagis. Again, let M = M/R,,, where R, are
roots of nnity contained in M and let %, ..., %, _, be a basis for M. Let
47 he the module generated by me, myg,e, ..., mg, e where ¢ is the idempo-

tent element defined by 1—1/n 3} ¢ and g; running over all elements
gs(r
of the group G. Consider the mapping @: M — . defined by ¢(u;) = mg;e,

t=1,...,2—1 and g, = 1. Clearly, one can sec that ¢ iz an operator
1%0111011)111&111 from 7 onto .#. Since ue U implies mue M, it follows that
pl0) o Hjm = 4" Assert [ 4" o))< m™ " Let ﬁl, vey Uy 4 Dbe
& bagis of (T), let o, = ¢;6,1 =1, ..., n—1. We have

U, = a’l,lvl 4= al,ﬂ.—llun-—ly

(3) Uy = Gy ¥y + evv b Oy 10n_1;

...........

Uy == anml,lﬁ’}. + ..o+ Oy -1, m1 V1
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and
moy, = by, + + by ity
B S

MUy = bn—l,l”l o bn—l,n-—f’“"n—l'

From (3) and (4) we ob’ufuin‘

By e By Gy e Oy gy "
i om 0
b'n—l,l e bn-l,n-l mn~1,1 b a’n—l,n—-l O ' 773
Thus
a1 cee By
]d@t ...... o I < m“"“l
a’n—ll a'n. 1,71

Thig implies

Let H be a subgroup of & Denote by H the sum of all elements fe H,

ie H = 2 b Let Uy be the module generated by He, nge, ey Hy, g8
hell

Then Uz has finite index in ¢(Vy). For, let beg(Vy) b = are+ ayg,e -+
. + @n_lgn_le, at.':EZ. Th'l_'ls

h(b) =H(b) = a; e + ... + 0,y Ty, c0eWyy, where % = [H:1].

Let {# = H,, Hy,...,H,} be o clags of conjugate subgroups of & and
w

let Ap, be the corresponding modules. Further, lot A = pX Ay, X6 Lollows
i=1

that 9 has finite index in ¢(¥). Our computer program. will give ranks
of the Ws which can be seen immediately equal to the ranks of the Vs,
and we give bound on the index of 9 in ity pure embedding in .#* and
this is also a bound of the index of ¢ (V) in its pure embedding in ¢ (T7) as
can be seen from. the following theorem.:

N
ToroenM 4. Let (V) be the pem; embedding of ¢(V) in o(U) and

w{V) be the pure embedcng of q)(V) in H*. Turther, if W is the pure
embedding of U in M asm? (p(V) ure embedding of ¢(V) in 4%, then we
have 9 -—gv( ) and q:r(V = (p(V

Proof. By definition,

9 = {oe#* | either a =0 or raec? for some r>0}
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and

@(V) = {Be.#* | either § = 0 or sfeqp(V) for some s > 01.
Firstly, let 0 3 ae 9. This Impliey t-here exists 7, > 0 such that v, ae
e @(V). Hence aegp(7). Thus, % = gTV’) Conversely, let 0 s fep(V).
Thig implies there exists sﬁ > 0 guch that spgfeq(V ) This implies s;hf e U
Thug fe QI Thigs ghows q:{V) = Therefore, q* = cp(V Now, we want

to show ¢ (V) = qo(V). Let 0 + ge qa(V). This implies ae.#* and there
o A
exists s, > 0 such that s,aeq(V) = @(V). Thus acp(V). Finally, let

] #b € ¢(V). This implies be .#" and there exists 7, > 0 such that 7bb

eqa(V) This implies there exists ¢ such that srybe (V). Hence beq:(V)
and thig proves our theorem.

Remark. It follows from Theorem 4 that

o ) = p(7) : %)
and further,

N — —
L) (NI < [p(V) - A.

We include here the results for the groups 8, and 4;. The éu‘bgroup
lattices of S, and A; are as follows:

G=5; G:AS

s VAN

H. ' : / - H
1 Hy 5
HE HP HO /
K H

We denote by H, the class consisting of conjugate subgroups H®, HY, ...

H{ and by AP the module generated by ( 3 #).4* and %, — _): QI”’
ksH

where 4" was defined previously. We shall give the index of 9, in its

pure embedding in .#" and the rank of ;. Tn case ¥, is of full rank, the

index of 9; in .#* will be given. Finally, the rank of certain modules formed.

&
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by the sum. of ¥, and also their corresponding indices will be algo considered,
Again, we let the symbol %; denote the pure embedding of %; in 4"
Our results are as follows:
(I) G = 8y, H, = {(l),(123),(l32)},
HY = {(1),12)},
aY = {(1),13)},
HYY = {(1),(23)},

%, | rank | index
|
Ay 1 1
i 4 1
My -+ i 3

From this resulf, one can see that if K ir a normal real algebraic
number field over § with Galeis group G(&/G) = 8, and if I, K,, I,
are the conjugate subfields of K corresponding to the subgroups MY,
HP HY vespectively, and ¥ is the corregpending free abelian group
and if wy, u,, %, %, arve four independent units obtained from ¥, then the
fifth unit of X can be fonnd in I, which is corresponding to J,.

(II) & = 4,

H, = class of conjugate subgroups of order 4, ¢ =12,10,6,5,4,3,2

A, | rank index
P 16 2
pif 25 210
Ay 41 2%-3
A; 43 PN
€N, 41 2
Ay 59 273
DI 59 9 .
Wy + U 41 283
2, Uy, 41, 1
W -+ Ay, 41 28
Moo +Ws -+ Upg 41 28
Uy - U, 59 203t
W -+ U _ BY 29.5°
AWy + W+ U, 59 2%, 5
Ay + U 59 1
Wy +, 59 1
A, 4 A 41 1
A, + A 59 2%.5°
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It ean Boe seen clearly from cur table that the following modules
are of full rank: Uy, Wy, W, + AUy, Wyy -+ W+ U, W+ U, W+ W, and
U, -+%;. Among all these modules both 3,4+ A; and 4+, have index 1L
in their pure embedding. This is to say that we can obtain a system of
fundamental units for the field X by either adjoining the units of the
subfield which correspond to %, and of the subfields which corresponds
to ¥, or adjeining the units of the gubficlds which correspond to U,
and ;. For all other ones, the indices are non-trivial and a gystem. of
fundamental unit can be obtained by extracting roofs of elements in
the subfields and we assume this can be done.

Let us now compare our results obtained for A4, with Theorem 1.
Let €y, 0y, 0y, €y, C; he the conjugafe sets consisting of identity, the
operations of ovder 2, those of order 3 aud the two sets of order b vespec-
tively in the group 4..

For the character table of A,, we have ([37)

o |elal @ | G
X111 1 1
145 1-v35
xl 3 -1 o V3 v
2 2
15 14+¥5
X, 3 (=1l 0
8 2 2
X 4] 0] 1 -1 ~1
X 05 | 1| —1 0 0

1. N.2: Bach subgroup of H,, consists of 3 elements in €, and
8 elements in ;. Hence, rank of W,, = 16(2).

2. Wie: Bach subgroup in H,, congigts of 2 elements in €,, 2 elements
in ('; and 5 elemenis in ¢,. Hence, rank of Ay = 25.

3. W Bach subgroup m A, congisgts of 3 elementy in €, and
2 elements in ;. Hence, rank of ¥, == 5242 = 41.

4. %A;: EBach subgroup in I, consists of 2 elements in 0, and
2 elements in C;. Hence, rank of ; = 3243252 = 43.

5. W,: Hach subgroup in H, consists of 3 elements in C,. Hence,
rank of W, = 424+52 = 4],

6. W: Each subgroup in H, consigts of 2 elements in ;. Hence,
rank of W, = 324324424 5% = 59, :

7. Wy: Bach subgroup in H, congists of 1 element in ,. Hence,

rank of Wy == 374532} 42} 5% = 59.
(*) In each of the seven cases, the group also containg one element from 0.
But this does not effect the rank of the corresponding ;.
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If we compare these results with these given in fhe table, we seo
that they agree with each other in all cases. It should be remarked here
that there rue Zroups, e. g., ¢, the quaternion group of order 8, and
T o= {a,b> a® =1, 1" = a® = (ab)?, for which no submodule of full rank
can he obtained in case K 13 tofally real.

If K is totally complex, 1. e., b = 1, the situation is glightly different,
However, our resulis obtained from the real case can be applied here.
Let & be a group of finite order n, let- &y, ..., &; be a set of subgroups
that is cloged under the inner aumtomorphism of &. Again, let

Ay 16 ={Z/1(g)g1 Mg)eZ for all g of & and D' A(g) = o}.

g gei

8
= ' Mg dsl61
=1 ge(#;
Clearly, 4 is a two-sided ideal of Z[@] depending only on &, ..., &,.
It follows that Q4 = EQ[G], where F, is a cerfiain central idempotent
of Q[6]. We have determined already a bound m such that 0 < meZ,
mBye 4. In the case K is non-real, set ¢ = ((1+k)/2)— (1/n) 2 g, where

k is a cerfain element of order 2 in & and set M = @[Ge mZ [G]. As
remarked before, there exists an operator isomorphism 6 from U into M.
It follows that the left ideal 6T of M is of finite index in M. Let U, also
have the same meaning ag before. Then the submodules 07, can be defined
as follows: '

Define

4 ZA(GM" :Gs)

U; = {w| wec 6T and for every g, (g, & implies g, = 0)}, L<i<s.

Let ¥ = Z 60, and the pure embedding V of ¥ in 607 13 defined as:

fe=1
= {#| #¢ 07 and either w =0 or ZV N7 # 0}.

It follows that » — By for we V and (mBy)ae V. Hence m¥V < V.

Our constructive method given previously can be applied for the
complex case. We only have to make some changes to the module M
and the idempotent element ¢. We shall do this in the next paragraph.

Again, by Galois theory, the maximum real subfield 2 of K belongs
- 1o the subgroup of order 2. And we can choose a unit «, in @ sueh that u,
and all ity conjugates generate a subgroup M of finite index m in U. Let
Uyy vy Upp_; D@ & basis for M and. %, veos Uy the corresponding basis
for M = M|By. Let H = <k, and let the idempotent element ¢ of ) [¢] be

. niz
 defined as e #1/2(% B —1/n 2 g. Let & =) g;H be the left coset

. =1
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decomposition of & over H and let .# be the module generated by (m/2) 3 he,
(m[2)gs D hey ..., (m[2)g,, X he. Define our mapping by

pr M4 = (@) = (mf2)g; ) he = mge, i=1,..,8/2—1, g =1,
Again, ¢ is an operator isomorphism and let 4" = .#/m. It follows that
(T) has finite index in ¢*. Let Q[Hi be defined as in the real case and

let A = U Uy, Then % has finite index in ¢(V). Again, our computer

program Wﬂl give ranks of the 905 which can be seen equal to the ranks
of 7’s. And we will give bound on the index of % in its pure embedding
in " and this is also a bounds of the index of ¢(¥) in its pure embedding
in @(T) by Theorem 4.

We are incleding here corresponding results for the group 4, which
are as follows:

A, [ rank | index
W,q 8 1
Wio 16 210
A, 23 9%.3
pi 21 2*
A, 24 27
€A, - : 29 ©28.3
A, _ 29 2
Wy A 23 . 283
M, 4y, 2b 2°
W+ Uiy 24 2°
Weo + U, U, 24 2%
Wy + U, 29 2¢.3%.5°
W+ 29 2%. 5%
Woa + W+ U, 29 2.5
0, -+ 29 1
Ay Uy 29 1
90,4+ U5 24 28
9§, -+ U, 29 ot. 57
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Sur la repartition modulo 1 de la snite no
par

Jacques Lesca (Talence)

§ 1. Introduction. Principaux resultats. Tdentifions le tore 7' = R/Z
& un cerele orienté de Iongneur 1, muni d*une origine 0.

Si § est un point de T, {5} désigne le représentant de g dans R caracté-
risé par

0<{f}<1.
Si B, v sont des points distincts de T, 8, y[ désigne Pare dé&fini par

{6 {B} < {0} < {1}, si{f}<<{rky
{8e T {o} < {y}ou {8} = {81}, sl {8} >3}

Lrarc )8, y] est défini & partir de [f, ¢[ par suppression de # et adjonction
de 4.
Par la suite, a est un irrationnel de T.
On. définit, pour B, ve T, ue N*:
I (B, v w) = card{n: nae 18,3151 < n<<ul,
(8, ysu) = card{n: noc[f,y;0<n <

ET{B, 5 u) = II*(B, y; w—umes(]f,])

(mes 17, ] désignant la longueur de l’arc ] ,6’; ¥1
L7(B, y; w) = I (B, v; u)—umes ([, y[)
enfin, pour § = ¢, on pose: _
BT (y;u) = B (0, y; ),
B (v u) = B (0,75 ).

Ce papier est conzacrd & I'étude des fonctions B et H-.
Teforime A (Reélation de réciprocité). Pour fout fe T, 1w, ve N*

BB, ptuo;v) = B (—f, —p-+vazu)



