384 Y. Amice et J. Fresnel

des fonetions localement constantes sur les bowles de rayon [p**'], or
{@ulocnepu+t 656 Une base de H,,, [1], ainsi il existe Pt dément de Z,,

(@n)ognecgutl tels que
1)"""'["1—1

fo=(f= D) mad),

n=0n

soit une fonction de (%, Z,). D’autre part, 'hypotheése (i) du théoréme
et le lemme 4 montrent que f, est une fonetion localement constante gur
Tes houles de rayon |p*™ el le théordme se laigse alors aisément démontrer
par récmrrence.

Notons que ce théoréme admst une généralisation et une réciproque

[7]-
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The Hausdorff dimension of sets related to g-expansions
by
Jiwog Garsvpos (Philadelphia, Pa.)*

1. Introduetion. The classical theorem of Borel states that for ¢ = 2,
the digits {g,} in the expansion

oo
(@) o= g™ 2e(0,1),
Fe==1

are stochastically independent with respect to Lebesgue measure, hence
the law of large numbres implies that the relative frequency of 0°s among
€1, 8y ...y 6y tends to p = 3. By this same theorem we also have that,
with any prescribed m, for almost all ze (0, 1), there are infinitely many
g such that e, = e = ... = 6y, = 0. These problems become very
difficult if we take g in (1) to be 1 < g << 2. The ¢;’s are no more indepen-
dent, though the results quoted above for y = 2 remain to hold (except
that p = &; it will be an expression in terms of g), see [8], [3] and [4].
Recently I came across a problem in mathematical statistics [5] where
I needed the distribution of the length between two consecutive one’s
in the expression (1} if g is the (only) solution in (1, 2) of

(2) P

with some integer a > 1. Note that if 4 = 0, then g = 2, hence the number
theoretical problems related to (1) with this g are natural generalizations
of Borel’s investigations. In the present note I shall evaluate the Haunsdorfl
dimengion of the get of those »’s for which the distance between any con-
secutive one’s is bounded by M, a given number. Before giving the precise
statement, however, I should specify the algorithm for (1). Without an
algorithm, the digits e are not defined, as the following example shows
this. Let g = %;(P’g~|—1), the solution of (2) with ¢ = 1. Then for # =

%(V’E—«l} we have

1 28.1 N o 1
b= = ey Z %
g m=lg k=28+sg

* The author was a recipient of $ummer Faculty Research Award at Temple
Univeraity. : i
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for any integer s == 1, 1. e., there are infinite many ways to have the series
(1). T use the following ﬂ.lgonthm, being the natural extension of decimal
expansions: define the sequence #4, %5, ... of integers by

—n1 — 3 . 1t
{3) =y, GRS g, Gy = BT
to have the series repregentation

+oo

(4) ma Mgt
k=1
with 1< 9, << %y << ... positive integers. (4) iz evidently (1) after the

zero terms having been dropped, and corresponds fo the algorithm of [8].
My aim is to prove the following result.
TEEOREM. Let g be the (only) solution of (2) satisfying 1 < g < 2.
Let Mz a1 be an infeger and let Z,, denote the set of those xe (0, 1) for
whieh my, =, —ny_; are bounded by M for all k= 1, where ny = 0. The
Housdarff dimension H (M) of Z,, is the solution in s of the equation
M

DN

k=a+1

) w(s, M) =

According to the remark in the previous paragraph, Z,; has Lebesgue
measure 0. The asgumption M > a-+ 1 is not a restriction, since the algo-
rithm (3) implies that my; = a-+1 for all % = 2 (see Lemma 1 in the next
section), I shall prove Theorem in the next section. Inm addition to my
results [3] and [4], T shall make use of the technique developed by Saldt
[9] to investigate the Hausdorff dimension of cerfain sets related to
Liroth’s expansion.

2. The proof of Theorem. Tuet us state the definition of the Hausdorft
dimension used in this paper.

DEFINITION. Tt ¢ > 0 be a given real number and let U < (0, 1).
A eollection D of & denumerable number of intervals I is called a ¢-covering
of Uit Uc U I and ii |I| < ¢ for all I in D (|I] stands for the length

of:I). Let 7 (c, U) be Lhe set of all e-coverings of U/ and seb

(6) : Rie, U, 8) = inf- Ip
U8 = it I;D‘l |
and
(7 o MU, s) =limh(e, U,s) as e—0+.

It is known (see [1] and [10]) that the limit (7) always exists and also
that there iz one and only one s, such that for all 0 < 5 < s, WU, 8 =

and for sy<Ce <1, A{U,s) = 0. This unique s, is called the Hausdortt
" dimension of U,
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Hence in order o prove Theorem we have to show that, in case of
U =Zyy, h{%y,8) = -+ oo for all 0<C 5 8y, where s, is the root of the
equation (5), i. e., w(s,, M) =1, and for s, < s < 1, h{Z,,, 8) = 0.

Before turning to the details, let us quote some results of [3] and
[4], which are related to the structure of Z,; and which will be needed
in the sequel.

Lemma 1. Let 1 < 9y < %y < ... be defined by (3). Then the set {n, = j,,
o 52 Joy veey fy = It 68 O mterua:l of lengih

g (1~ 1/g)

i j,—Jr_1 =z a+1 for r =2 and it is emply otherwise.
Lievyma 2. The funclions my = sy —ny_q, b= 1, where 4y =0, are
stochastically independent with respect to Lebesgue measure and for k= 2,

their distribulion is given by

gt for t=a+1,

Plmy, =1 =
O ) {0 otherwise

(P is Lebesgue measure).

Lemma 2 is quoted to justify the elaim that FP(Z,;) = 0, a8 indeed
it follows from. Lemma 2 and from the law of large numbers.

Let us now give the details of the proof. Let s, be the solution in s
of (5) and let sp<<s<C 1.

By the definition of Z,; it is evident that for any % = 1,

(8) Zy e U fmg =t my =t omy =1}
T arlsieM
I<<islc
Since
(9)  {my =1, My = tay .y My = B}
={n, =1, Moo=ty by ...,y =t + ... B,

in view of Lemma 1, (8) provides a ¢-covering of Z,, if
g T (11 g) < 0

which, by t; = a+1, holds if k iz chosen so thatb

(10) ‘ S TR Jin < e,

Fix k to satisty (i{_)). Then by (6} and {8) and again by Lemma 1,

M

(A1) he Zuy sy ) gl M g = wits, ).

a1ty <M ) t=a+1
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By the definition of s,, for all s, <8< 1, w(s, M) < 1. Hence, since the
inequakity (11) holds for all & satisfying (1.0},

{12) hie,Zy, 8y =0 for sy<s<TlL.

Clearly, h{Zy,s) =0 for g<<s<<1, and the definition thus implies -

that B (M) < 8,. Note that if M = a+1,s, = 0, therefore H{n+1) = 0.
In the sequel therefore we assume that 4 > a~i—l which implies that
$ 0.

' >'Let 0 < § < g,. By Definition, it is sufficient to prove that h(Z,, s)
= 0. To show this, we shall give in several steps a lower estimate for
h{e, Zr, 8) which is positive and which at the final stage will not depend
on ¢. The details are as follows.

Tt &> 0 be an arbitrary real number. In view of (6), there iz a
c-covering D of Zy such that

= DP.

/S IeD

(13) F(e, Zar, 8) e

By the definition of Z,,,

(14) Zpy = ﬂ U {my =1, my =1y ooy g = B}
k=1 ¥ E(a+l,I|I) ‘
\1*_
Define )
(15) Tty tayones t) = {m0y = b1, My =ta, ..oy My =i}

Lemma 1 states that the sets (%, fz, ..., &) are intervals. We call these
sets Tundamental intervals, Take the closures of the fundamental intervals
oceuring in. (14). This results in adding a denumerable sef to Z, let this
be denoted by Z3;. Evidently, the Hansdorff dimension of Z,; and of Ty
coincide, hence the covering D in (13) can be taken to cover Zhe Tt ig
algo known that the covering intervals can be taken to he open. Now,
since an open systerm. I covers a-closed set 7%, the Heine-Borel theorem,
[6], p. 72, yields that a finite subset of D already covers Z3,. Evidently,
it can be assumed. that the endpoints of the intervals left from D to cover
Z4 are elemnents of Z3;. As a matter of fact, an interval I can be faken
to be the closed interval [u,®] where u =inf{I NnZ}} and v =
sup {I N Z3.). Let this new system of intervals be denoted by D, , i. e., Dy is
a finite collection of intervals which is a e-covering of Z3, and sueh that
the end-points of the intervals belonging to D, are elements of Z3,. Since
D, was obtained from D by dropping some of its elements and by possibly
reducing the length of those intervals left, we have from (13) that

(16) |  h(o Zyy 8) ez DI

Telny
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We shall now give a lower estimate for the terms on the right hand side
of (16) in terms of fundamental intervals which estimate will be inde-
pendent of ¢ Since, by Lemma 1, the length of a fundamental interval
(15) tends to 0 with %, the description of the structure of D, above clearly
shows the following fact. Starting with the interval (0, 1) and congtrueting
the fundamental intervals with & = 1, then with k = 2, and so omn, there
will be o first step when, for I« D,, the fundamental interval T(2,, &5, ..., &)
containg I but the endpoints of I belong to I{i,, ..., %, d,) and I{,, ...

.y b, &), Tespectively, with d, + d,. Since, by construetion, the funda-
mental intervals I(f, ..., 4,d), 1 =1,2, occur in the representation
(14), we have that all the parameters f,, 1y, ..., t, d; and d, are between
a+1 and M and also for any y for which I(¢,,...,1, d;, %) can cover
the endpoints of I, we have that e+ 1<y < M (the endpoinis of I are
elements of Z3;, and any point of Z7; belongs to a fundamental interval
with ifs parameters being between a-+1 and ). This however implies
that the length of I can not be arbitrarify small in terms of T(2, ..., %),
namely, the least value of [I| is obtained i d; = M and d, = M1,
and then necessarily I contains all fundamental intervals (4, ..., &, M —
—1,y} with y > M. These intervals are disjoint and their length, by
Lemma 1, is

+ o0
g_fl.- s =lp—(H—=1)—y+1 (1— ]_!g)
y=J+1 .

= {7 g =3I, - ]

Considering the interval (0, 1) as & fundamental interval (15) with & = 0,
the ahove argument applies to this case, too, hence we have got that
for any I« D,, there is a well defined fundamental interval containing 7
and the argament above yields that '

(17) DI = (gm0 -1y |1y
IeDy TeDy

where D, is the collestion of the fundamental intervals obfained by the
construction above. It is evident that two fundamental intervals are
either disjoint or one is contained in the other one. Drop those elements
of D, which are contained in another element of D, and let the remaining
set be denoted by D;. This results in an additional decrease in (17), hence
(16) yields the inequality

(18) . . h(a} AM: +8> {g (°M+1)3/ lg— 1)3}2 |Ils
IeDy

T D, contained ‘the fundamental interval (0,1), then D, containg
a single element, (9, 1) only, hence for this case we have from (18) that

(19) {6, Zy, 8) -6 g BN (g 1)
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where & > 0 is arbitrary. Since the right hand side of (19) does not depend
on ¢, it gives that, if Dy = {(0,1)},

(20) B(Zyzy 8) = g~ B (g — 1)

Tet us turn o the case when (0, 1)¢ D;. Let & in (15) be called the order
of the fundamental interval occuring in (15). Let I(4,, ..., ;) be an element

“of D, with largest order in Dy. Such an element exists since D, iz finite
and by assmmption, & > 0. Since D, is a covering of Z5; and each element
of D, does eover points of Z3;, we have that all 4, 1 < i< k, are between
a--1 and M, namely, a fundamental interval I(u, ..., u,) With at least
one u; > M contains no points of Z3;. By the maximal property of k and
by the elements of D, being disjoint, we therefore have that the points
of %, which belong to the fundamental intervals I(, ..., %1, %) Wwith
a+1 <y < M, can be covered only if D, contains all of these fundamental
intervals. By Lemma 1, however,

M M
(21) Sy Gy I = [Tl ey G D) 97
y=a+1 ' U=g+1

and since for 0 < § < 8,

{21) vields that if we replace in D, all of ity elements of order & by the
single element I (%,, ..., #_,), the right hand side of (18) is further decreased
and by this step the maximal order of Dy is reduced. Repeating this step
% times, we arrive at (19), hence we proved [20) for the general case.
Ag Definition imples, the procf is complete.

Tinally, I wish to draw the attention of the reader to the works [2]
and [7], where further properties of g-expansions are investigated; see
also the relevant references to [T1.
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